
Compiler Design IIIT Kalyani, West Bengal 1✬

✫

✩

✪

Introduction

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 2✬

✫

✩

✪

Programming a Computer

• High level language (HLL) program: easy for

human understanding

• Assembly language program: intermediate

form.

• Machine language program: a CPU can only

understand this form.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 3✬

✫

✩

✪

A Compiler

• A compiler is a program that accepts a HLL

program (source language) as input. It

translates the program to a target language

program preserving the semantics.

• An example the source language may be

C++ and the target language may be the

assembly or machine language of some

processors e.g. x86-64.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 4✬

✫

✩

✪

Compiling a Compiler

• A compiler is also a program written in some

language and compiled. The implementation

language of a compiler may or may not be

same as its source language.

• If the source language and the

implementation language are the same, we

are essentially compiling a new version of the

compiler. A process known as bootstrapping.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 5✬

✫

✩

✪

An Interpreter

• An interpreter is a type of compiler that

works in a different mode.

• It does not produce a complete translated

version of the machine code. It interprets

the extracted semantic representation of the

HLL program, and performs necessary

action on data.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 6✬

✫

✩

✪

C Program

#include <stdio.h>

int main() // first0.c

{

printf("My first program\n");

return 0;

}

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 7✬

✫

✩

✪

Assembly Language Program

$ cc -Wall -S first0.c ⇒ first0.s

.file "first0.c"

.section .rodata

.LC0:

.string "My first program"

.text

.globl main

.type main, @function

main:

.LFB0:

.cfi_startproc

pushq %rbp

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 8✬

✫

✩

✪

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

movl $.LC0, %edi

call puts

movl $0, %eax

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE0:

.size main, .-main

.ident "GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3"

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 9✬

✫

✩

✪

.section .note.GNU-stack,"",@progbits

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 10✬

✫

✩

✪

Object File

$ cc -c first0.s ⇒ first0.o

$ objdump -d first0.o | less

0000000000000000 <main>:

0: 55 push %rbp

1: 48 89 e5 mov %rsp,%rbp

4: bf 00 00 00 00 mov $0x0,%edi

9: e8 00 00 00 00 callq e <main+0xe>

e: b8 00 00 00 00 mov $0x0,%eax

13: 5d pop %rbp

14: c3 retq

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 11✬

✫

✩

✪

Executable File

$ cc first0.o ⇒ a.out

$ objdump -d a.out | less

00000000004004f4 <main>:

4004f4: 55 push %rbp

4004f5: 48 89 e5 mov %rsp,%rbp

4004f8: bf fc 05 40 00 mov $0x4005fc,%edi

4004fd: e8 ee fe ff ff callq 4003f0 <puts@plt>

400502: b8 00 00 00 00 mov $0x0,%eax

400507: 5d pop %rbp

400508: c3 retq

a.out file contains more code than this.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 12✬

✫

✩

✪

Using Software Interrupt: x86-64

#include <asm/unistd.h>

#include <syscall.h>

#define STDOUT_FILENO 1

.file "first.S"

.section .rodata

L1:

.string "My First program\n"

L2:

.text

.globl _start

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 13✬

✫

✩

✪

_start:

movl $(SYS_write), %eax # eax <-- 1 (write)

parameters to ’write’

movq $(STDOUT_FILENO), %rdi # rdi <-- 1 (stdout)

movq $L1, %rsi # rsi <-- starting

address of string

movq $(L2-L1), %rdx # rdx <-- L2 - L1

string length

syscall # software interrupt

user process requesting

OS for service

movl $(SYS_exit), %eax # eax <-- 60 (exit)

parameters to exit

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 14✬

✫

✩

✪

movq $0, %rdi # rdi <-- 0

syscall # software interrupt

ret # return

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 15✬

✫

✩

✪

Preprocessor, assembler and Linker

$ /lib/cpp first.S first.s
$ as -o first.o first.s
$ ld first.o
$./a.out
My first program

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 16✬

✫

✩

✪

Description/Specification of a Language

• Description of a well-formed program -

syntax of a language.

• Description of the meaning of different

constructs and their composition as a whole

program - semantics of a language.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 17✬

✫

✩

✪

Description of Syntax

Syntax of a programming language is specified

and verified in two stages.

1. Identification of the tokens (atoms of

different syntactic categories) from the

character stream of a program.

2. Correctness of the syntactic structure of the

program from the stream of tokens.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 18✬

✫

✩

✪

Description of Syntax

Formal language specifications e.g. regular
expression, formal grammar, automaton etc.
are used to specify the syntax of a language.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 19✬

✫

✩

✪

Description of Syntax

Regular language specification is used to specify

different syntactic categories.

Restricted subclass of the context-free grammar
e.g. LL(1), LALR(1), or LR(1) are used to
specify the structure of a syntactically correct
program.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 20✬

✫

✩

✪

Note

There are structural features of a programming
language that are not specified by the grammar
rules for efficiency reason and are handled
differently.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 21✬

✫

✩

✪

Description of Meaning: Semantics

• Informal or semi-formal description by

natural language and mathematical

notations.

• Formal descriptions e.g. grammar rule with

attributes, different formal specifications of

semantics.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 22✬

✫

✩

✪

Users of Specification

• Programmer - often uses an informal

description of the language construct.

• Implementer of the language translator for a

target machine or language.

• People who want to verify a piece of

program or who want to automate program

writing (synthesis).

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 23✬

✫

✩

✪

Source and Target

A source language is usually a high-level
language. But there are different types of high
level languages.
Imperative languages like C, object oriented
languages like Java, functional languages like
Haskell, logic programming languages like
Prolog, languages for parallel and distributed
programming etc.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 24✬

✫

✩

✪

Source and Target

• The target languages also have a wide

spectrum. Assembly and machine languages

of different architecture, some high-level

language e.g. C, languages of virtual

machines etc.

• Variation in machine architecture puts

different code improvement demand on a

compiler.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 25✬

✫

✩

✪

Front-end and Back-end

• The part of the compiler that analyzes the

structure of the source program, extracts the

semantic information and produces an

internal representation of it is known as the

front-end.

• The part that uses the semantic

representation and synthesis the

semantically equivalent target program is

called the back-end.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 26✬

✫

✩

✪

Compiler and Interpreter

• A compiler and an interpreter mainly differ

in their back-ends.

• A compiler from the intermediate

representation try to generate a target code

that will run efficiently, many times, on

different data.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 27✬

✫

✩

✪

Compiler and Interpreter

• Interpreter on the other hand will perform

action specified by the HLL program

fragment, extracted in the intermediate

representation, on its data.

• The code generation back-end of an compiler

is replaced by a set of routines for

interpretation.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 28✬

✫

✩

✪

Compiler and Interpreter

• Usually it is expected that the compiled

code is more time efficient.

• But an interpreter may have better error

reporting as the source program is available.

• It may be more portable and easier to write.

People also claim that an interpreter is

better in terms of security.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 29✬

✫

✩

✪

Basic Phases of Compilation

• Read the program text - this is the most

time consuming part as it involves I/O.

• Preprocessing - a phase before the actual

compilation. It may involve inclusion

(reading) of several files.

• Lexical analysis - identification of the

syntactic symbols of the language and

collecting their attributes.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 30✬

✫

✩

✪

Basic Phases of Compilation

• Syntax checking and static semantic analysis

- the stream of token is parsed to form the

parse tree or syntax tree. The semantic

information is collected from the context and

the syntax tree is annotated.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 31✬

✫

✩

✪

Basic Phases of Compilation

• Intermediate code generation and code

improvement - language specific constructs

are translated to more general and simple

constructs. As an example a long

expressions is broken down to expressions

with fixed number of parameters. Different

optimizations are performed on this

intermediate code.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 32✬

✫

✩

✪

Basic Phases of Compilation

• Symbolic target code generation and

architecture specific code improvement - the

intermediate representation is translated to

target code in symbolic form, and

architecture specific code optimization is

performed.

• Low level machine code generation.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 33✬

✫

✩

✪

Source Program

Compiler

Compiler

Lexical Analyzer

Preprocessor

String of characters (source program)

Token String

Intermediate Code

Code Generator

Program
Assembly Language

Symbol Table etc.

Assembler

Rel Obj Module
Linker

Relocatable
object files

or library

Exec Machine Code

Parser and Static Semantics Analysis

Intermediate Code Gen.

Annotated Syntax Tree

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 34✬

✫

✩

✪

source program

Lexical Analyzer
Token String

Intermediate Code

Parser and Static Semantics Analizer

Annotated Syntax Tree

Intermediate Code Gen.

Code Improvement

Intermediate Code

Target Code Gen.

Code Improvement
Low level Symb. Code

Low level Symb. Code

Relocatable object module or
runnable machine code

Machine Code Gen.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 35✬

✫

✩

✪

Independence of Front and back Ends

• In an idealistic situation the front-end of a

compiler does not know anything of the

target language. Its job is to transform the

source program to intermediate

representation.

• Similarly, the back-end is not aware of the

source language. It works on the

intermediate representation to generate the

target code.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 36✬

✫

✩

✪

Compiler and Interpreter

• If the intermediate representation of the

source program and the input data to it is

available, the ‘compiler’ can perform the

action on the data specified by the source

program using the intermediate

representation. There is no need to generate

the target code

• This is what is done by an interpreter.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 37✬

✫

✩

✪

Scanner or Lexical Analyzer

A scanner or lexical analyzer breaks the

program text (string of ASCII characters) into

the alphabet of the language (into syntactic

categories) called a tokens.

A token is a symbol of the alphabet of the
language. It may be encoded as a number. A
token may have one or more attributes.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 38✬

✫

✩

✪

An Example

Consider the following C function.

double CtoF(double cel) {

return cel * 9 / 5.0 + 32 ;

}

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 39✬

✫

✩

✪

Scanner or Lexical Analyzer

The scanner uses the finite automaton model to
identify different tokens. Software are available
that takes the specification of the tokens
(elements of different syntactic categories) in
the form of regular expressions and generates a
program that works as the scanner. The
process is completely automated.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 40✬

✫

✩

✪

Scanner or Lexical Analyzer

• A syntax analyzer does not differentiate

between different identifiers or different

integer constants. So they are identified as

identifier token and integer token.

• But the actual values are preserved as

attributes for use in subsequent phases.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 41✬

✫

✩

✪

Syntactic Category, Token and Attribute

String Type Token Attribute

“double” keyword 302

“CtoF” identifier 401 “CtoF”

“(” delimiter 40

“double” keyword 302

“cel” identifier 401 “cel”

“)” delimiter 41

“{” delimiter 123

“return” keyword 315

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 42✬

✫

✩

✪

String Type Token Attribute

“cel” identifier 401 “cel”

“*” operator 42

“9” int-numeral 504 9

“/” operator 47

“5.0” double-numeral 507 5.0

“+” operator 43

“32” int-numeral 504 32

“;” delimiter 59

“}” delimiter 125

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 43✬

✫

✩

✪

Parser or Syntax Analyzer

A parser or syntax analyzer checks whether the
token string generated by the scanner, forms a
valid program. It uses a restricted class of
context-free grammars to specify the language
constructs.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 44✬

✫

✩

✪

Context-Free Grammar

function-definition → decl-spec decl comp-stat

decl-spec → type-spec | · · ·

type-spec → double | · · ·

decl → d-decl | · · ·

d-decl → ident | ident (par-list)

par-list → par-dcl | · · ·

par-dcl → decl-spec decl | · · ·

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 45✬

✫

✩

✪

Expression Grammar

E → E + E | E − E | E ∗ E | E/E | (E) |

−E | var | float-cons | int-cons | · · ·

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 46✬

✫

✩

✪

Parse Tree

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 47✬

✫

✩

✪cel

return

/

+

*

<315>
<59>

<43>

<47>

<42>

<401, "cel">

ret−statement

E

E

E

E

;
E

<504, 32>

32

E

<507, 5.0>

5.0

E

<504, 9>

9

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 48✬

✫

✩

✪

Abstract Syntax Tree

• The parse tree generated during syntax

checking is not suitable a representation for

further processing. A modified form, known

as abstract syntax tree (AST) is created.

• Semantic information are stored in the nodes

of AST (annotated AST) as attributes. It is

used for intermediate code generation, error

checking and code improvement.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 49✬

✫

✩

✪

Abstract Syntax Tree (AST)

ret−statement

+

32/

5.0*

9cel

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 50✬

✫

✩

✪

Annotated AST

ret−statement

+

32/

5.0*

9cel <int, const 9>

<float, const 5.0>

<int, const 32>

<float, symTab b>

<float, symTab temp2>

<float, symTab temp1>

<float, symTab temp3>

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 51✬

✫

✩

✪

Symbol Table

The compiler maintains an important data
structure called the symbol table to store
variety of names and their attributes it
encounters. A few examples are - variables,
named constants, function names, type names,
labels etc.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 52✬

✫

✩

✪

Semantic Analysis

The symbol table corresponding to the function
CtoF should have an entry for the variable cel
with its type and other information.
The constant 9 is of type int. It is to be
converted to 9.0 of type double before it can be
multiplied with cel. Similar is the case for 32.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 53✬

✫

✩

✪

Semantic Analysis

It is not enough to know that x = x + 5; is

syntactically correct.

• The operation is meaningful only if the

variable x is declared, it is a number, and

not a string etc.

• Even if x is a number, the generated code

will be different depending on whether it is

an int, float or a pointer.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 54✬

✫

✩

✪

Intermediate Code Generation

• The language specific AST is translated into

more general constructs known as

intermediate code e.g. 3-address code.

• The form of the intermediate code should be

suitable for code improvement and target

code generation.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 55✬

✫

✩

✪

Intermediate Code Generation

• A while-loop in a C-like language may be

replaced by test, and conditional and

unconditional jumps.

• A compiler may use more than one

intermediate representations for different

phases.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 56✬

✫

✩

✪

Intermediate Code

ret−statement

+

32/

5.0*

9cel

<v1=(double) 9>
<v2=cel *_d v1>

<v3=v2 /_d 5.0>

<v5=v3 +_d v4>
<v4=(double) 32>

<return v5>

’*_d’ is multiplication for double

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 57✬

✫

✩

✪

Intermediate Code

param cel

v1 = (double) 9 # compile time

v2 = cel *d v1

v3 = v2/d5.0

v4 = (double)32 # compile time

v5 = v3 +d v4

return v5

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 58✬

✫

✩

✪

Note

v1, v2, v3, v4, v5 are called virtual
registers. Finally they will be mapped to actual
registers or memory locations. The distinct
names of the virtual registers help the compiler
to improve the code.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 59✬

✫

✩

✪

GCC IC - GIMPLE

$ cc -Wall -fdump-tree-gimple -S ctof.c

CtoF (double cel)

{

double D.1796;

_1 = cel * 9.0e+0;

_2 = _1 / 5.0e+0;

D.1796 = _2 + 3.2e+1;

return D.1796;

}

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 60✬

✫

✩

✪

Raw GIMPLE Code

$ cc -Wall -fdump-tree-gimple-raw -S ctof.c

CtoF (double cel)

gimple_bind <

double D.1796;

gimple_assign <mult_expr, _1, cel, 9.0e+0, NULL>

gimple_assign <rdiv_expr, _2, _1, 5.0e+0, NULL>

gimple_assign <plus_expr, D.1796, _2, 3.2e+1, NULL>

gimple_return <D.1796 NULL>

>

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 61✬

✫

✩

✪

Intermediate Code Improvement

• Different code improvement transformations

are performed on the intermediate code.

• A few examples are constant propagation,

constant folding, strength reduction, copy

propagation, elimination of common

sub-expression, · · · , code in-lining etc.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 62✬

✫

✩

✪

Target Code Generation

• Program variables and temporary variables

are allocated to memory and registers.

• Translates the intermediate code to a target

language code e.g. sequence of assembly

language instructions of a machine.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 63✬

✫

✩

✪

Target Code Improvement

• The sequence of target code e.g. assembly

language code of an architecture may be

modified to improve the quality of code.

• It may replace a sequence of instructions by

a better sequence to make the code faster on

an architecture.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 64✬

✫

✩

✪

64-bit Intel Code

.file "ctof.c"

.text

.globl CtoF

.type CtoF, @function

CtoF:

.LFB2:

pushq %rbp # save old base pointer

.LCFI0:

movq %rsp, %rbp # rbp <-- rsp new base pointer

.LCFI1:

movsd %xmm0, -8(%rbp) # cel <-- xmm0 (parameter)

movsd -8(%rbp), %xmm1 # xmm1 <-- cel

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 65✬

✫

✩

✪

movsd .LC0(%rip), %xmm0 # xmm0 <--- 9.0, PC relative

addressing of read-only data

mulsd %xmm0, %xmm1 # xmm1 <-- cel*9.0

movsd .LC1(%rip), %xmm0 # xmm0 <-- 5.0

divsd %xmm0, %xmm1 # xmm1 <-- cel*9.0/5.0

movsd .LC2(%rip), %xmm0 # xmm0 <-- 32.0

addsd %xmm1, %xmm0 # xmm0 <-- cel*9.0/5/0+32.0

return value in xmm0

leave

ret

.LFE2:

.size CtoF, .-CtoF

.section .rodata

.align 8

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 66✬

✫

✩

✪

.LC0:

.long 0

.long 1075970048

.align 8

.LC1:

.long 0

.long 1075052544

.align 8

.LC2:

.long 0

.long 1077936128

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 67✬

✫

✩

✪

9.0 in IEEE-754 Double Prec.

63

0 | 1000 0000 010 | 0010 0000 0000 0000 0000

31

0000 0000 0000 0000 0000 0000 0000 0000

Exponent Bias: 1023,
Actual exponent: 1026− 1023 = 3.
9.010 = 1001.02 = 1.001× 23.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 68✬

✫

✩

✪

9.0 and .LC0

Interpreted as integer we have the higher order

32-bits as 230 + 221 + 217 = 1075970048 and the

lower order 32-bits as 0.

In the little-endian (lsb) data storage, lower
bytes comes first.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 69✬

✫

✩

✪

9.0 and .LC0

.align 8

.LC0:

.long 0

.long 1075970048

is 9.0.

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 70✬

✫

✩

✪

Improved Code $ cc -Wall -S -O2 ctof.c

.file "ctof.c"

.text

.p2align 4,,15

.globl CtoF

.type CtoF, @function

CtoF:

.LFB2:

mulsd .LC0(%rip), %xmm0

divsd .LC1(%rip), %xmm0

addsd .LC2(%rip), %xmm0

ret

.LFE2:

Lect 1 Goutam Biswas

Compiler Design IIIT Kalyani, West Bengal 71✬

✫

✩

✪

.size CtoF, .-CtoF

.section .rodata.cst8,"aM",@progbits,8

.align 8

.LC0:

.long 0

.long 1075970048

.align 8

.LC1:

.long 0

.long 1075052544

.align 8

.LC2:

.long 0

.long 1077936128

Lect 1 Goutam Biswas

