
Compiler Design IIIT Kalyani, WB 1✬

✫

✩

✪

Intermediate Representations

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 2✬

✫

✩

✪

Front End & Back End

• The portion of the compiler that does

scanning, parsing and static semantic

analysis is called the front-end.

• The translation and code generation portion

of it is called the back-end.

• The front-end depends mainly on the source

language and the back-end depends on the

target architecture.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 3✬

✫

✩

✪

Intermediate Representation

• A compiler transforms the source program to

an intermediate form that is mostly

independent of the source language and the

machine architecture.

• This approach isolates the front-end and the

back-enda.
aEvery source language has its front end and every target language has its

back end.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 4✬

✫

✩

✪

Note

• More than one intermediate representations

may be used for different levels of code

improvement.

• A high level intermediate form preserves

source language structure. Code

improvements on loop can be done on it.

• A low level intermediate form is closer to

target architecture.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 5✬

✫

✩

✪

Tree Representations

• Parse tree is a representation of complete

derivation of the input.

• It has intermediate nodes labeled with

non-terminals of derivation.

• This is used (often implicitly) for parsing

and attribute synthesis.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 6✬

✫

✩

✪

Tree Representations

• A syntax tree is very similar to a parse tree

where extraneous nodes are removed.

• It is a good representation that is close to

the source-language as it preserves the

structure of source constructs.

• It may be used in applications like

source-to-source translation, or

syntax-directed editor etc.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 7✬

✫

✩

✪

Directed Acyclic Graph (DAG)

• A directed acyclic graph (DAG) is an

improvement over a syntax tree, where

duplications of subtrees such as common

subexpressions are identified and shared.

• This helps to identify common

sub-expressions, so that the cost of

evaluation can be reduced.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 8✬

✫

✩

✪

Syntax Tree: a*a+a*b+a*b+a*a

a a a b a b a a

* * * *

+

+

+

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 9✬

✫

✩

✪

DAG: a*a+a*b+a*b+a*a

a b

* *

+

+

+

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 10✬

✫

✩

✪

Note

• There are six occurrences of ‘a’ and two

occurrences of ‘b’ in the expression.

• In the DAG ‘a’ has two parents to indicate

two occurrences of it in two different

sub-expressions.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 11✬

✫

✩

✪

Note

• Similarly, ‘b’ has one parent to indicate its

occurrence in one sub-expression.

• The internal nodes representing ‘a*a’ and

‘a*b’ also has two parents each indicating

their two occurrences.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 12✬

✫

✩

✪

Low-Level Tree

• The tree and DAG we have discussed so far

are closer to the source code.

• But they do not have the low-level details of

different variables e.g. their locations, types,

addressing modes, initial values etc.

• A low-level tree may contain these

information for code generation and

improvement.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 13✬

✫

✩

✪

Low-Level Tree

• Location of a variable may be specified by a

memory address stored in a register and a

displacement.

• There may be one or more levels of address

indirection.

• An occurrence of a variable may refer to

l-value or r-value.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 14✬

✫

✩

✪

Trees: a = 2 * b

=

*a

2
b

=

+

base (rbp) disp (−12)

*

val (2) @

base (rbp) disp (−16)Low−level Syntax Tree

High−level Syntax Tree

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 15✬

✫

✩

✪

Graph Representations

• There are different types of graph

representations used to represent and

analyze properties of a program.

• A control-flow grapha models the flow of

control between the basic blocksb.
aAfterward we shall define them formally.
bMaximal length sequence of single entry-point branch-free code.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 16✬

✫

✩

✪

Graph Representations

• A data-dependence graph captures the

definition or creation of a new data and its

usage. There is are edges from the definition

of a data to different points of its use.

• Call graph is used for interprocdurial

analysis of code. There is an edge from each

instance of call to the procedure.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 17✬

✫

✩

✪

SDT for Tree and DAG

• Following are syntax directed translations to

construct expression tree and DAG from the

classic expression grammar G.

• We are not considering the error handling

where the variable is undefined.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 18✬

✫

✩

✪

SDT for Tree

F → id

{

index = searchInsertSymTab(id.name) ;

F.node = mkLeaf(index);

}

E → E1 + T
{ E.node = mkNode(’+’, E1.node, T.node);}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 19✬

✫

✩

✪

SDT for DAG

F → id

{

(index, new) = searchInsertSymTab(id.name) ;

if(new == NEW) {

F.node = mkLeaf(index);

symTab[index].leaf = F.node;

}

else F.node = symTab[index].leaf;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 20✬

✫

✩

✪

SDT for DAG

E → E1 + T

{

node = searchNode(’+’,E1.node,T.node);

if(node == NULL)

E.node = mkNode(’+’,E1.node,T.node);

else E.node = node;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 21✬

✫

✩

✪

Nodes

• Nodes are organized in such a way that they

can be searched efficiently and shared.

• Often nodes are stored in an array of records

with a few fields.

• The first field corresponds to a token or an

operator.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 22✬

✫

✩

✪

Nodes

• Other fields correspond to attributes for a

leaf node, or indices of its children in case of

internal node.

• The index of a node is known as its value

number.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 23✬

✫

✩

✪

DAG and Its Nodes

a b

* *

+

+

+ ID(a)
ID(b)

SymTab

* 1 1
1 2

+
*

43

+
+

3 6

(1) (2)

(3) (4)

(5)

5 4

(6)
(7)

7
6
5
4
3
2
1

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 24✬

✫

✩

✪

Note

Searching for a node in a flat array is not
efficient so nodes may be arranged as a hash
table.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 25✬

✫

✩

✪

Linear Intermediate Representation

• Both the high-level source code and the

target assembly codes are linear in their text.

• The intermediate representation may also be

linear sequence of codes. with conditional

branches and jumps to control the flow of

computation.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 26✬

✫

✩

✪

Linear Intermediate Representation

• A linear intermediate code may have one

operand addressa, two-addressb, or

three-address like RISC architectures.

• In fact it may also be zero-addressc. But we

shall only talk about the three-address codes.

aSuitable for an accumulator architecture.
bSuitable for a register architecture with limited number of registers.
cLike a stack machine.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 27✬

✫

✩

✪

Three-Address Instruction/Code

It is a sequence of instructions of following
forms:
1. a = b # copy
2. a = b op c # binary operation
3. a[i] = b # array write
4. a = b[i] # array read
5. goto L # jump
6. if a==true goto L # branch
7. if a==false goto L

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 28✬

✫

✩

✪

Three-Address Instruction/Code

8. a = op b # unary operation
9. if a relop b goto L # relOp and branch
10. param a # parameter passing
11. call p, n # function call
12. a = call p, n # function returns a value
13. *a = b # indirect assignment
There may be a few more.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 29✬

✫

✩

✪

Three-Address Instruction/Code

1. ‘a’ corresponds to a source program variable

or compiler defined temporary, and ‘b’

corresponds to either a variable, or a

temporary, or a constant.

2. ‘a’ is similar; b, c are similar to ‘b’ in 1. op

is a binary operator.

3. ‘a’ is the array name and ‘i’ is the byte

offset. ‘b’ is similar.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 30✬

✫

✩

✪

Three-Address Instruction/Code

4. Similar.

5. L is a label

6. If ‘a’ is true, jump to label L.

7. If ‘a’ is false, jump to label L.

8. op is a unary operator.

9. relop is a relational operator.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 31✬

✫

✩

✪

Three-Address Instruction/Code

10. Passing the parameter ‘a’.

11. Calling the function ‘p’, that takes n

parameters.

12. The return value is stored in ‘a’.

13. Indirection.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 32✬

✫

✩

✪

Three-Address Code: an Example

t1 = a * a
t2 = a * b
t3 = t1 + t2
t4 = t3 + t2
t5 = t1 + t4

a b

* *

+

+

+t5

t4

t1

t3

t2

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 33✬

✫

✩

✪

GCC Intermediate Codes

The GCC compiler uses three intermediate

representations:

1. GENERIC - it is a language independent

tree representation of the entire function.

2. GIMPLE - is a three-address representation

generated from GENERIC.

3. RTL - a low-level representation known as

register transfer language.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 34✬

✫

✩

✪

A Example

Consider the following C function.

double CtoF(double cel) {

return cel * 9 / 5.0 + 32 ;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 35✬

✫

✩

✪

Readable GIMPLE Code

$ cc -Wall -fdump-tree-gimple -S ctof.c

CtoF (double cel) {

double D.1248;

double D.1249;

double D.1250;

D.1249 = cel * 9.0e+0;

D.1250 = D.1249 / 5.0e+0;

D.1248 = D.1250 + 3.2e+1;

return D.1248;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 36✬

✫

✩

✪

Raw GIMPLE Code

$ cc -Wall -fdump-tree-gimple-raw -S ctof.c

CtoF (double cel)

gimple_bind <

double D.1588;

double D.1589;

double D.1590;

gimple_assign <mult_expr, D.1589, cel, 9.0e+0>

gimple_assign <rdiv_expr, D.1590, D.1589, 5.0e+0>

gimple_assign <plus_expr, D.1588, D.1590, 3.2e+1>

gimple_return <D.1588>

>

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 37✬

✫

✩

✪

C program with if

#include <stdio.h>

int main() // cCode4.c

{

int l, m ;

scanf("%d", &l);

if(l < 10) m = 5*l;

else m = l + 10;

printf("l: %d, m: %d\n", l, m);

return 0;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 38✬

✫

✩

✪

Gimple code

cc -Wall -fdump-tree-gimple -S cCode4.c

Output: cCode4.c.004t.gimple

main ()

{

const char * restrict D.2046;

int l.0;

int l.1;

int l.2;

int l.3;

const char * restrict D.2054;

int D.2055;

int l;

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 39✬

✫

✩

✪

int m;

D.2046 = (const char * restrict) &"%d"[0];

scanf (D.2046, &l);

l.0 = l;

if (l.0 <= 9) goto <D.2048>; else goto <D.2049>;

<D.2048>:

l.1 = l;

m = l.1 * 5;

goto <D.2051>;

<D.2049>:

l.2 = l;

m = l.2 + 10;

<D.2051>:

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 40✬

✫

✩

✪

l.3 = l;

D.2054 = (const char * restrict) &"l: %d, m: %d\n"[0];

printf (D.2054, l.3, m);

D.2055 = 0;

return D.2055;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 41✬

✫

✩

✪

C program with for

#include <stdio.h>

int main() // cCode5.c

{

int n, i, sum=0 ;

scanf("%d", &n);

for(i=1; i<=n; ++i) sum = sum+i;

printf("sum: %d\n", sum);

return 0;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 42✬

✫

✩

✪

Gimple code

cc -Wall -fdump-tree-gimple -S cCode5.c

Output: cCode5.c.004t.gimple

main ()

{

const char * restrict D.2050;

int n.0;

const char * restrict D.2052;

int D.2053;

int n;

int i;

int sum;

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 43✬

✫

✩

✪

sum = 0;

D.2050 = (const char * restrict) &"%d"[0];

scanf (D.2050, &n);

i = 1;

goto <D.2047>;

<D.2046>:

sum = sum + i;

i = i + 1;

<D.2047>:

n.0 = n;

if (i <= n.0) goto <D.2046>; else goto <D.2048>;

<D.2048>:

D.2052 = (const char * restrict) &"sum: %d\n"[0];

printf (D.2052, sum);

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 44✬

✫

✩

✪

D.2053 = 0;

return D.2053;

}

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 45✬

✫

✩

✪

Representation of Three-Address Code

• Any three address code has two essential

components: operator and operand.

• There can be at most three operands and

one operator.

• The operands are of three types, a name

from the source program, a temporary name

generated by the compiler or a constanta.
aThere are different types of constants used in a programming language.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 46✬

✫

✩

✪

Representation of Three-Address Code

• There is another category of name, a label in

the sequence of three-address codes.

• A three-address code sequence may be

represented as a list or array of structures.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 47✬

✫

✩

✪

Quadruple

• A quadruple is the most obvious first choicea.

• It has an operator, one or two operands, and

the target field.

• Following are a few examples of quadruple

representations of three-address codes.

aIt looks like a RISC instruction at the intermediate level.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 48✬

✫

✩

✪

Example

Operation Op1 Op2 Target

copy b a

add b c a

writeArray b i a

readArray b i a

jmp L

The variable names are pointers to symbol
table.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 49✬

✫

✩

✪

Example

Operation Op1 Op2 Target

ifTrue a L

ifFalse a L

minus b a

address b a

indirCopy b a

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 50✬

✫

✩

✪

Example

Operation Op1 Op2 Target

lessEq a b L

param a

call p n

copyIndir b a

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 51✬

✫

✩

✪

Triple

• A triple is a more compact representation of

a three-address code.

• It does not have an explicit target field in

the record.

• When a triple u uses the value produced by

another triple d, then u refers to the value

number (index) of d.

• Following is an example:

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 52✬

✫

✩

✪

Example

t1 = a * a

t2 = a * b

t3 = t1 + t2

t4 = t3 + t2

t5 = t1 + t4

Op Op1 Op2

0 mult a a

1 mult a b

2 add (0) (1)

3 add (2) (1)

4 add (0) (3)

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 53✬

✫

✩

✪

Note

An operand field in a triple can hold a
constant, an index of the symbol table or a
value number or index of another triple.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 54✬

✫

✩

✪

Indirect Triple

• It may be necessary to reorder instructions

for the improvement of execution.

• Reordering is easy with a quad

representation, but is problematic with triple

representation as it uses absolute index of a

triple.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 55✬

✫

✩

✪

Indirect Triple

• As a solution indirect triples are used, where

the ordering is maintained by a list of

pointers (index) to the array of triples.

• The triples are in their natural translation

order and can be accessed by their indexes.

But the execution order is maintained by an

array of pointers (index) pointing to the

array of triples.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 56✬

✫

✩

✪

Example

Exec. Order

0 (0)

1 (2)

2 (1)

3 (3)

· · · · · ·

Op Op1 Op2

0 mult a b

1 add (0) c

2 add a b

3 add (1) (2)

· · · · · ·

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 57✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• This representation is similar to

three-address code with two main differences.

• Every definitiona has a distinct name

(virtual register).

• Each use of a value refers to a particular

definition.
aAssignment of value to a variable (user defined or compiler defined) e.g. t7

= a + t3.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 58✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• If the same user variable is defined on more

than one control pathsa, they are renamed as

distinct variables with appropriate

subscripts.

• When more than one control-flow paths join,

a φ-function is used to combine the variables.

aConditional statements.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 59✬

✫

✩

✪

Static Single-Assignment (SSA) Form

• The φ-function selects the value of its

arguments depending on the control-flow

path (data-flow under control-flow).

• Each name is defined at one placea. Use of a

name contains information about the

location of its definition (data-flow).

• SSA-form tries to encode data-flow under

flow-control.
aSo the name static single-assignment (SSA).

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 60✬

✫

✩

✪

Example

Consider the following C code:

for(f=i=1; i<=n; ++i) f = f*i;

The corresponding three-address codes and
SSA codes are as follows.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 61✬

✫

✩

✪

Three-Address & SSA Codes

i = 1 i0 = 1
f = 1 f0 = 1

L2: if i>n goto - if i0 > n goto L1
L2: i1 = φ(i0, i2)

f1 = φ(f0, f2)
f = f*i f2 = f1*i1
i = i + 1 i2 = i1 + 1
goto L2 if i2 <= n goto L2

L1: i3 = φ(i0, i2)
f3 = φ(f0, f2)

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 62✬

✫

✩

✪

Note

• We have not talked about the

implementation of φ-function. It selects the

value depending on the control-path.

• When the control flows to L2 from the top,

the φ-function selects i0 and f0.

• But when the control is transferred from the

goto L2, it selects i2 and f2.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 63✬

✫

✩

✪

Note

• At the beginning of every basic block all

φ-functions present are executed

concurrently before any other statements.

• New codes are introduced on different

control paths.

• i1 ← i0, f1 ← f0 on control path from

top to L2. But i1 ← i2, f1 ← f2 on

control path from goto L2.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 64✬

✫

✩

✪

Note

• Any number of control paths may merge at

the beginning of a basic block. A typical

example is the join point of a switch-case

statement.

• So the φ-function does not fit in the

3-address code model, and it is necessary to

create provision to store arbitrary number of

arguments of a φ-function.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 65✬

✫

✩

✪

Basic Block

A basic block is the longest sequence of

three-address codes with the following

properties.

• The control flows to the block only through

the first three-address codea.

• The control flows out of the block only

through the last three-address codeb.
aThere is no label in the middle of the code.
bNo three-address code other than the last one can be branch or jump.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 66✬

✫

✩

✪

Basic Block

• The first instruction of a basic block is called

the leader of the block.

• Decomposing a sequence of 3-address codes

in a set of basic blocks and construction of

control flow grapha helps code generation

and code improvement.

aWe shall discuss.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 67✬

✫

✩

✪

Partitioning into Basic Blocks

The sequence of 3-address codes is partitioned

into basic blocks by identifying the leaders.

• The first instruction of the sequence is a

leader.

• The target of any jump or branch

instruction is a leader.

• An instruction following a jump or branch

instruction is a leader.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 68✬

✫

✩

✪

Example

1: L2: v1 = i 13: L4:v1 = i
2: v2 = j 14 v2 = j
3: if v1>v2 goto L3
4: v1 = j 15 if v1<>v2
5: v2 = i goto L2
6: v1 = v1 - v2
7: j = v1
8: goto L4
9: L3: v1 = i
10: v2 = j
11: v1 = v1 - v2
12: i = v1

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 69✬

✫

✩

✪

Leaders in the Example

3-address instructions at index 1, 4, 9, 13 are
leaders. The basic blocks are the following.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 70✬

✫

✩

✪

Basic Block - b1

1: L2: v1 = i

2: v2 = j

3: if v1>v2 goto L3

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 71✬

✫

✩

✪

Basic Block - b2

4: v1 = j

5: v2 = i

6: v1 = v1 - v2

7: j = v1

8: goto L4

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 72✬

✫

✩

✪

Basic Block - b3

9: L3: v1 = i

10: v2 = j

11: v1 = v1 - v2

12: i = v1

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 73✬

✫

✩

✪

Basic Block - b4

13: L4:v1 = i

14 v2 = j

15 if v1<>v2 goto L2

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 74✬

✫

✩

✪

Control-Flow Graph

A control-flow graph is a directed graph
G = (V,E), where the nodes are the basic
blocks and the edges correspond to the flow of
control from one basic block to another. As an
example the edge eij = (vi, vj) corresponds to
the transfer of flow from the basic block vi to
the basic block vj.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 75✬

✫

✩

✪

Control-Flow Graph

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 76✬

✫

✩

✪

L3: v1=i
 v2=j
 v1=v1−v2
 i = v1

v2 = j
if v1>v2 goto L3

L4: v1=i
 v2=j
 if v1 <> v2 goto L2

b3:

b4:

L2: v1 = i

b1:

v1=j
v2=i
v1=v1−v2
j=v1
goto L4

b2:

Exit

Entry

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 77✬

✫

✩

✪

Note

A basic block is used for improvement of code
within the block (local optimization). Our
assumption is, once the control enters a basic
block, it flows sequentially and eventually
reaches the end of the blocka.

aThis may not be true always. An internal exception e.g. divide-by-zero or

unaligned memory access may cause the control to leave the block.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 78✬

✫

✩

✪

DAG of a Basic Block

• A basic block can be represented by a

directed acyclic graph (DAG) which may be

useful for some local optimization.

• Each variable entering the basic block with

some initial value is represented by a node.

• For each statement in the block we associate

a node. There are edges from the statement

node to the last definition of its operands.

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 79✬

✫

✩

✪

DAG of a Basic Block

• If N is a node corresponding to the

3-address instruction s, the operator of s

should be a label of N .

• If a node N corresponds to the last

definition of variables in the block, then

these variables are also attached to N .

Lect 10 Goutam Biswas

Compiler Design IIIT Kalyani, WB 80✬

✫

✩

✪

DAG of b2

j0 i0
v1 v2

− v1J

Lect 10 Goutam Biswas

