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Abstract

Of late, there is a steep rise in the usage of handheld gadgets and high speed applications.
VLSI designers often choose static CMOS logic style for low power applications. This logic
style provides low power dissipation and is free from signal noise integrity issues. However,
designs based on this logic style often are slow and cannot be used in high performance
circuits. On the other hand designs based on Domino logic style yield high performance
and occupy less area. Yet, they have more power dissipation compared to their static
CMOS counterparts. As a practice, designers during circuit synthesis, mix more than one
logic style judiciously to obtain the advantages of each logic style. Carefully designing a
mixed static Domino CMOS circuit can tap the advantages of both static and Domino logic
styles overcoming their own short comings.

We propose a methodology based on unate decomposition to realize a mixed static
Domino circuit. We present an algorithm for decomposing a Boolean circuit into unate
and binate sub blocks. Using an Influence table approach, the decomposition algorithm
obtains the maximum unate set, containing states that can realize a Domino block. Later
we attempt to find an optimum part of the unate set to be realized using Domino logic and
the rest to be realized using static logic.

Next, we present a novel on-the-fly mapping technique to map the obtained Domino
block. We follow a node by node incremental mapping approach combining the nodes based
on their functional properties. This is done till the restrictions on height and width of the
individual cells are reached. Then by re-ordering of cells selectively, we try to gain advantage
in terms of delay and minimizing area penalty. We use a two-objective optimization method
to find the optimum set of re-ordering cells.

Finally, we propose a power aware clock gating approach for the Domino blocks of
a circuit which reduces the dynamic power dissipation of the blocks. We obtain a set
of favorable gate patterns which can yield power savings, when clock gating is applied.
These gate patterns, in groups are used to match the circuit using sub graph matching
algorithm. We try to find an optimum pattern set which gives maximum power savings
with a minimum penalty on area. Our proposed methodology is implemented and tested on
the standard ISCAS and MCNC benchmarks. Comparative study with the existing works
shows that our approach offered 15% improvement in power, 12% improvement in area and
19% improvement in delay.

Keywords: Unate decomposition, mixed CMOS synthesis, cell-reordering, on-the-fly
mapping, sub graph matching, clock gating, low power design
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Chapter 1

Introduction

Of late, there is a steep rise in the usage of battery operated handheld gadgets. The

demands for devices operating at low power and high speed are ever growing. With custom

made chips coming into focus, designers are trying to realize many functionalities on a

single chip. In fact, designers are now pushing billions of transistors on a single chip to

realize a wide variety of applications. This increases the density of the chip and further

give rise to problems like thermal variations, process variations, packaging, cooling issues

etc. Architectural level methods for reducing power dissipation often try to scale supply

voltages, operate various modules of a chip at different supply voltages etc. Transistor level

methods focus on reducing the threshold limits, scaling down the device size etc. At present

designers are also focusing on methods that work at logic level by obtaining novel styles that

will reduce power dissipation and improve performance of the circuit. This dissemination

is related to logic level synthesis of VLSI CMOS circuits.

1.1 Context of Research

There is a drastic increase in the on chip transistor density over the last decade. As per the

prediction of Moore’s law, there will be an exponential growth in the number of transistors

that can be realized on a single die with respect to time [1]. As the chip complexity is

doubling every two years, the law remains strong [2]. The trends in transistor count on

microprocessor chip, over the past four decades are shown in Fig. 1.1 [3]. The constant rise

in the transistor count proves the aptness of Moore’s law. Case study of microprocessor

1



1. Introduction

Figure 1.1: Trends of transistor count in microprocessor chips [3]

reveals the steep rise in complexity and performance aspects [4]. From its origin during

1970s and till date the clock frequencies increased from 0.1 MHz to 1 Gigahertz scale [5].

The transistor count to be mounted on chip started from a modest 2000, now crossing billion

mark. In early days, each and every transistor is carefully placed and the design is manually

optimized and fitted into the environment as is the case for Intel 4004 microprocessor [6].

This is not feasible when millions of transistors are to be integrated, since time to market

must be minimized for success of any such component [7]. This led to the evolution of

number of design automation tools which handle various aspects of circuit design at a very

large scale.

2



1.1. Context of Research

Figure 1.2: Trends of technology and frequency of microprocessor chips [11]

Performance of the circuits can be improved by scaling of channel. Yet, it increases

power-density more than expected [8],[4]. Higher levels of integration are often driven by

the motive of cost minimization. However, low cost technological breakthroughs to keep

improving power savings are getting very rare. Modern system-on-chip (SOC) demands

for more power [9], [10]. In both logic and memory, with decrease in device size, static

power is growing really fast and so is dynamic power. The trends of the device size and

clock frequency are shown in Fig 1.2 [11]. Red symbols indicate the percentage of the

set of lithographic requirements, for which there were no known manufacturable solutions.

These trends predict a drastic increase of power density inside the chips with a simultaneous

increase in speed. Power dissipation is the main constraint when it comes to portability

[12]. There is an increase in demand for more features and extended battery life at a lower

cost. Each new process beginning with 120nm node, records higher dynamic and leakage

current density with a minimum improvement in speed [13]. This requires high levels of

silicon integration in advanced processes, but advanced processes have inherently higher

leakage current [14]. So there is a need to focus on reducing the overall power dissipation

by taking all the above facts into consideration.

3



1. Introduction

Table 1.1: Approaches at various hierarchical levels

S.No Hierarchical level Approach
1 System Partitioning, power down
2 Algorithm Complexity, concurrency, regularity
3 Architecture Parallelism, pipelining, redundancy, data encoding
4 Circuit Logic Logic styles, energy recovery, transistor sizing
5 Technology Threshold reduction, multi-threshold devices

Power minimization and speed improvement approaches can be performed at various

levels of digital design hierarchy. As an alternative for individualized approach, designers

are developing circuits using a hierarchical fashion [15], [16] where automation can be easily

introduced. This hierarchical approach in designing digital circuits has given an advantage

compared to the analog circuits and helps in very large scale design. Various abstraction

levels in the digital design flow are system level, module level, register transfer level (RTL),

gate level and transistor level, respectively. As we go from system level to device level the

amount of abstraction keep on decreasing [17]. Approaches like power down and partitioning

address the power minimization problem at a system level. The later helps in executing the

modules sequentially thus minimizing power. Exploiting the concept of regularity is done

at algorithmic level, which significantly reduces the excess computations [18]. To save the

clock cycle and restrict extra logic, the concepts of encoding data, pipelining and parallelism

are often used [19]. These techniques improve the circuit performance at architecture level.

At a circuit level, performance improvement is obtained by using different logic styles as

per the requirement, approaches like clock gating, energy recovery etc. [20]. Methods like

dual VT and threshold reduction are applicable to minimize power dissipation at technology

level [17]. A summary of various approaches valid for different abstraction levels is shown

Table 1.1. This thesis primarily deals with the task of performance improvement at a logic

level [21]. We focus on designing novel logic styles which would yield low power and high

performance for circuits. We chose to work at logic level, because improvements at this

level can be effectively clubbed with the gains that are obtained at other abstraction levels.

In the following section, we briefly describe the factors that have motivated us to carry

out research in this particular area.

4



1.2. Motivation of the Work

1.2 Motivation of the Work

A given logic function can be implemented using various logic styles. The emphasis on a

particular logic style depends on the application in which the design is to be used. Handheld

devices and battery operated systems aim for energy saving designs. High performance

applications need designs that have faster switching speeds. In this section, we briefly

describe various logic styles that are used in circuit synthesis.

A complementary CMOS logic style is a combination of a pull-up network (PUN) and

pull-down network (PDN). All inputs to a gate are distributed to both PUN and PDN

networks [22]. An example of 2-input NAND gate realized using complementary CMOS is

shown in Fig. 1.3 (a). These PDN and PUN blocks are constructed in a complementary

fashion such that at a given instance only one of the paths remains active [23]. In other

words, it can be stated that the output node always remains at a low impedance node in

steady state.

Ratioed logic style tries to realize a given Boolean function using a less number of

transistors, however at the cost of more power dissipation and less robustness [24]. In

A

B

BA

Vdd

A . B

(a)

A

B

Vdd

A . B

(b)

Figure 1.3: Realization of 2-input NAND using (a) Complementary CMOS (b) Pseudo NMOS
logic
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1. Introduction

ratioed logic style, the pull-up network is replaced by an unconditional load which raises

the output to ’1’ when the suitable inputs arrive [25]. A gate designed using this logic

style consists of an active pull-down network and a simple load device on contrary to dual

networks which have both pull-up and pull-down networks as active blocks [26]. Often the

simple load device can be a grounded PMOS transistor. In such cases, the logic style is

termed as pseudo NMOS logic style. A 2-input NAND gate realization using pseudo NMOS

logic style is shown in Fig. 1.3 (b).

In principle, a transmission gate is made up of two field effect transistors, which is in

contrast to the traditional discrete field effect transistors. Here, the substrate terminal

(bulk) is connected internally to the source terminal [27]. The two transistors, an n-channel

MOSFET and a p-channel MOSFET are connected in parallel with this and the drain and

source terminals of the two transistors are connected together [10]. Their gate terminals

are connected to each other via a NOT gate (inverter) to form the control terminal [28].

Implementation of a 2-input NAND gate using this logic style is shown in Fig. 1.4 (a).

As an alternative to complementary CMOS logic, pass transistor logic tries to provide

a much simpler logic style by reducing the number of transistors [29]. Here the primary

inputs drive not only the gates but also the source-drain terminals. Implementation of

2-input NAND gate using pass transistor logic (PTL) style is shown in Fig. 1.4 (b). The

reduced number of transistors lead to low load capacitance and high propagation delay [30].

Yet, this logic style faces the disadvantage of voltage degradation [31].

A B

A

B

(a)

B B

A

B

F  =  A B

(b)

Figure 1.4: Realization of 2-input NAND using (a) Transmission gate (b) Pass transistor logic
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1.2. Motivation of the Work

In order to gain in terms of performance, designers often implement complementary

pass transistor logic style. A complementary pass transistor logic (CPL) gate consists of

two NMOS logic networks (one for each signal rail), two small pull-up PMOS transistors

for swing restoration, and two output inverters for the complementary output signals [32].

The AND/NAND gate realization using CPL is shown in Fig. 1.5. The availability of

both polarities of every signal helps in realizing the circuit efficiently with small number of

transistors [33].

Differential cascode voltage switch (DCVS) also has an inherent self-testing property

which can provide coverage of both stuck-at and dynamic faults [34], [35]. A further

attraction of DCVS circuits is the fact that they can be readily designed using

straightforward procedures based on Karnaugh maps (K-maps) and tabular methods [36].

A 2-input NAND gate realization using DCVS logic style is shown in Fig. 1.6.

The push-pull logic style (PPL) consists of two parts, a pass-transistor logic network

for evaluating the logical function and a push-pull level restoring circuit [37]. A 2-input

NAND gate realization using push pull logic style is shown in Fig. 1.7. The complementary

pass and control variables are connected to the drain and gate of the pass-transistors in the

logic network to implement the logic functions AND and NAND, respectively. And for level

restoration, the drain of the PMOS is connected to the output of the n-channel network

to push the degraded ’high’ signal to the supply voltage while the drain of the NMOS is

connected to that of the p-channel network to pull down the degraded ’low’ signal to the

B B

A

B

F  =  A B

A

B

F  =  A B

Vdd

Vdd

Figure 1.5: Realization of 2-input NAND using complementary pass transistor logic style
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Vdd

Out

Vdd

Out

A

A

B

B

PDN1 PDN2

M1 M2

Figure 1.6: Realization of 2-input NAND using differential cascode voltage switch logic style

ground with their gates cross-coupled together [38], [39].

Complementary CMOS style requires 2N number of transistors for N fan-in gate. Various

other logic styles which are described focused on reducing the number of devices. As an

alternative logic style called dynamic logic which obtains similar result without any static

power dissipation [40]. An additional clock input is needed for this logic style and is based

on precharge and conditional discharge phases [41]. The basic topology of this style consists

of a precharge and evaluate transistors operated by the clock signal, a pull down network

as in the case of complementary CMOS style [42]. Clock CLK signal drives the two major

phases precharge and evaluation of the dynamic circuit [43].

B B

A

B A B

A

B A B

Vdd

Figure 1.7: Realization of 2-input NAND using push pull logic style
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1.2. Motivation of the Work

A general Domino logic module consists of a pull down network (dynamic block) made of

n-type transistors followed by a simple inverter [44]. A 2-input AND gate realization using

Domino logic style is shown in Fig. 1.8. During the precharge phase, the output of the

dynamic block is charged up to Vdd and the output of the inverter becomes 0. During the

evaluation phase the output of dynamic block conditionally reaches to 0, and the inverter

output can at the most make a single transition from 0 to 1 [45]. Since, all outputs are

assured single transition from 0 to 1 during evaluation, the outputs of these gates can be

safely connected as inputs to other gates. The presence of a static inverter at the output

gives additional noise immunity, since the fanout is driven by a low impedance output [46],

[47].

A different style of cascading dynamic gates is presented in np-CMOS logic style which

uses alternatively both NMOS and PMOS logic blocks [48]. As shown in Fig. 1.9, in the

P-tree PMOS device are used to build the PUN network including the PMOS evaluation

transistor. Here, the NMOS precharge transistor drives the output low during precharge

[49]. The output conditionally evaluates and makes a transition 0 to 1 accordingly [50].

In Table 1.2, we summarize the performance of different logic styles using some common

parameters like power dissipation, delay, transistor count and robustness. Each parameter

is classified into various categories namely low, medium, high and very high. These are a

comparison against the performance of standard complementary CMOS logic.

clk

A BA

B

clk

Vdd

Vdd

Figure 1.8: 2-input AND gate realization using Domino logic style
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Out1

PDN

Mp

VDD

CLK

In1

In2

In3

MeCLK

PUN

Mp

VDD

CLK

In4

MeCLK

Out2

To other 

N-blocks

To other 

P-blocks

Figure 1.9: A general topology of np-CMOS logic style

concepts of rise time, fall time is introduced. These times are defined by the time gap

between 10% and 90% points of the signal during transition. The rise and fall time of a

signal are determined by the gate that is driving the signal and the load presented to it.

Table 1.2: Performance of various logic styles

Logic style Power dissipation Delay Transistor count Robustness
Ratioed logic high high medium medium

PTL medium medium low low
Transmission gate low medium medium high

CPL high low high low
Push pull logic high medium high high

Differential cascode high medium very high high
voltage switch logic

Dynamic logic medium low low low
np CMOS logic high low high medium

1.2.1 Advantages and Disadvantages of Static CMOS logic style

In this section, we present in brief about a major logic style that is used in the low power

design industry, that is the complementary CMOS logic style. For the sake of convenience,

we refer the complementary CMOS logic style as static CMOS style in the rest of the thesis.

Static CMOS logic style is often used for designing circuits where power dissipation is to be
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1.2. Motivation of the Work

minimized. This is because, the logic style is simple to fabricate. Since it has both NMOS

and PMOS along the rail to rail path this style offers good input/output decoupling. Due to

the absence of clock signal the circuits designed with this style have less switching activity.

Circuits with this logic style are robust in nature and have good noise margins. However,

static CMOS logic is slower because it uses bulky PMOS transistors in its charging path

[51], [52].

1.2.2 Advantages and Disadvantages of Domino logic style

On the other hand, Domino logic style is widely used in custom circuit design, especially

in high performance oriented circuits. In addition to the benefit with respect to speed, this

logic style offers smaller area and ensures glitch free operations [44], [53]. This logic style

runs 1.5 - 2 times faster than static CMOS logic because these gates present much lower

input capacitance for the same output current and a lower switching threshold [45]. The

Domino logic style, which has an additional inverter at the output overcomes these problems

of cascading and charge leakage issues which are common in dynamic CMOS logic [47]. Yet,

there are difficulties in designing and verifying this class of circuits. Domino logic circuits

can implement only non inverting logic [46]. Also, this logic style suffers from signal noise

integrity issues. A mutual performance comparison of static CMOS and Domino logic style

are presented in Table 1.3.

1.2.3 Mixed CMOS logic style

Of late, to exploit advantages of more than one logic style, designers are using mixed logic

style to synthesize digital circuits. Static CMOS logic has a clear advantage in terms of

power and Domino logic has advantage in terms of speed and area. In order to claim the

combined advantages of both logic, attempts have been made to judiciously mix both the

logic styles and synthesize the circuits.

Table 1.3: Performance of Static vs. Domino logic

Logic style Power dissipation Delay Transistor count Robustness
Static CMOS logic high medium low high

Domino logic medium low medium medium
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Some approaches exist to decompose circuits into unate and binate components. Bubble

pushing algorithm technique attempts to realize a complete unate circuit from a given

arbitrary Boolean circuit [54]. This method focused on converting any given circuit into a

unate form by applying De Morgan’s laws on the constituent nodes. These laws are applied

on the internal gates starting from primary outputs going till primary inputs. During the

traversal, the approach tries to make every node it encounters into a unate node. Each input

of a node is considered for determining its unateness. If a node is binate with respect to a

variable, a corresponding new variable is created, which is the complement of the original

variable. The new variable is substituted in place of the old, making the node unate. While

performing this method, there arise lots of trapped inverters within the circuit (example

shown in Fig. 1.10 (a)). making the resulting circuit a unate binate scenario [55]. In

continuation to the above technique, a candidate block based replacement technique, of the

trapped inverters is proposed for performing the mixed static domino synthesis.

A two-level based decomposition technique also attempts to convert the entire circuit

into unate [56], [57] (example shown in Fig. 1.10 (c)). This approach followed a drastically

different method. It starts with description of a Boolean function given in PLA format.

The large scale circuits are partitioned into sub graphs, each having not more than 15-input

variables. As this unate decomposition step is based on (minterm) canonical representation

of Boolean functions, its complexity increases exponentially with the number of input

variables. In the unate decomposition step, each sub-function is expressed in terms of

only positive and negative unate functions, which directly maps to a two-level Domino or

no-race (NORA) networks. However, direct realization of this two-level network leads to

MOS networks with large number of series/parallel transistors in each cell. To overcome

this problem, they performed a multilevel decomposition of each unate sub-function. The

major challenge with this technique is, it results in a huge number of extra logic which

nullifies the advantages of using mixed logic.

Lastly, to realize mixed CMOS circuits, there exists a BDD based decomposition method

[58]. This is a technique for decomposing incompletely specified Boolean functions into

unate, binate sub blocks. This approach aimed at improving the quality of circuit by

restructuring the netlist. Various steps in the approach included cover minimization, phase

assignment, selection of largest unate component etc. The initial cube cover is processed

12



1.2. Motivation of the Work

as long as its cardinality reaches under certain limit. Since, the initial cover is binate,

extraction of such unate cube subsets is possible. While finding the largest unate subset a

greedy computation is used. The cube subset which can be unate with the largest number

of cubes in the cover is identified. This method took a cube cover and return the cubes

that have largest size. The whole extraction procedure is applied iteratively. It continues

till the cover being processed reaches certain limit. The last block thus obtained during

the iterative process may end up being binate. Realization of a sample circuit using this

process is shown in Fig. 1.10 (b).

1.2.4 Issues and challenges with static Domino mixed logic

Synthesis of Boolean functions using more than one logic styles is a complex issue. Domino

logic style can realize only unate functions and static logic style can realize binate functions.

Judicious decomposition of Boolean functions into unate and binate sub blocks is a prime

necessity for our research. The logic blocks thus obtained must be mapped to appropriate

gates. Taking into consideration of individual logic styles different mapping techniques must

be adopted. Clock signal which plays a significant role in the functioning of Domino block

must be designed carefully. Further, designing a low power clocking approach is a major

issue to deal with.

Many approaches have been proposed by researchers to realize mixed logic styles. These

include mixing of static and PTL (Pass transistor logic), complex static Domino gate

approach and compound Domino approach [8], [13] . These approaches attempted to

partition the circuits into individual block and map with respective logic style. Defining an

efficient means of partitioning such that the obtained blocks result in an optimum circuit

is a big challenge. Various blocks in mixed CMOS logic need a mapping technique to map

them. Especially, mapping of Domino block can be done by library free mapping [59].

Many approaches for mapping, mentioned in literature focused on reducing the redundancy

and area overhead [60], [61], [62]. Managing the delay along the critical path is always

a challenging issue. The mixed logic circuits are expected to perform better than the

individual logic styles. Clock gating technique which improves power savings is often

employed in sequential circuits [63], [64]. Works involved with clock gating for Domino

circuits have focused on bubble pushing based methods for obtaining unate set [65]. Hence,
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Figure 1.10: (a.) Bubble pushing method, (b.) BDD based method, (c.) Two-level method

an accurate clock gating technique which is based on novel methods of unate decomposition

and bubble pushing is desirable.

Few works have been done in the field of decomposing circuits into unate and binate

sub blocks. Works related to the issue of mapping Domino logic on-the-fly also exist in the
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1.2. Motivation of the Work

literature. Our survey in the field of clock design for Domino logic reports various works

addressing issues that exist in the literature. However, a number of limitations exist in

these work, some of them are mentioned below.

1. In the works reported on decomposing Boolean functions using various techniques

[57], [54], emphasis was never laid on improving simultaneously speed and power of

the overall circuit. Some methods focused on decomposing the circuit into various

block but nowhere emphasis was laid on realizing circuit using mixed static-Domino

logic [58]. Also, a comparative study of various techniques is very much needed.

2. Various approaches on library free mapping reported in the literature, begin with

a NAND based directed acyclic graph (DAG) network [66], [67], [68]. None of the

literature considered unate circuits as a base for their approaches. Works which

adopted a parameterized library mapping [69], [70] did not focus on managing critical

path. Hence, there is a necessity for designing a mapping technique which takes care

of realizing large functionalities in a single cell and simultaneously fine-tune cells along

critical path for obtaining high performance. The flexibility offered by Domino logic

style in designing the individual cells needs to be investigated. Also there is a scope for

re-ordering the cells along critical path, which further minimizes delay. Fine tuning

these cells along the critical path, without increasing their individual transistor count

is in fact another challenging task.

3. Many of the researchers in the field of clock gating focused on sequential circuits only

[63], [64], [71]. Since the outputs of a combinational block solely depends on its inputs,

the same technique for clock gating cannot hold true for sequential and combinational

circuits simultaneously. Majority of these works focused on minimizing the routing

length of clock, addressing the slew constraints [72], [63] etc. Hence, there is a need

to propose a method which attempts to reduce the redundant switching of gates in

Domino circuits. Constant charging and discharging of Domino blocks with every rise

in clock pulse motivates researchers to implement a gating technique which can reduce

the redundant switching activity. Simultaneously, reducing the redundant switching

and keeping a control on logic overhead is going to be a challenging task.
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Our work is motivated by the need to address the above stated issues. Based on this

motivation, we focus on synthesizing mixed static Domino CMOS circuits. In the following

section, we present the major objectives of our research work.

1.3 Objectives of the Thesis

We set the following objectives in our research work.

1. Our main aim is to present a complete methodology for designing a mixed static

Domino CMOS logic circuit which consumes low power and gives high performance.

2. Static and Domino logic styles better implement binate and unate logics, respectively.

Most often circuits are binate in nature. Hence, our first objective is to devise a

decomposition algorithm which decomposes a given Boolean logic into unate and

binate sub blocks. We also aim to find an optimum decomposition such that the

performance of overall circuit is optimum.

3. The obtained unate and binate blocks can be mapped using Domino and static logic

styles, respectively. The Domino logic style would be mapped using an on-the-fly

mapping technique. Re-ordering cells along the critical path would significantly

improve the delay of a particular circuit. Our next objective is to formulate an on-

the-fly mapping approach based on cell re-ordering such that delay of the circuit is

improved at a minimum area penalty.

4. Clock is the most active signal driving the Domino block. During the operation of the

circuit, some portions of the Domino block remain redundant for significant amount

of time. Hence, our objective would be to identify such possible redundant portions

and systematically block them using a clock gating technique. We aim to use sub

graph matching techniques to meet this objective.

1.4 Organization of the Thesis

The rest of this thesis is organized into chapters as follows.
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Chapter 2 provides a literature survey of various existing works related to area of research.

In our research, we focus on topics like unate decomposition of Boolean functions, on-the-fly

mapping of Domino circuits and clock gating techniques. We survey the works on these

topics.

Chapter 3 presents our proposed approach to decompose the Boolean logics using a unate

decomposition algorithm. We first discuss few concepts and definitions which we use in

describing our methodology. Also, we postulate few lemmas which act as basis in our

approach. Next, we present the unate decomposition algorithm which is used to decompose

a circuit into unate and binate blocks. Further, we perform an optimization of these blocks

so that overall power, area and delay of the circuits are optimum. We prove that our

optimization problem is NP-complete. Finally, we validate our approach with standard

benchmark circuits and present the experimental results along with a comparative study.

Chapter 4 presents a method for on-the-fly mapping of Domino circuits using a cell

re-ordering technique. We first state few definitions and lemmas used to describe our

methodology. Next, we present an approach to map Domino circuits on-the-fly. Further,

we perform fine tuning of delay path by selective re-ordering of cells. We also present

an approach for optimum cell-reordering. We present the experimental results we have

obtained along with a comparative study with existing approaches.

Chapter 5 presents a pattern matching based clock gating approach for the Domino block

of mixed CMOS circuit. First we present some definitions which form the basis of our

approach. Next, we provide a method to obtain the favorable gate patterns. We, present an

approach based on pattern recognition for mapping the gate patterns to the original circuit.

Finally, we try to minimize the clock gating overhead, keeping power savings maximum

using an optimization technique. We present the results obtained using the experimental

studies we have conducted and compare them with the existing related work.

Chapter 6 concludes the thesis with critical analysis of our work. We also report the

important contributions made by our work. Finally, we discuss the possible future extension

to our work.
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Chapter 2

Survey of Existing Work

In this chapter, we present a survey of the literature which are related to our research work.

This chapter is organized as follows. In Section 2.1 various approaches existing for unate

decomposition of Boolean functions are reviewed. Section 2.2 presents the work related to

mapping of Domino cells using various techniques. Various approaches for performing clock

gating are reported in Section 2.3. Finally, we summarize the chapter in Section 2.4.

2.1 Unate Decomposition of Boolean Functions

A number of work exist in the literature on decomposing a Boolean function with respect

to various criteria [34, 73–85]. In the following we present some key work related to unate

decomposition of Boolean functions.

The approach of bubble pushing algorithm is well known for realizing unate networks.

Prasad et al. in his work [54] follow the bubble pushing method in order to convert a

given arbitrary Boolean circuit into a positive unate circuit. This approach is a generalized

version of De Morgan’s laws. In this approach, the traversal of the circuit is done from

output nodes to input nodes. During the traversal, the approach tries to make every node

it encounters into a unate node. Each input of a node is considered for determining its

unateness. If a node is binate with respect to a variable, a corresponding new variable is

created, which is the complement of the original variable. The new variable is substituted

in place of the old, making the node unate. Such a unate circuit will have some internal

nodes which are complement of some other internal nodes and some primary inputs which

19



2. Survey of Existing Work

are complement of some other primary inputs. This information is used further in don’t

care optimization step. The relationship between the primary input and its complement is

characterized interms of satisfiability don’t cares (SDCs). SDCs are set of outputs of a node

whose corresponding input vectors may never occur at the input of the node [6]. These fall

in the category of internal don’t care set. Such SDC relationships act as don’t cares for

each output which help in further simplification of the node. During this process some of

the complements cannot be pushed to the primary outputs. This is because application of

Demorgan’s laws will change the type of node and also its inputs. However those inputs

may not be exclusively serving one particular node. Hence the inputs to other nodes get

affected making the back propagation of complements troublesome. This situation is also

termed as trapped inverter problem. The entire unate circuit can be realized using Domino

logic and the trapped inverters must be realized using static logic.

Samanta et al. [57] developed a two-level decomposition method for realizing a given

circuit using pure unate logic. Their approach follows a drastically different method. It

starts with description of a Boolean function given in PLA format. The large scale circuits

are partitioned into sub graphs, each having not more than 15-input variables. Hence

partition is done, in order to carry out the unate decomposition efficiently. As this unate

decomposition step is based on (minterm) canonical representation of Boolean functions,

its complexity increases exponentially with the number of input variables. In the unate

decomposition step, each sub-function is expressed in terms of only positive and negative

unate functions, which directly maps to a two-level Domino or no-race (NORA) networks.

However, direct realization of this two-level network leads to MOS networks with large

number of series/parallel transistors in each cell. To overcome this problem, they performed

a multilevel decomposition of each unate sub-function. The multilevel decomposition step

produces final netlist of the synthesized network satisfying the length and width constraints

required for realizing high-performance circuits.

A binary decision diagram (BDD) based approach for decomposing incompletely

specified Boolean functions into unate, binate sub blocks is presented by Jacob et al. in

[58]. This approach aimed at improving the quality of circuit by restructuring the netlist.

Various steps in the approach included cover minimization, phase assignment, selection

of largest unate component etc. During the cover minimization process both the internal
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and external don’t cares are taken into consideration. The initial cube cover is processed

as long as its cardinality reaches under certain limit. Simultaneously selection of a set of

cubes is done, which when considered form a unate cover. Since, the initial cover is binate,

extraction of such unate cube subsets is possible. While finding the largest unate subset a

greedy computation is used. The cube subset which can be unate with the largest number

of cubes in the cover is identified. The less number of literals a cube has, the more is the

chance of being part of unate cube. Selection of the largest cubes is done based on zero

suppressed binary decision diagram (ZBDD). This method took a cube cover and return

the cubes that have largest size. The whole extraction procedure is applied iteratively. It

continues till the cover being processed reaches certain limit. The last block thus obtained

during the iterative process may end up being binate. The cardinality of the last extracted

component tends to be small compared to the rest of the obtained blocks.

A candidate block based approach, which is a further refinement of bubble pushing

algorithm for unate decomposition of Boolean function is presented by Parmar et al. in

[55]. This approach aimed to realize the static and Domino blocks of the decomposed

Boolean function such that overall performance of the circuit can be improved. In the

first part of their work, they considered the timing constraints that are to be observed by

the Domino and static input signals. They have redefined the setup and hold constraints

seeing from the perspective of both Domino and static gates. Both the signals coming

from Domino gates and static gates, going to as input to Domino gate are kept under this

purview. Setup constraints are framed in a way such that before the end of the evaluation

cycle the correct outputs are to be evaluated. Also, it is taken into consideration that

the data input is to be pre-charged before beginning of the evaluation of the next cycle.

Another constraint was framed that the signal must be held till the outputs are settled. For

static input signals it is verified that the signal must be glitch free and the output must be

available before the evaluation phase is started. After defining the timing constraints the

work focused on balancing the path delays such that the inputs can arrive at same time.

This is done by introducing additional pass transistor logic elements. The work followed the

bubble pushing algorithm [54] to make the circuit unate. However, in order to address the

trapped inverters that arise out of implementing the algorithm, they used a candidate block

based approach. An AND2 gate cascaded with an inverter is considered as a candidate
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block. Other topologies having trapped inverters rechanged to this particular topology

using De Morgan’s transformations. It is ensured that one of the input of the candidate

block come from the static inverter of Domino gate while the other comes from the dynamic

gate of the Domino gate. In this way, the trapped inverters are successfully pushed to the

primary ports. Since the candidate blocks receive inputs from various sources the delay

balancing elements are added accordingly such that the timing issue will not arise. The

work also discussed steps which lead to further optimization of candidate blocks, if present

consequently. However, such optimization is not possible in presence of an intermediary

fanout.

In Table 2.1, we summarize various unate decomposition methods we have discussed

and present their key features.

2.2 Technology Mapping Techniques for Boolean Functions

A number of work exist in the literature on efficient mapping of Boolean functions using cell

libraries [86–94]. Often these libraries are predefined, yet in some cases, the libraries are

updated on-the-fly. The advantages of using Domino logic can be better tapped by using

an on-the-fly mapping technique. In the following, we present some important work which

are based on the on-the-fly mapping.

A method for mapping the circuit into parameterized library is proposed in work Zhao

et al. [69], which exploits the special features of the Domino logic. The starting point

of the parameterized tree covering algorithm is 2-input AND/OR trees. At each node of

the tree the optimal sub solutions for various height (maximum number of transistors in

Table 2.1: Works related to unate decomposition of Boolean logic

Method Decomposition method Key features
Prasad et al. [54] Bubble pushing Don’t care optimization,

De Morgan’s laws
Parmar et al. [55] Trapped inverter elimination Identifying candidate blocks,

Defining timing constraints
Jacob et al. [58] BDD and ZBDD Cover minimization, unate block extraction

Samanta et al. [57] Two-level realization Positive, negative unate blocks,
pure unate
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series), width (maximum number of transistor chains in parallel) combinations are stored.

The cost of accumulated fan-in cones along with the current Domino segment are stored

at each and every node. In order to compute the height and width of a sub solution at

a parent node, the individual children node are used. Since the Domino n-block consists

of series and parallel chains, only AND and OR type of nodes are considered. A mapping

algorithm is defined for the nodes, which computed the overall cost of mapping procedure.

They have derived the cost functions based on the area cost model and the delay cost model.

A complexity analysis of this parameterized mapping is also presented in the work. Later,

this work extended to a directed acyclic graph (DAG), which allows the overlap of two

mapped cells. A correct cost estimation step is performed in this case so as to mitigate the

penalty imposed due to overlapping of mapped logic. Further in this work, a method for

mapping the dual-rail logic cones for AND/OR/XOR/XNOR is suggested. It is done based

on a dual monotone mapping algorithm, where a signal and its complement are treated as

two separate signals. An analysis of the output phase assignment problem and its influence

on the implementation cost is also presented in this work. The phase assignment problem

is characterized as a 0-1 integer linear programming problem and a linear programming

package was used to handle this pre-processing step.

A technique for mapping a random logic Domino gate network is presented in [95]. In

contrast to the regular bulk CMOS, the implementation technology used in this work is

silicon on insulator (SOI). Various methods, used in order to reduce the parasitic bipolar

effect (PBE) are discussed in this work. PBE is a common factor in SOI devices and

could lead to erroneous output. An algorithm aiming at mapping Domino logic network,

eliminating PBE is elaborated in this work. Transformation of the transistor stacks, re-

ordering of gate structure to reduce susceptibility to PBE are also done. Insertion of

PMOS pre-discharge transistors helped to further reduce the PBE effect. In order to obtain

the unate network for Domino mapping, authors have followed a simple bubble pushing

algorithm. The trapped inverters are addressed by performing the logic duplication. The

complexity of mapping algorithm is thoroughly reduced in order to cope for the loss of

details occurred due to restructuring. Potential discharge transistors and presence of parallel

branch at the bottom of cell structure is monitored at every step of the mapping algorithm.

The processing of nodes present in the circuit is done in a topological fashion so that the
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inputs to the current node are already processed. The algorithm minimized the mapping cost

by minimizing the number of transistors, including the pre-discharge transistors. Various

steps carried through out the work ensured that the body voltage of the SOI device is low

and the PBE is not triggered. The affect of timing hysteresis caused due to variation in

body voltage is considerably reduced by the proposed approach. In order to further reduce

the PBE, circuit timing behavior is made predictable by narrowing the range of permissible

voltages for the body.

A mapping and synthesis scheme for Domino logic circuits is presented by Cao et al.

[96] which aims at minimizing the duplication cost of internal inverter with some timing

constraints. Also, the mapping technique uses realization of complex Domino gates. The

work explored the possibility of retaining the trapped inverters, in reconvergent paths

of Domino logic, by introducing an early late delay difference bound (ELDDB). They

have defined this as difference between the latest late edge and latest early edge of the

inputs which helps in preventing the false discharge of the dynamic nodes. Initially

the logic duplication minimization is considered for circuits made of simple gates. The

duplication cost is reduced by transforming all the convergent paths into AND gates with

the help of bubble pushing. This avoidance of logic duplication cost lead to incompatible

phase assignment and hence they framed an output phase assignment problem. Different

approaches were suggested in this work for mapping the complex Domino gates and complex

Domino candidate gates. They have chosen to minimize the layout area as their major

objective. Authors have used "AND-OR-INV" DAG representation of the circuit in order

to find a candidate primitive which later transforms into a candidate gate. They have also

formulated the attributes of the candidate gate which are mainly dependent on the transitive

fan-ins and delay difference between gates (i.e. ELDDB). A dynamic programming based

approach is used for mapping the complex gates on re convergent paths. Additional care

about transitive fan-ins is taken care such that ELDDB constraint will not be critical for the

complex candidate gate. Finally the robustness of Domino gates is improved by performing

logic optimization as post-layout step.

A bin packaging based mapping algorithm is presented by Yoshikawa et al. [59], which

aims in reducing both levels of the Domino circuit and its complexity. They aimed to

decrease the total number of transistors used in the design so as to decrease the complexity
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of cell layout. During their mapping approach care is taken such that the noise immunity of

the Domino circuit is maintained. As a first step trees are extracted from the input circuit.

This is done by decomposing the tree from the input side by the process of fan-in ordering.

During this step two fan-in nodes are connected to the new generated two input node which

is having less number of levels. This process is repeated until the entire tree consists of two

input nodes. Next, this the bin packaging algorithm is carried out from the input side. A

constraint based packing of nodes having a large number of levels is done at each step of the

algorithm. The authors proved that the complexity of the Domino primitive cell increases

only if the number of levels decrease. In order to simplify the cell layout further, complexity

reduction method is proposed in this work. Initially all the levels of the critical paths are

estimated. This is done while keeping the gates on the critical paths fixed. After this the

trees from the non-critical paths are selected and are mapped under the defined constraints.

The mapping is taken into consideration only if the number of levels in the critical paths are

not increased in the revised circuit. This helped in decreasing the complexity of non-critical

paths without imposing penalty on the critical path.

A library free mapping method for DAG description of circuit is suggested by Marques

et al. [66]. This work combined minimizing the total number of series transistors along with

a wave font mapping technique. Since the configuration of the transistors to be used are

obtained by a cell generation tool, the algorithm is inherently library free. The proposed

library less wave front mapping algorithm uses a matching and covering routines. A two

input decomposition of Boolean function is considered. The matching generation window

relies on the width of the wave front that is used, where as the covering function is dependent

on the lower bound on the number of serial transistors. In order to improve the speed of the

covering algorithm, the work used routines similar to those mentioned in Espresso-Signature.

The reduction in the number of series transistors lead to the decrease in logical effort of the

cells. This in turn helped in decreasing the delay of the circuit and meeting the mapping

objectives. The proposed method is applicable to both static CMOS, as well as Domino

logic based circuits. In case of static CMOS this method aimed at having smaller pull-up

block than the pull down block. Changing the polarity of the inputs is employed in order

to exchange the logic between the pull-up and pull-down blocks. The matching algorithm
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is constrained by the number of variables or the number of literals in consideration. Since

the match generation process is in with in the wave width, it performed its search across

the fan outs. In order to save on the area aspect the authors have suggested to limit the

matching function to fan-out free region.

With an aim to reduce the area-delay product of a circuit, a library free mapping

approach based on computing logic effort is presented by Pullerits et al. [70]. The

computation of the logical effort helped in choosing the minimum delay architecture

regardless of the technology process used. The final covering is made independent of the

initial covering by performing a combination of structural and Boolean matching. The entire

procedure is followed in three steps namely cell generation, matching and covering. Using

the maximum possible serial and parallel transistors as inputs the cell generation tool will

generate various combinations of gates. A hash table is also generated based on indexing,

for quick look up of these gates. In order to optimally match the graphs a combination of

structural traversing and Boolean matching is performed. The independence of the mapped

circuit from the initial decomposition is obtained due to Boolean matching. Traversal of

the tree is done from the root to the leaf node and from left to the right child in order

to obtain the matching gates. During the traversal, at each node all possible matches are

explored from that point to its primary inputs. The covering problem is addressed with

aim to reduce the delay and silicon area. The minimization of delay in the covering step is

achieved by careful selection which reduces the electrical effort and parasitic capacitances.

A recursive tree traversal algorithm is employed for covering problem which traverses from

leaf node and terminate at root node. Each match iterated is fixed in place at the current

node being analyzed. The completion of the recursive call, leads to the best match for that

node, and best critical path delay from the inputs to the subject graph.

An approach for library free mapping based on KL cuts (K input, L output circuit cut)

is presented by Martinello et al. [67]. This primarily targets mapping of multioutput cells

which significantly reduce the circuit area. FPGAs that have multioutput logic under test

(LUT) are also targeted in this work. A covering algorithm is presented in this work which

tries to map an entire circuit using KL cuts. The algorithm used a greedy approach for

finding the potential local maxima of mapping. The covering of the cuts is carried out
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from inputs to outputs. At each iteration the largest possible solution is chosen. Also, the

number of KL cuts are eliminated from the solution space. The iterations are repeated

until the circuit is fully covered. The work, defined two effort levels in defining the spread

of KL cuts. The high effort level leads to the presence of all the KL-cuts in the solution

space. Using the low effort level only the global and local KL cuts are made available to

the covering algorithm. It is observed that a good fraction of KL-cuts are multiple output

in nature. Also, it is found that, two single output cuts can be implemented by a single

multiple output LUT. However this can be done as long as the sum of the number of inputs

of these cuts is no larger than the LUT number of inputs. Most of the single output KL

cuts found have few inputs, which allows its combination leading to a high utilization of

multiple output LUTs. An approach for computing KL cuts with an unbounded K is also

discussed in this work.

A mapping technique MIXSyn is presented by Amaru et al. [68], which targets circuits

that are dominated by mixed XOR, AND/OR gates. This approach aimed to realize

smaller and faster devices namely application specific integrated chips (ASICS). The method

followed a two-step procedure. Initially, a two step optimization enabled a selective and

distinct manipulation of AND/OR - XOR intensive portions is performed. The optimization

quality of the procedure is improved by adding the external don’t cares of the conditions.

Later, an area-oriented library free mapping is presented in the work. This aimed to reduce

the overall circuit area with a minimum computational effort. In order to support both

AND/OR and XOR functions, a subject graph is used with an enhanced base function. The

mapping algorithm included three major steps namely pre-decomposition gate-assignment

and gate building. During the first step, a subject graph a 2-bounded DAG, into a forest of

trees. The generated trees have subset of primary inputs at the leaves and nodes representing

a logic function form the base function set. Once, the forest of the trees are generated a

tree covering method is implemented which generates subtree with at most m inputs (m

being maximum gate fan-in). Internal inverters are propagated to the leaves and standard

rules for cell construction are implemented. Finally, the Boolean binary sub trees that have

and additional one to one correspondence with logic gates are generated using the greedy

algorithm. The tree decomposition is driven in way that it resulted in a set of minimum
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number of gates.

In the Table 2.2, we summarize various works on the library-free mapping and present

their key features that we have discussed .

Table 2.2: Works Related to Library Free Mapping

Work Mapping technique Key features
Sapatnekar et al. [69] Parameterized library Area, delay cost functions,

mapping dual-monotone mapping,
output phase assignment

Karandikar et al. [95] Mapping for SOI devices Addressing PBE, logic restructuring
Cao et al. [96] Complex domino gate Minimizing logic duplication,

identifying re-convergent paths,
timing constraints (ELDDB)

Yoshikawa et al. [59] Bin packaging method Fan-in re-ordering, reducing layout
complexity, minimizing levels of Domino cells

Marques et al. [66] Library-free wave front Applicable for both static and
mapping Domino logic, minimizing

number of serial transistors,
reducing structural bias

Pullerits et al. [70] Library-free mapping Estimation of logical effort,
electrical effort, recursive tree traversal

Martinello et al. [67] KL cuts Multiple Output cells,
Area minimization, effort level

Luca et al. [68] Library-free Mapping Logic manipulation, external
don’t care, gate assignment, building

2.3 Various Clock Gating Approaches

Clock gating is an important technique often used in minimizing power dissipation of

Boolean functions [14,97–106]. Circuits using Domino logic heavily depend on this approach

in minimizing their overall power dissipation. Below we present some major works related

to the research area of clock gating.

A deterministic clock gating (DCG) methodology as an alternative for pipeline balancing

(PLB) is presented by Li et al. [107]. A key observation that for many of the stages

in a modern pipeline, a circuit block’s usage in a specific cycle in the near future is

deterministically known a few cycles ahead of time, lead to the formulation of proposed

approach. The DCG method gave no performance loss and no loss opportunity since the
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usage of block is well known in advance. The finer granularity of the DCG technique

(few cycles) offered a lot of flexibility in implementing the gating. The proposed DCG

has not taken any heuristics into account, while performing gating. The work analyzed

various possible opportunities to implement DCG in a super scalar architecture. The

implementation of DCG is done on execution units, pipeline latches, D-cache word-line

decoder and result bus driver. The selection logic in a conventional issue queue not only

selects instructions to be issued based on execution unit availability, but also matches

instructions to execution unit. The proposed approach leverages the selection logic, and

provides information about the execution units that will remain unused and which are

later clock-gated. The pipeline latches are clock gated at the end of rename, register read,

execute, memory and write back stages. In case of "rename", the number of clock-gated

latches in any cycle can be determined from the decode stage in the previous cycle. Similar

to the gating of pipeline latches, D-cache word line decoders are clock-gated using the

load/store issue information. Here, clock gating can be implemented directly to the result

bus drivers. In case of result bus, when it is not used in a particular clock cycle, clock gate

signal prevents CL from switching, and reduces power. In this fashion the DCG procedure

clock gates many unused modules by determining their behavior few cycles ahead of time.

A fine grain clock gating of dynamic logic circuits at circuit level granularity is presented

by Nilanjan et al. [65]. The proposed technique also improved switching power by preventing

redundant computations. The approach is further extended to Domino/skewed logic styles

based on Shannon expansion. It dynamically identified idle parts of logic and applied clock

gating to them to reduce power in the active mode of operation. The approach performed

Shannon decomposition of a Boolean function and identified at an instant only one cofactor

performs useful computations. The other co-factors perform redundant computations.

Using a chosen variable, the AND gates used for clock gating the co-factors of the Boolean

function are controlled. While doing this both the redundant computations and clock power

are saved. It is ensured that all the operations are carried out in active mode of the circuit.

The procedure is extended hierarchically for multiple levels of expansion, satisfying the area,

timing constraints. Since the logic between the co-factors is shared and not gated, it kept

on through out. The choice of the control variable is guided by the objective of minimizing

total power in active mode. With a target of maximizing the logic in gate cofactors the
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control variable is chosen. This minimized the shared logic which is active throughout the

process and cannot be clock-gated. The control variable selection method is also easily

extended to multi-output circuits by choosing a common control variable for all outputs at

each level of expansion.

A method for evaluating the field programmable gate array (FPGA) clock network

architectures having an in built clock gating compatibility is presented by Safeen et al.

[108]. This approach also presents a flexible routing algorithm that can operate at various

gating granularities. Gating at time, various device regions having various clock loads is also

done in this work. Initially some novel clock gating architectures are presented in this work.

They aim to make some minor hardware changes, whereby a subset of clock signals can be

controlled by an enable signal. A broad range of clock gating architectures with various

levels of granularity, within clock distribution frameworks that resemble in commercial

chips are considered in this work. Different main gating architectures discussed in the work

are : namely, no clock gating, region, column based coarse and fine grain clock gating

(FG_Region, FG_Coulmn, CG_Region, CG_Coulmn). The gating options are analogous:

FG_Region permits gating where clock signals enter sub-regions; FG_COLUMN permits

gating where the horizontal half-spines in sub-regions connect to vertical quarter-spines.

The vice-versa is defined for CG_Region, CG_column. For a given placement, the clock

power term is computed as the sum of the power consumed by each clock signal in the

design. The structured nature of the clock network helped to rapidly compute a clock

routing during placement, making the estimation of clock capacitance and power easier.

For the region-based clock enable architecture, gating is only available at the entry points

of regions and therefore, the gated clocks used on columns of a region must also be routed on

horizontal spines in the region. The added flexibility provided by gating capability at column

entry simplifies the clock power computation. The clock routing and clock power saving

are separately estimated for region based and column based architectures. All performed

computations and comparisons of clock power consumption are done relative to a baseline

architecture.

A novel approach for low power gated clock tree design is presented by Shen et al.

[71]. It aimed to use fully both the logical and physical information between registers.
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Various steps of the procedure include register placement, gated clock tree construction

and incremental placement. As a first part, the register clustering and pulling the registers

closely is implemented. This is done in order to reduce the wire length and clock tree

power. This can affect the wire length of some other signal and area of the net. Hence, a

net weighting method is used which took into account of both slack and the net’s switching

activity. Next, reduction of the redundant gating logics is performed with an improved

algorithm that implements gate insertion and zero skew clock routing simultaneously. This

algorithm works without assuming a gate is inserted before each leaf (or register) at the

initial stage. With the help of bottom up node merging a zero skew clock routing is also

discussed. The Elmore delay model is used as reference in carrying out the skew merging.

Placement issues arise, since the gating logic is inserted in the gated clock tree after the

placement. In order to carry out the incremental placement, authors have used a design

database which uses the information of gating logic and gated clock tree. It is observed

that the insertion of the gating logics for each internal node in the clock tree prevented any

changes on the clock net and the clock branching. The trade-off between clock tree and

signal nets are thoroughly analyzed in this work.

A technique to enlarge the gating cover by gating more number of devices is presented in

Lin et al. [63]. This technique uses an interpolation method in a satisfiability (SAT) based

algorithm. The clock gating signals are chosen as SAT proofs. An approach on modeling

the clock gating as a sat problem is presented. The CRAIG interpolation technique [64],

which is used to construct revised gating signals is elaborated in this work. The clock

gating algorithm followed a three step process. First, valid gating candidates are identified.

A net-register pair is a valid gating candidate, if the net’s function can be formally proved

as a gating condition of the register. A logic simulation on the circuit under test is done

in order to filter out the invalid net-register pairs. Next, a satisfiability check is performed

on the remaining net-register pairs, by the SAT engine. After this based on interpolation

techniques various types of gating candidates are found (the Itype, Gtype). Always the

interpolants and the additional logic are verified, so that the timing constraints are not

violated. Finally, the power savings for each valid gating candidate is computed. The

gating signals that gate most number of registers, with highest power savings are identified
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and are selected in order to maximize power savings. The actual power saving took the

overlap affect into consideration, since different signals can gate a set of registers.

A review of various existing clock gating techniques is presented by Khaturia et al. in

[109]. The work also analyzed these techniques by observing the simulations of each of these

techniques. A two-input AND gate is used as clock gating logic where on of its input is the

clock signal and the other is a control signal meant to control the output. The simulation

observations demonstrated that the hazards at the enable can pass on to the gated clock. For

actions that are to be performed on the positive edge of the global clock a NOR based clock

gating technique is used. However, the similar problem of hazards and glitches arise in this

type of gating and lead to erroneous outputs. The hazards at the enable signal are avoided

by using a latch-based AND clock gating technique where, the hazards of the enable are

blocked by the latch. However, the delay occurred due to insertion of additional logic must

be taken into account during timing verification and the affect of glitch is not nullified. The

same is the case with latch-based NOR clock gating where the hazards problem is overcome

but the problem due to glitch persists. A multiplexer (MUX) based clock gating is discussed

where a MUX is used close to an open feed back loop around a basic D-type flip-flop under

the control of an enable signal. Though the resulting circuit is robust and follows the rules

of synchronous design, an additional MUX per bit lead to increase in power dissipation.

Finally, the work proposed a new gated clock generation circuit based on a negative and

positive latch. It is ensured that the controlling device’s clock is off even when the target

device’s clock is on/off. This way power is saved by avoiding unnecessary switching. In this

technique, both glitches and hazards problem is resolved.

In order to reduce the dynamic power usage, two novel approaches, power aware and

power slew aware gated clock tree synthesis (PACTS, PSACTS) approaches are presented

by Lu et al. in his work [72]. These synthesizers are proposed with a zero skew based

on Elmore delay model. In this work, the clock tree is simultaneously constructed with

the inclusion of clock gates thus avoiding the slew changes. The method begins with

construction of a binary clock tree in a bottom up course. The standard slew constraints

are considered in the PACTS synthesizer. A simultaneous gate/buffer insertion method is

proposed in order to reduce power and construct a binary tree topology. A nearest neighbor
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selection method is used in construction of the tree topology. This lead to the effective

control of the enable signals and the wire length. The activity of the internal nodes are

simultaneously monitored and are updated. The run time of the program is drastically low

since reduction in complexity. The PSACTS synthesizer included a stricter constraint that

included a hard limit on clock slew. A slew-oriented lookup table is introduced, to provide

the information of driving ability during the buffer and gate insertion. The complexity

analysis of the proposed work is thoroughly done by performing activity computation,

transition probability computation, instruction stream input and neighbor updating. The

experimental results also show that the slew rate limitation is satisfied with a small clock

skew from SPICE estimation. The gate insertion method applied in PACTS is consistent

with the result of the pairing cost, which can further enhance the performance of the

topology generation.

An approach for synthesizing clock gating conditions automatically is presented by

Hurst et al. [64], which attempts to minimize the net list perturbation. The proposed

method is both timing and physical aware. Also, this method is scalable, utilizes simulation

and satisfiability tests and avoided the need of symbolic representation. The approach

modeled the circuit as a hypergraph whose nodes are either single bit registers are

single output combinational logic nodes. The multiple clock domain case is addressed by

treating each register group separately. The gating algorithm aimed at finding incomplete

gating conditions for each registers as a disjunction of literals. After that, the candidate

identification step is carried out in which a set of candidate literals are identified in terms of

gating signals for each register. Later, these are narrowed by following timing, physical and

structural constraints. Next, the candidate pruning step is carried out where each literal is

ensured that it is consistent with the gating condition. If any literal is found violating the

condition, they are immediately removed from consideration. Later a satisfiability solver

is used in order to prove the correctness of each of these candidates using an incremental

mode. The learned clauses in the SAT problem are stored in order to speed up the future

runs. The problem now is viewed as the weighted maximum set cover problem, where the

weight of each element set is exactly its net contribution. A greedy addition heuristic is

used in order to solve the problem. After selecting the subset of candidate sets, each of

these is used to drive a clock gate and produce a single gated clock signal. Finally, as a
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Table 2.3: Works related to clock gating of Boolean logic

Method Gating technique Key features
Hai Li et al. [107] Deterministic gating Pipeline latch, execution

units, result bus
Nilanjan et al. [65] Fine grain gating Shannon expansion, shared logic,

selection of control variable
Safeen et al. [108] Gating for FPGA Region, column based architecture,

coarse grain, fine grain
Shen et al. [71] Activity and register aware Gated clock tree,

gated clock tree design incremental placement, zero skew
Lin et al. [63] SAT based clock gating CRAIG interpolation, gating candidate,

power optimization, SAT proof
Khaturia et al. [109] gated clock Overcoming hazards and glitches,

generation circuit MUX based, latch based
clock Gating

Lu et al. [72] PACTS, PSACTS Slew rate constraint, concurrent
gate insertion, slew table construction

Hurst et al. [64] Automatic generation of Candidate pruning, candidate Proving,
gating signal maximum gating condition,

don’t care based optimization

part of post gating optimization, observability don’t cares are used in order to minimize the

logic implementation of the next state of the function.

In Table 2.3, we summarize various works and their key features on the clock gating

that we have discussed.

2.4 Conclusion

Though works have been reported on decomposing Boolean functions using various

techniques, major emphasis was never given on improving simultaneously speed and power

of the overall circuit. All methods mainly focused on decomposing the circuit but nowhere

emphasis was given on realization using mixed static-Domino. Nevertheless, a number of

works have been reported in the literature on library-free mapping, most of them begin with

a nand based DAG network. None of the work considered unate circuits as a base for their

approaches. The works which adopted a parameterized library mapping did not focus on

managing critical path. Hence, there is a necessity for designing a mapping technique which

takes care of realizing large functionalities in a single cell and simultaneously fine-tunes cells

34



2.4. Conclusion

along critical path for obtaining high performance. The flexibility offered by Domino logic

style in designing the individual cells motivates us to dig in this direction. Also there is a

scope for re-ordering the cells along critical path, thus formed during the mapping which can

further minimize delay. Fine tuning these cells along the critical path, without increasing

their individual transistor count is a challenging task. Many works have been reported

in the literature on implementing clock gating. Nevertheless, they focused on sequential

circuits only. Since the outputs of a combinational block solely depends on its inputs,

the same technique for clock gating cannot hold true for sequential and combinational

circuits simultaneously. Majority of these works focused on minimizing the routing length

of clock, addressing the slew constraints etc. Hence, there is a need to propose a method

which attempts to reduce the redundant switching of gates in Domino circuits. Constant

switching of Domino blocks with every rise in clock pulse motivates us to implement a gating

technique which can reduce the redundant switching activity. Simultaneously reducing the

redundant switching and keeping a control on logic overhead is yet to be addressed.
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Chapter 3

Decomposition of Boolean Logics

An initial study reveals that for a given logic pure Domino circuit is not advantageous in

terms of area, power and delay. This is so because, Domino logic style is inherently monotone

and yield better result only when the entire logic is realizable with non-inverted gates [8].

In other words, to get the benefit of Domino logic style, better if we apply it to unate part

only. This necessitates to decompose a logic into optimum unate and binate parts. This

chapter addresses how an initial decomposition of a Boolean logic can be obtained and then

optimization of the decomposition.

In this work, we propose an influence based unate decomposition algorithm which

decomposes a given circuit into a set of unate and binate components. Later using an

optimization technique we balance these two blocks for the optimum performance of overall

circuit. Our objective of optimization is to judiciously mix static and Domino logic styles

in the same circuit to gain in terms of power and speed simultaneously.

The rest of the chapter is organized as follows. Some basic concepts related to the topic

are presented in Section 3.1. Section 3.2 describes our proposed methodology of designing

the mixed CMOS Boolean logics. The experimental results and comparison with existing

techniques are given in Section 3.3. Finally Section 3.4 concludes the chapter.
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3.1 Basic Concepts and Definitions

In this section, we present few basic terminologies which we refer to in our discussion.

Definition 3.1: State of a function: For a given Boolean function, the input at a given

instant forms its state. For example, a Boolean function having n input variables has 2n

states.

Definition 3.2: Weight of a state: Weight of a state is the number of ’1’s the state has in

its binary representation. For example, the binary representation of state 5 is 0101 and its

corresponding weight is 2.

Definition 3.3: Unate function: A Boolean function is said to be unate if it is either

positive unate or negative unate in each of its input variables but not both. A Boolean

function which is not unate is said to be binate. For example, f1 = x1x2 + x3x4 is unate,

where as f2 = x1x2 + x1x4 is binate.

Definition 3.4: Positive unate function : A Boolean function f is said to be positive unate

in a variable xi iff, fxi ⊆ fxi . For example, the function x1x2 + x3x4x5 is positive unate in

x1, x2, x4, x5.

Definition 3.5: Negative unate function : A Boolean function f is said to be negative

unate in a variable xi iff, fxi ⊆ fxi . For example, the function x1x2 + x3x4x5 is negative

unate in x3.

A Boolean function f : Bn → B with n input variables is said to be completely specified

when the response of the function to all it’s 2n input states is specified.

Definition 3.6: Partially ordered set (POSET): For an n variable Boolean function,

POSET gives a weight based ordering of all 2n states. Further, all state pairs having a

Hamming distance 1 are connected together. For example, states 4(100) and 5(101) have a

Hamming distance 1.

Definition 3.7: State pair: A state pair is defined as follows. Two states which have a

single transition of a variable, that is, having a Hamming distance 1, form a state pair. For

example states 10(1010) − 14(1110), 5(101) − 7(111), 13(1101) − 15(1111) form state pairs
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with Hamming distance 1.

Lemma 3.1: For a n variable Boolean function, there are n + 1 levels in it’s POSET.

Proof : Each level of POSET corresponds to a particular weight of the state. For a state of

n variable function there are n + 1 weights possible. Hence, the number of levels in POSET

will be n + 1. For example, a Boolean function of four variables has 16 states. It has one

state with weight ’0’, four states with weight ’1’, six states with weight ’2’, four states with

weight ’3’ and one state with weight ’4’. These states with five different weights form five

different levels in POSET.

Definition 3.8: Type of influence (TI): A state pair having Hamming distance 1 represents

transition of a particular variable from 0 → 1 or 1 → 0. It can result change in output.

Depending on the transitions in output namely 0 → 1, 1 → 0 or no transition, the influence

of the state pair is decided as positive (0 → 1), negative (1 → 0) and neutral (no transition).

This is called type of influence (TI). For example, output of state 4(100) is ’1’ and output

of state 5(101) is ’0’, then the state pair 4 − 5 has a negative influence.

Definition 3.9: Variable of influence (VI) : For a given state pair the variable which is

causing the transition from one state to another is called variable of influence (VI). For

example, VI of state pair 4(100) − 5(101) is x0, considering the input variables as x2, x1, x0,

respectively.

Definition 3.10: Conflict state pair: Two state pairs having same variable of influence

but different type of influences, become conflict state pair. For example, 3-11 may have

positive influence and 1-9 may have negative influence and both belong to same variable of

influence. Thus, they are conflict state pairs to each other.

Lemma 3.2: A variable can include a state pair having either positive or negative influence

but not both, if they form a unate set.

Proof : If we choose a state pair of a particular variable with a type of influence (either

positive or negative), then the state pair having the opposite influence is corresponding to

the complement of the variable. For a function to be unate, all variables of the function

must be present either in their true or complemented form, but not both. Hence, state pairs

having same type of influence only must be chosen.
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3.2 Proposed Methodology

Given a Boolean logic, we are to realize a CMOS circuit, combining both static and dynamic

CMOS logic styles. In this section, we present our proposed approach to realize static

dynamic mixed CMOS circuits. An overview of our approach is shown in Fig. 3.1.

Our approach can be stated as follows. Suppose, given a circuit Cinit, whose Boolean

function is represented by f(X). X is the input vector, where X = (x1, x2, x3, . . . , xn−1, xn).

Our approach consists of the following tasks.

Initial unate decomposition (IUD): We decompose the Boolean function f(X) =

U(X) ∪ B(X), where U(X) is a unate function and B(X) is a binate function. We call

this decomposition as initial unate decomposition (IUD). U(X) is meant for realizing the

circuit with Domino logic where as B(X) is for static logic style.

Optimium unate decomposition (OUD): An optimization of a given unate-binate set

is performed in this step. After the initial unate decomposition, we obtain unate and binate

sets. Judicious mapping of unate set using Domino logic style, and the rest using static

logic style would result in an optimum performance of the circuit. We try to obtain the

optimum combination in this step.

Library based technology mapping (LTM): We use Lstat, Ldyn the static and dynamic

gate libraries for mapping the binate and unate sets, respectively. The mapping of the sets

using cell libraries also helps us in estimating the power, area and delay of the circuits so

realized. In the following, we describe the above mentioned steps in details.

Initial unate 

decomposition (IUD)

Optimizied unate 

decomposition 

(OUD)

Library based

technology mapping 

(LTM)

Input Boolean 

function

Final circuit

Static and Domino 

gate library

Decomposition Mapping

Figure 3.1: Overview of our proposed approach
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3.2.1 Initial unate decomposition

We propose an algorithm which takes a completely defined Boolean function as input and

decomposes it into unate and binate parts. We term the algorithm as IUD. The various

steps of IUD algorithm are shown in the form of a flowchart in Fig. 3.2. The notations used

in the flowchart are mentioned below.

In the following, we explain various steps in IUD algorithm with the help of examples.

To start with, we consider the following Boolean function as an input.

f(x) = x̄3x̄1 + x̄2x̄1x̄0 + x3x̄2x1x0 + x3x2x1x̄0 (3.1)

where the number of input variables n = 4.

Step 1: In this step, we obtain the onset (OS) states of the Boolean function f(x). For

example, the OS of f(x) is {0, 1, 4, 5, 8, 11, 14}. Note that realizing the OS elements is

equivalent to realizing the original Boolean function.

Step 2: We construct a POSET for the OS. For the example OS, the POSET is shown in

Fig. 3.3. This POSET has states with 5 different weights 0, 1, 2, 3, 4. Hence, there are

five levels in the POSET (Lemma 1). The elements which belong to the onset are shown

using grey ovals and the remaining are in white ovals. The decimal value of the elements is

shown adjacent to the ovals.

Notations used in IUD algorithm

Onset of a Boolean function : OS

Unateset at a given instance of algorithm : US

Temporary set which stores elements : TS

Unmarked variables : UV

Marked variables : MV

Variable of influence : VI

Type of influence : TI

Step 3: We categorize each state pair of the POSET based on it’s VI and TI into a table

called Influence table. For example, Influence table for f(x) is shown in Table. 3.1. For
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Extract the OS from 

input logic

Input Boolean 

logic

Output Unate set

UV = NULL ?

Is TS unate ?

Create POSET from 

the input

Create Influence table

based on VI and TI

MV the variable 

having maximum 

cardinality

Add elements of US 

and marked variable 

to TS.

Update US

Check amongst UV, 

if any are covered

Drop the set

Add elements from 

neutral rows to US

yes

no

1

2

3

4

11
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8

no

yes

Figure 3.2: Flowchart of IUD algorithm
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Figure 3.3: POSET of f(x) = Σ(0, 1, 4, 5, 8, 11, 14)

example, the pair 1 − 9, the variable which is changing is x3 and the value of the output is

changing from high to low. Hence, the pair is placed in the row of negative influence and

under x3 column. Like this, all pairs, 32 in this case, are categorized.

Step 4: In this step, we check if there exist any unmarked variables. Initially, all variables

in Influence table are unmarked. At the beginning of each iteration a particular variable is

marked.

Step 5-6: Cardinality of each set is obtained by counting the number of state pairs belonging

to a particular VI and TI. Initially, the unate set (US) and temp set (TS) are empty. To

begin with, we choose the largest cardinality set of state pairs and include them in our US.

The corresponding VI is marked. In our running example, the maximum cardinality set

has VI as x1, TI as − and cardinality is 5. The elements are 0, 1, 2, 3, 4, 5, 6, 7, 8, 10 and

these form the initial US. We mark the variable x1.

Step 7: Checking for unateness is done in this step. There will not be any conflict state

pairs since this is the first set included. Hence, the set is unate in itself.

Step 9: Since the set is unate the US is updated to {0, 1, 2, 3, 4, 5, 6, 7, 8, 10}.

Step 10: In this step, we check whether the current US spans any other set present the
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3. Decomposition of Boolean Logics

Table 3.1: Influence table for f = Σ(0, 1, 4, 5, 8, 11, 14)

Type of influence xo x1 x2 x3
+ 10-11 9-11 10-14 3-11

12-14 6-14
8-9 0-2 8-12 1-9

14-15 8-10 11-15 4-12
− 1-3 5-13

5-7
4-6

0-1 13-15 0-4 0-8
6-7 3-7 2-10

N 2-3 7-15
12-13 9-13
4-5 2-6

Influence table. Our current US doesn’t span any other set. Hence, we continue with our

iteration.

Repeat steps 4, 5, 6, 7, 9, 10: Next, we have to choose amongst the remaining UV, a

set with highest cardinality. With our running example, it is x3 with negative influence, a

cardinality of 3 and state-pairs 1-9, 4-12, 5-13. It’s VI is marked and it’s elements are now

added to TS along with current US. The current TS is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13}.

In this case, there are no conflict state pairs and hence states 9, 12, 13 are included to the

current US.

Repeat Steps 4, 5, 6, 7 : We consider variable x2 and mark it. The states 11, 14 get included

in our TS.

Step 8: Including states 11, 14 to TS which belong to x2 variable, form conflict pairs (3-11,

6-14) for the already existing negative influence pairs of x3. This violates the unateness of

the current US, as per Lemma 1. Hence, the set is dropped. In a similar fashion, the sets

under variable x0 are also dropped.

Step 11: Since there are no unmarked variables left, we proceed to add states from neutral

influence set. In the running example, state 15 is added from the neutral influence, giving

the final unate set.

In the present example, we have got 14 states in the maximum unate set {0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 12, 13, 15}. From the final US, we choose our OS states. They are 0, 1, 4,

5, 8. These belong to the unate part U(X) of OS. The remaining two states {11, 14} form
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the binate part B(X) of OS. Hence, all elements of OS are categorized into either unate or

binate set. Both sets together correspond to the realization of considered Boolean function

f(X). Thus, we conclude our initial unate decomposition (IUD) as follows,

f(X) = U(X) ∪ B(X) (3.2)

where, the unate set U(X) = Σ(0, 1, 4, 5, 8) and the binate set B(X) = Σ(11, 14).

Here ends the first step of our proposed methodology as shown in Fig. 3.2. Next, we

perform optimization of the obtained sets for better overall performance of the circuit. It

is mentioned in the following subsection.

3.2.2 Optimization of unate decomposition

In this section, first we state the need for optimizing IUD. Then, we state the problem

of optimizing an IUD, clearly defining the objectives, constraints and design parameters

in it. Before proceeding to solve the optimization problem, we prove that the problem is

NP-complete. Finally, we suggest a multi-objective Genetic Algorithm based approach to

solve the problem.

After obtaining the unate and binate set of a function, it is observed that unate sets

are usually large compared to their binate counterparts. As a consequence, mixed CMOS

realization may result in circuits heavily biased with Domino logic, which may not be

optimum in terms of power, area and delay. In fact, we have the flexibility to choose how

much portion of a unate set is to be realized using Domino logic. The remaining part of the

unate set along with entire binate set can be realized using static CMOS logic such that

final circuit is optimum in terms of power, area and delay. Therefore, there should be a

judicial choice to achieve the optimum realization given an IUD. We call this problem as

COPT (circuit optimization). We formally define the COPT problem in the following. We

refer the following notations in our definition.

For a given Boolean function f(X), {U(X), B(X)} are the two sets which are obtained

after IUD. Our objective is to move some elements from U(X) to B(X) resulting a

new decomposition. We call it as optimum unate decomposition (OUD), that is {U(X),

B(X)} OUD−−−→ Uopt(X), Bopt(X). We consider the following three objective functions to
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Notations used in COPT problem
Boolean function : f(X) = {x1, x2, . . . , xn}
Static and dynamic libraries : (Lstat, Ldyn)
Onset of the function f(X) : OS = {i1, i2, . . . , iJ}
Power, area, delay of static block : Pstat, Astat, Dstat

Power, area, delay of dynamic block : Pdyn, Adyn, Ddyn

Number of elements in OS : J
Number of elements in U(X) : I
Number of elements in B(X) : J − I
Target values for power, area and delay : (P 0, A0, D0)
Operators for mapping and optimization : MAP, Opt

judge the optimality of OUD. Suppose, {Uk(X), Bk(X)} denote any decomposition. Then

fp(Uk(X), Bk(X)) denotes the power requirement to realize the logic Uk(X), Bk(X) into

static Domino mixed VLSI circuit. Similarly, fa(Uk(X), Bk(X)) and fd(Uk(X), Bk(X))

denote the estimation of area and delay, respectively to realize mixed static-Domino VLSI

circuits.

We define a decomposition Uopt(X), Bopt(X) as the OUD, if it satisfies the following.

Given IUD of a logic f(X) = {U(X),B(X)} :,

OUD{Uopt(X), Bopt(X)} =minimize[P = fp(U(X), B(X))],

minimize[A = fa(U(X), B(X))],

minimize[D = fd(U(X), B(X))],

subject to Uopt(X) ⊆ U(X), B(X) ⊆ Bopt(X),

Uopt(X) ∪ Bopt(X) = U(X) ∪ B(X) = OS

and P ≤ P0, A ≤ A0, D ≤ D0

for some constants P0, A0, D0

NP completeness of COPT:

Below, we prove that COPT problem is NP-complete. To prove this, we consider the

following steps.

1. We show that COPT ∈ NP.

2. We reduce a standard NP-complete problem LSAT to COPT in polynomial time.

That is, LSAT ≼p COPT [110].
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For a given Boolean function f(X) having OS as

onset, say {Uopt(X), Bopt(X), Popt, Aopt, Dopt} is a certificate for COPT. We can easily check

whether or not Uopt(X) ⊆ U(X), B(X) ⊆ Bopt(X), Uopt(X)∪Bopt(X)=U(X)∪B(X)=OS,

and (Popt, Aopt, Dopt) ≤ (P0, A0, D0). These verifications can be done in a polynomial time.

Hence, COPT ∈ NP.

We choose the 0-1 Knapsack problem as an NP-complete problem [110]. We prove that

0-1 Knapsack problem is ≼p COPT.

The 0-1 Knapsack problem can be expressed as

C = Maximize
N∑

i=1
xiCi, where xi = [0, 1] (3.3)

Subject to
N∑

i=1
xiWi ≤ W0 (3.4)

Here, Wi, Ci are the weight and cost of the ith item and W0 is the limit on weight of all

n items put together. Let us consider J, I, P x, Ax, dx be an instance of COPT. The total

number of states is represented by J , number of unate states is represented by I, and

P x, Ax, dx are it’s power, area and delay. Let an instance of Knapsack problem be N, C, W

where the total number of available objects, overall cost and weight of picked up items are

represented by N, C and W , respectively. COPT aims to choose, say m states out of the I

unate states to implement using Domino logic. The rest I −m states of unate set along with

J −I states of binate set will be implemented using static logic. The choosing of m elements

is governed by minimizing power, area and delay of the circuit. There is a one-to-one

correspondence between 0-1 Knapsack and COPT problem. In other words, minimization

of {P, A, D} can be mapped onto the minimization of 1
C in 0-1 Knapsack problem. Similarly,

constraints in both optimization problems has one-to-one correspondence. Let us consider

a reduction function g which reduces an instance of COPT to an instance of Knapsack. We

can say that if m ∈ I, g(m) ∈ N , that is, if we can choose m states out of I unate states,

then we can choose g(m) number of items from N items in case of 0-1 Knapsack problem

such that the conditions are met. Since the reduction can be done linearly, we then say 0-1

Knapsack problem is ≼p COPT. Hence, COPT problem is NP-complete.

We propose a GA based approach to solve the COPT problem, which is stated in the
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following.

GA-based approach: We follow a non-dominated sorting genetic algorithm (NSGA-II)

[111] to solve the COPT problem. A detailed framework of the NSGA-II is shown in Fig.

3.4. We have followed a binary encoding to define a chromosome in GA.

Given a Boolean function of an n input variables, we encode the corresponding OS

states in an n bit binary representation. We define a representation for all the states in

a unate set. A 0 representation shows that the state to be realized using static logic and

1 representation shows the state to be represented using Domino logic. The length of the

chromosome is exactly the same as the number of states in OS of f(X).

Since, there are I number of states in the U(X), a valid chromosome has just I number of

1s or 0s representations and remaining J −I states belonging to B(X) have 0 representation

each. To decide a candidate of initial parent population, randomly we choose I binary

bits corresponding to I states of the unate set. Each of them can be either 0 or 1. Np

number of such candidates are chosen for initial parent population (see Fig. 3.4). On this

initial population, we perform a two point crossover technique [111]. Later we mutate the

population with a probability pm. By doing so we generate Nc number of population which

is used in selection process.

After obtaining both parent and child, we evaluate the fitness values for each candidate

i belonging to the population. Given a candidate belonging to the population, we can

group the states which are to be realized using static logic and Domino logic separately.

We obtain the f i
p, f i

a, f i
d for the candidate i. In the same way, fitness values are computed

for all candidates in the combined parent and child population.

Using the calculated fitness values, we perform the non-dominated sorting of entire

parent and child population. According to Coello et al. [112], we consider a vector

U = (U1, U2, . . . , Uk) dominates a vector V = (V1, V2, . . . , Vk), denoted by U ≺ V , iff U is

partially less than V , that is ∀i ∈ {1, 2, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, 2, . . . , k} : ui < vi. For our

COPT problem, we consider the two vectors U, V as i = {f i
p, f i

d, f i
a} and j = {f j

p , f j
d , f j

a},

both having 3 objectives. Based on the above definition, we obtain the non-dominated

candidates from the population.

After obtaining the non-dominating candidates, we sort them according to various levels
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Start

Size of parent population : Np

Length of chromosome : I number of bits

Encoding : Binary

Set the generation count i =1

Evaluate fp, fa, fd, for each individual of 

the parent and child population

Generate child population of size Nc, 

using cross over and mutation operations.

Size of total population = Np + Nc

Assign non domination rank (irank) for           

all the candidates

Perform the crowd comparison and
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for all the candidates

Figure 3.4: NSGA II framework to solve COPT problem
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of domination. All candidates in a particular level have fp, fd, fa values which are not

dominated by remaining candidates of the same level. A candidate belonging to higher

domination level dominates all candidates in its lower domination levels.

We assign ranks to all candidates which are in various non-domination levels. The

candidates in higher non-domination level are given a lower rank. As we go down the

domination levels, rank of the candidates in a particular domination level increases. Rank

one is given to all the candidates which dominate the candidates of all other levels. Like

this a non-domination rank(irank) is assigned to all candidates of the entire population.

After assigning irank, we compute the crowding distance(idistance) for each candidate in

a given level. This is done by measuring the average distance of two nearest candidates

on either side of i along that particular non-domination level. We use the notation dxy,

which represents the Euclidean distance between two candidates x and y belonging to the

population. It is computed as shown below:

dxy = 2
√

(fp(x) − fp(y))2 + (fa(x) − fa(y))2 + (fd(x) − fd(y))2 (3.5)

For an individual i the crowding distance is computed as shown below, where j, k are

the nearest neighbors to i on either side, along the non domination level.

idistance = 1
2

(dik + dij) (3.6)

Like this for all individuals in the population, their respective crowding distance(idistance)

are computed. Using these two measures of an individual the crowd comparison is

performed. If α is the crowd comparison operator, as stated in [111] we define

iαj, if (irank < jrank) or if ((irank = jrank) and (idistance > jdistance))

It means, if two solutions are belonging to different non-domination ranks, then we

select the solution with lower rank. If both solutions are having the same rank, we select

a solution which is in less crowded region, that is, having more idistance. As shown in Fig.

3.4, we used crowd comparison operator [111] to select the solutions towards a uniformly

spread-out Pareto-optimal front.

As suggested by Deb et al. [111], we choose, β which defines the diversity of the obtained
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Pareto optimal set, as a criteria for terminating our GA. This parameter is observed over

five successive generations. If the change in the value of this parameter is less than ϵ (a

predefined constant [111]), then the algorithm is stopped, because the desired diversity is

obtained.

After obtaining the optimal Pareto front we compute Nadir point (nadir) for the front,

in order to choose the best individual. For our COPT problem, the 3 co-ordinates of Nadir

point namely {X ′
nadir, Y ′

nadir, Z ′
nadir} in the state space are expressed as follows

X ′
nadir = max(fp(X)), Y ′

nadir = max(fd(X)), Z ′
nadir = max(fa(X)) (3.7)

where, max(fp(X)), max(fd(X)), max(fa(X)), are the maximum values of power, area

and delay obtained in that particular level. Using this nadir we compute di,nadir for all

candidates in the Pareto front. We choose the candidate which has the minimum di,nadir,

as the most fitting candidate.

Using this candidate we obtain the final {Uopt, Bopt}. These set are used to realize an

optimal mixed CMOS circuit.

3.3 Experiments and Experimental Results

In this section, we present the experiments conducted to substantiate the efficacy of our

proposed approach. First, we mention the objectives for which the experiments are carried

out. Then we describe the experimental setup, which we have used while implementing our

proposed method and the results obtained. We also mention the benchmarks that we have

considered for carrying out the experiments. Finally, we present a comparative study of our

results with the existing techniques.

3.3.1 Objectives

We validate our decomposition algorithm on a set of standard benchmark circuits. We

estimate the performance of the circuit with reference to IUD and OUD. Also, we compare

the circuits with OUD, with only static and only Domino logic. Finally, we compare our

approach with the existing approaches to mixed CMOS VLSI circuit realization.
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3.3.2 Experimental setup

The decomposition algorithm is written in C programming language and compiled using

GCC compiler. Experiments are performed on Linux platform with an Intel Core2Duo(2.8

GHz) processor. Power, area and delay are chosen as metrics for evaluating the performance

of the circuits. To perform mapping of .pla files (benchmark files) we have developed a set

of static and Domino cell libraries. While developing libraries, we have included a set of

standard cells which form building blocks of any circuit. Some of these cells along with their

respective transistor count are mentioned in Table. II. The tLH and tHL give the respective

rise and fall delays obtained from simulations performed in CMOS 180nm process, 1.8V,

27oC. Though some standard functions may appear in both the libraries their respective

parameter values differ.

Berkeley SIS tool, Version 1.3 [113] is used for mapping and various preprocessing of

circuits. The logic descriptions of unate, binate components along with static and Domino

libraries are used by the SIS tool while performing the mapping. The map -m command is

executed for mapping a circuit. Since we are performing library based mapping, we used

the print_delay -m library command which uses a library based delay model. The dynamic

power for the component is estimated by using power_estimate -f command. The tool takes

an estimate of the activity, Cg, Cd and computes the dynamic power for a given Vdd and f .

We have used 1.8 V as supply voltage (Vdd) and clock frequency(f) is set to 20MHz. For

overall power, area, the sum of individual power, area of the components are considered. For

overall delay, the one which has more delay amongst static and Domino block is considered.

For performing the optimization we used the ’ga_optimtool’ available in MATLAB

software, Version 8.1a. We have written a script file circuit_optimum.m which defines

the functions that are to be optimized. For evaluating power, area and delay for a given

Table 3.2: List of some of the cells present in the libraries.

Name of Static cell library Name of Domino cell library
cell (transistor ) (tLH (tHL cell (transistor (tLH (tHL

count) in ps) in ps) count) in ps) in ps)
inverter 2 1.12 1.4 inverter - - -
2-nand 4 2.35 2.02 domino 2-and 6 1.32 1.67
3-nand 6 2.16 2.94 domino 3-and 7 2.46 3.12
2-nor 4 1.45 1.92 domino 2-or 6 1.7 1.2
3-nor 6 2.1 2.8 domino 3-or 7 2.1 1.85
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Table 3.3: Considered benchmarks from ISCAS85 and MCNC89

Circuit Circuit function Input lines Output lines
b1 – 3 4
ex5 – 8 63

9sym – 9 1
x3 – 135 99

C880 ALU and Control 60 25
C1908 ECAT 33 25
C2670 ALU and Control 233 140
C5315 ALU and Select 178 123

member of population SIS tool is invoked through the script file. The tool runs for 50

generations as most of the test cases converged much before that. We have considered

crossover probability(pc) as 0.9. The mutation probability(pm) is taken to be 0.15, as

recommended in several literature on NSGA II [111]. The diversity operator β as mentioned

in [111] is observed over 5 successive generations. The constant ϵ which measures the change

in β over successive generations, is chosen to be 0.001.

3.3.3 Benchmark circuits

We aimed to test our approach with benchmark circuits having wide range of input variables.

Hence, we considered MCNC’89 circuits which start with a 3 input logic (b1.pla) and range

up to 135 input logic (x3.pla). Also, we chose ISCAS’85 benchmark circuits as they add

industrial flavor to our work. These circuits span from a 33 input and 25 output Error

Corrector and Translator circuit (C1908.blif ) to a 233 input 140 output variable ALU and

Control described using (C2670.blif ). Characteristics of some of the benchmark circuits

considered are shown in Table. 3.3.

3.3.4 Experimental results

The performance of our IUD algorithm with some MCNC89 benchmark circuits is shown

in Table. 3.4. The number of states in the onset (OS), the number of states in the unate

set (U) and binate set (B) after decomposition are mentioned in columns 3 to 5. The last

column mentions the CPU runtime required for carrying out the decomposition in each case.

The computing time for the decomposition algorithm increases rapidly with the increase in
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number of input variables. For three functions we have observed the respective run times.

The circuits 9sym, t481 and tcnh0 with 9, 16 and 17 input variables required 2, 85 and 1634

seconds, respectively. The possible reason for this can be the exponential rise in memory

and power requirements of the CPU. It is clear from the fact that number of instances we

have to analyze for an N variable function is 2N . Hence, we applied the algorithm directly,

only for circuits having input variables less than 19. To handle the circuits having input

variables above 19, we adopted a standard preprocessing technique which uses SIS tool. In

case of multi-output circuits, we have considered each output separately.

With reference to two standard ISCAS benchmark circuits namely C880.pla and

C1908.pla, the realization of both the static and Domino circuits are shown in Fig. 3.5.

The respective power, area and delay are normalized with respect to the static CMOS

realization. Obtained normalized values are shown in Fig. 3.5 (a), 3.5 (b), as function of

percentage of unate states realized using Domino logic style.

We have computed the power, area, delay values of the mixed CMOS realization at

various stages. These values range from realizing the entire unate states using static

logic to realizing all of them using Domino logic. The percentage increase with respect to

corresponding static realization is plotted at each stage. The value at 0% Domino realization

of unate set corresponds to pure static realization. Hence, the percentage increase at this

point is shown as 0%. As the percentage of Domino realization of unate states increases

there is an initial increase in the delay followed by gradual decline. This can be accounted

by the fact that the initial Domino nodes may not be in the critical path. When their

number is increased they significantly effect the critical path and hence reduce the delay.

Power and area of realizing all unate states in Domino style is 50% and 60% more than

Table 3.4: Performance of IUD

Circuit I/O State Count CPU time
OS U B (seconds)

5xp1 7/10 640 505 135 2
9sym 9/1 238 173 65 2

cm151a 12/2 4100 3234 866 5
alu2 10/6 5120 3953 1167 10

C1908 60/25 10402 7321 3081 500
C880 33/25 13023 8415 6608 732
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Figure 3.5: Percentage increase of power, area and delay using IUD realization over static
CMOS realization for (a). C880.pla, (b). C1908.pla
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3. Decomposition of Boolean Logics

Table 3.5: Performance of our decomposition algorithms

Circuit I/O Mixed CMOS (IUD) Optimized Mixed CMOS (OUD)
Power(uW) Area delay(ns) Power(uW) Area delay(ns)

b1 3/4 22.3 68 41 18.4 57 46.4
ex5 8/63 298.5 2912 236.3 269.3 2635 290.3

9sym 9/1 329.7 650 260 288.3 592 285.4
x3 135/99 3231.4 2985 170.6 3002.1 2654 185.4

C880 60/25 2648.3 643 13.8 2483.7 613 16.2
C1908 33/25 2895.8 650 29.7 2693.4 535 33.5
C2670 233/140 4485.3 870 21.6 4132.6 759 24.3
C5315 178/123 12835.3 2592 27.4 10533.7 2314 32.3

the corresponding static realization. This can be supported by the fact that Domino logic

style has higher switching and hence higher dynamic power dissipation. Also in order to

realize pure Domino we have to follow two-level procedure which result in huge number of

transistors. The possible optimum is achieved when 60% of unate nodes are realized using

Domino logic (shown with a marker in Fig. 3.5 (a) and 3.5 (b)). The optimum, in the case

of C1908.pla is achieved when 70% of unate nodes are realized using Domino logic.

Experimental results on ISCAS’85 and MCNC’89 benchmark suites using mixed CMOS

(IUD) and optimized mixed CMOS (OUD) are shown in Table 3.5. The power, area and

delay values for the circuit realization before and after optimizing are mentioned in this

table. We can clearly see from Table 3.5, that the optimization we carried out resulted

in a significant savings in terms of power and area. For the circuit C2670, the savings in

power and area after optimization is 8.5% and 13%, respectively. However, the optimization

process imposed an average penalty of 7% on delay when compared to simple mixed CMOS

design.

Comparison of our approach with related methods is mentioned in Tables 3.6, 3.7, 3.8.

Static CMOS realization [113], Two-level decomposition [57] are compared with Prasad’s

Table 3.6: Comparative study of various approaches w.r.t power dissipation

Name of Power dissipation of circuit in uW
the approach b1 ex5 9sym x3 C880 C1908 C2670 C5315

static approach [113] 17.7 215.1 501 2783 2017.7 2242.7 3680.7 9015.6
Two-level approach [57] 31.4 3743 898 3982.1 2823.1 3251.5 4984.1 13720.3
Prasad’s approach [54] 20.8 235.4 482.3 2943 2439.4 2851.4 4390.7 10547.1
Jacob’s approach [58] 21.4 246.4 632.3 2945.3 2312.4 2489.4 3895.4 10213.7
Kim’s approach [53] 22.3 253.6 712.9 3431.3 2613.4 2501.3 3920.4 11321.6
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Table 3.7: Comparative study of various approaches w.r.t area

Name of Area of circuit in number of transistors
the approach b1 ex5 9sym x3 C880 C1908 C2670 C5315

static approach [113] 44 4234 940 4217 766 1071 1325 3004
Two-level approach [57] 77 7692 1732 6841 1225 1714 2120 4806
Prasad’s approach [54] 55 4123 863 4162 920 1189 1562 2983
Jacob’s approach [58] 49 4126 1053 2931 854 1234 1543 2885
Kim’s approach [53] 45 4089 1001 2741 814 1139 1346 2685

Table 3.8: Comparative study of various approaches w.r.t delay

Name of Delay of circuit in ns
the approach b1 ex5 9sym x3 C880 C1908 C2670 C5315

static approach [113] 58 355.8 423.3 250.7 21.4 41 31 39.8
Two-level approach [57] 37 192.4 280.4 140.3 12.84 24.6 18.6 23.9
Prasad’s approach [54] 45 303.4 394.6 242.4 18.3 35.7 26.4 29.3
Jacob’s approach [58] 66 376.4 413.2 243.2 24.1 38.3 37.4 44.6
Kim’s approach [53] 69 408.9 431.2 277.3 27.4 42.3 40.5 47.8

[54], Jacob’s [58] and Kim’s [53] approaches. From these tables it can be seen that the

Two-level approach gives the minimum delay amongst the existing techniques. This can be

accounted from the fact that it employs a pure Domino logic style throughout its design.

Domino logic are faster than their static counterparts [113]. This approach is 22% faster than

optimized mixed CMOS, 10% faster than simple mixed CMOS (from Table 3.5). However,

this particular approach requires the maximum number of transistors compared to other

existing approaches. This is a potential drawback of this approach. The Jacob’s approach
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Figure 3.6: Performance ratio of various approaches with respect to Static CMOS realization
for C5315.pla
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(mentioned in Table 3.6, 3.7, 3.8), consumed significantly less power and area than the two

level approach. This is possible because there are some static blocks in the final design

using this approach. They account for low power and even give rise to more delay. Kim’s

approach (mentioned in Table 3.6, 3.7, 3.8), though suffered with huge power dissipation

compared to Prasad’s and Jacob’s approach, it consumed less area and offered lesser delay

compared to them. This can be supported by the fact that Kim’s approach moved closer to

realization of Domino logic based circuits when compared to Prasad’s and Jacob’s. However,

our optimized mixed CMOS approach outperforms this technique both in terms of power

and delay.

Results of synthesis using Prasad’s approach [54] are mentioned in 9 to 12 of Table 3.6.

Our approach has clearly outperformed the Prasad’s approach both in terms of area and

delay. Our approach has shown 40% reduction in area and 12% reduction in delay as against

1% penalty in power dissipation. This is possibly because Prasad’s approach results in the

presence of trapped inverters within the circuit which can be realized using static CMOS

logic style only. Performance ratio of various approaches against corresponding static CMOS

realization, for an ISCAS bench mark C5315.pla, is shown in Fig. 3.6.

3.4 Conclusion

In general, Domino CMOS circuits consume require less number of transistors and offer

minimum delay. In this work, our mixed CMOS design has shown advantage in terms

of speed and area when compared to circuits with only static logic style. The NSGA

based circuit optimization results in further improvement of results with respect to power

dissipation.
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Chapter 4

Technology Mapping for Domino

Logic

Technology mapping is an essential step that captures the behavior of the circuits with

the help of various gates [60], [61], [62]. In the last chapter, after decomposition we have

obtained a static and Domino logic block. Mapping the Domino logic can be done in

different ways. In this chapter, we propose a method to map the Domino logic block so

that the overall delay is minimum.

Many works reported in literature begin with a NAND based directed acyclic graph

(DAG) network. None of the literature considered unate circuits as a base for their

approaches. The works which adopted a parameterized library mapping did not focus on

managing critical path. Hence, there is a necessity for designing a mapping technique which

takes care of realizing large functionalities in a single cell and simultaneously fine-tunes cells

along critical path for obtaining high performance. The flexibility offered by Domino logic

style in designing the individual cells motivates us to investigate in this direction. Also

there is a scope for re-ordering the cells along critical path, which further minimizes delay.

Fine tuning these cells along the critical path, without increasing their individual transistor

count is in fact a challenging task.

Keeping the above scope in view, in this chapter, we propose a cell re-ordering based

Domino on-the-fly mapping. We call this as CRDOM approach. First, we convert a given

unate network into a netlist of large Domino cells using a node mapping algorithm. Next,
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4. Technology Mapping for Domino Logic

we try to re-order the cells along critical path thus formed, which further minimizes delay.

Finally, we choose an optimum cell re-ordering set along the critical path, where delay and

area penalty are minimized by using a two objectives optimization problem.

The rest of the chapter is organized as follows. Section 4.1 describes some basic concepts,

which will be referred in our approach. Our proposed methodology for realizing cell re-

ordering based Domino on-the-fly mapping is elaborated in Section 4.2. Experiments and

the experimental results obtained along with a comparative analysis are presented in Section

4.3. Finally, Section 4.4 concludes the chapter.

4.1 Basic Concepts and Definitions

In the following, we present some basic concepts which we use in our discussion.

Definition 4.1 Node: A gate (cell) in a given circuit is often refereed as a node in the

graphical representation of the circuit. A gate equivalent of a node in a circuit graph is

shown in Fig. 4.1.

Definition 4.2 Circuit graph: A graphical representation of Boolean circuit, where various

gates form various nodes of the graph. In Fig. 4.1, a single node graph is shown.

Definition 4.3 Width of node: Width of a node is defined as the number of parallel chains

of transistors present in the node. For the node shown in Fig. 4.1, the width is 3.

Definition 4.4 Height of node: Height of a node is defined as the maximum number of

serial transistors present in a single chain in the node. For the node shown in Fig. 4.1, the

height is 3.

Definition 4.5 Leaf node: All the primary inputs to a circuit form leaf nodes in the

graphical representation of then circuit.

Definition 4.6 Gate formation node: Every node during the mapping must obey certain

width and height constraints. If the mapping algorithm exceeds these constraints for a

particular node, a Gate formation node occurs there and a new node is started from the

next.
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Figure 4.1: A dynamic cell and its nodal representation

Definition 4.7 Cell reordering: Delay of a particular node is dependent on the architecture

of the node. Restructuring of the transistors in a particular cell (node), is often done to

minimize its delay. This is called Cell reordering.

Definition 4.8 Original cell: A cell belonging to a circuit before re-ordering is called the

original cell.

Definition 4.9 Re-ordering cell: The functionally equivalent cell which replaces an original

cell along the critical path after re-ordering is called re-ordering cell.

Definition 4.10 Functional equivalence: During the mapping procedure, two different cells

C1, C2 may have different architectures, yet they may realize the same function. If such two

cells exist, then we say that cells C1 and C2 are functionally equivalent.

Definition 4.11 Equivalence table: Equivalence table (ET) keeps a database of all possible

cells (under the constraints height, width) and their corresponding functionally equivalent

cell. It also stores additional information such as, improvement in delay, penalty on area

etc. when re-ordering is done.

Lemma 4.1: A minimum of 5 input gate must be used to gain mapping advantage.

Proof: Every Domino gate requires 4 number of additional transistors in the form of

inverter, precharge and evaluate transistors. For an N input cell static CMOS logic style

requires 2N number of transistors. In order to gain advantage using Domino style, Eqn.

4.1 must be satisfied. Hence, the number of inputs to the circuit must be greater than 4.
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4. Technology Mapping for Domino Logic

N + 4 < 2N (4.1)

Lemma 4.2: The delay of a particular node increases with the increase in height of the

node.

Proof: The resistance of individual NMOS transistors increases, if they are present in

series. This increases the total resistance, the discharging current has to go through and

hence there is an increase in delay. Hence, delay of a node is proportional to the height of

the node [57].

4.2 Proposed Methodology

We call our proposed approach to Map Domino cells as CRDOM an acronym of Cell

Re-ordering based Domino On-the-fly Mapping. An overview of our proposed approach

CRDOM is shown in Fig. 4.2. Our approach consists of the following.

Given a unate block Cinit which is completely unate in nature. Let Ldom be the library

of various gates that are required to map the initial logic.

Raw_Map: An on-the-fly mapping step, denoted as Raw_Map which takes the circuit

Cinit containing a set of gates g1, g2, . . . , gn as input and gives CRaw_Map as the resulting

Raw on-the-fly 

Mapping (Raw_Map)

Cell Re-ordered 

Mapping (Reo_Map)
Domino Circuit

CRDOM circuit

Height, width 

constraints

Critical Path 

Optimization (Opt_Map)

Figure 4.2: Overview of CRDOM approach
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circuit which consist another set of gates G1, G2, . . . , Gk, which obey certain height, width

constraints. We represent this as

Raw_Map{Cinit(g1, g2, . . . , gn)} → CRaw_Map(G1, G2, . . . , Gk)

Reo_Map: A reordering step which takes input as an on-the-fly mapped circuit

and verifies whether or not, each gate present along the critical path is at its lower

bound realization with respect to delay. If not, this step replaces the gates with the

corresponding functionally equivalent gates which are lower bound with respect to delay. We

define this as Reo_Map{CRaw_Map(G1, G2, . . . , Gl)} → CReo_Map(G∗
1, G∗

2, . . . , G∗
m), where

(G1, G2, . . . , Gl) are gates obtained after Raw_Map step and (G∗
1, G∗

2, . . . , G∗
m) are gates

obtained after Reo_Map step.

Opt_Map: Finally, an optimum set of re-ordering cells is found done which

optimizes the critical path delay of the circuit and the area penalty obtained.

Suppose, Opt_Map{CReo_Map(G∗
1, G∗

2, . . . , G∗
m)} → COpt_Map(Go

1, Go
2, . . . , Go

m), where

(Go
1, Go

2, . . . , Go
m) are the final gates present along the critical path of the circuit.

A detail description of the above steps with illustrations is presented in the following.

4.2.1 Raw mapping

We propose an algorithm which maps an arbitrary library based Domino circuit to an on-

the-fly Domino circuit using a node mapping algorithm. A flowchart of the algorithm is

shown in Fig. 4.3. Various notations used in the flowchart are presented in the following.

Before explaining the algorithm, we define the following operations which we refer to in

our discussion. Given a node Nk, let H(Nk), W (Nk) denote the height and width of the

node respectively. Given two numbers a, b, we define functions SUM , MAX where

Notations used in node mapping algorithm

RN : Root node

NN : New node

CN : Current node

LN : Leaf node

GF_Oper : Gate formation operation

Comb_Oper : Combination operation
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Perform GF_Oper and

obtain NN

Is CN = RN ?
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Make NN as CN

yes
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H, W constraints ?

Make NN as CN

yes

no

Return the new 

graph

Given a graph of 

nodes of circuit

Choose a LN as CN

Figure 4.3: Flowchart of the node mapping algorithm

SUM(a, b) gives the sum value of a and b, MAX(a, b) returns the maximum amongst

a and b as output.

Comb_Oper: In this operation, two or more nodes belonging to a circuit graph are

combined to form a new node. Suppose, nodes N1 and N2 are combined to a new node

Nnew. These are the following cases:

• If the nature of combination is AND, then H(Nnew) is SUM(H(N1), H(N2)) and

W (Nnew) is MAX(W (N1), W (N2)).
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• If the nature of combination is OR, then H(Nnew) is MAX(H(N1), H(N2)) and

W (Nnew) is SUM(W (N1), W (N2)).

GF_Oper: A mapping procedure takes place under certain height (H), width (W)

constraints. Whenever, the constraints exceed threshold values, there a gate is formed

there itself. The output of this gate is continued with a new node which starts with H=1,

W=1. This node will carry forward the function of formed gate. Such an operation is called

Gate formation operation (GF_Oper).

In the following, we explain various steps listed in the flowchart with the help of an

example. To start, let us consider the Boolean equation mentioned in Eqn. 4.2.

f(x) = {(a + b)cde + (ed + bc + a + c)} (4.2)

where a, b, c, d, e, d are the primary inputs to the circuit. The graphical representation

of Eqn. 4 is shown in Fig. 4.4 (a). The initial mapping is done using a 2-input, 3-input

AND (•), OR (+) Domino gates (these gates belong to the library Ldom in this case).

Suppose, the height and width limits for mapping are set to HMax = 4, WMax = 4.

Initially, all leaf nodes have a dimension {1,1}. Hence, all of them satisfy the dimension

(height, width) limits. Next, the node 4 which has inputs a and b is considered as current

node (CN). Performing Comb_Oper on this node will lead to a node of dimension {1,2}. A

similar operation is performed on nodes 5, 6, 7, 8 which results in formation of new nodes

of dimension {2,1}, {2,1}, {2,1}, {1,2} respectively. These are shown in Fig. 4.4 (b). Since,

these dimensions are within the maximum defined limits the Comb_Oper is further applied

to nodes 2, 3, respectively. After Comb_Oper is performed to node 2, a new node ’9’is

formed with dimensions {4,2} and inputs a, b, c, e. Similarly, a new node ’10’ is formed by

applying Comb_Oper on node 3. It also has dimensions {2,4} and inputs a, b, c, d, e (shown

in Fig. 4.4 (c)). Performing of Comb_Oper to nodes 9, 10 will result in exceeding the limits

of H, W. Hence, the GF_Oper as mentioned in flowchart (shown in Fig. 3), is performed

on nodes 9, 10. In the final mapped circuit, we have nodes 1, 9, 10 having dimensions {1,2},

{4,2}, {2,4}, respectively.

However, the above process obtains a raw on-the-fly mapping of Domino circuits. We can

get better performance of the nodes by following a fine tuning technique namely re-ordering
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Figure 4.4: Example of node mapping algorithm (a) Initial stage (b) Intermediary stage (c)
Final stage

of nodes (cells) along the critical path. It is mentioned in the following section.

4.2.2 Re-ordered mapping

In this section, we discuss a cell re-ordering based mapping to obtain a circuit with minimum

delay.

Domino cells obtained with raw mapping may have height and width constraints, can
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realize a wide range of functions. For example we consider two different functions mentioned

in Eqn. 4.3, 4.4 to be realized in single cells respectively.

f = (a + bc)(c + a)(ab + c) (4.3)

f = (ad + be + cd)(a + ef)(gc + abd) (4.4)

Two different cells C0
1 , C0

2 shown in Fig 4.5 (a), 4.5 (b) represent their initial realizations.

Three other similar equivalence cases are shown in Fig. 4.5 (a) for cell C0
1 and four

equivalence cases are shown in Fig. 4.5 (b) and 4.5 (c) for cell C0
2 . All such equivalence

case for cells C0
1 & C0

2 along with amount of delay advantage and area penalty is stored

in an Equivalence Table (defined earlier). The Equivalence Table (ET) for cells shown in

Fig. 4.5 (a), 4.5 (b), 4.5 (c) is shown in Table 4.1. Only the re-ordering cells which give a

positive delay advantage w.r.t original cells are considered.

Using the ET, the Reo_Map step is performed on circuit shown in Fig. 4.6. In order to

obtain the overall delay advantage we focus only on the cells existing along the critical path.

These cells are cross checked with the cells present in the ET and replaced if equivalence

exists. This approach is repeated for all the cells along the critical path such that the circuit’s

final delay is minimized. Alternatively, an area oriented re-ordering can be performed, where

the Equivalence for all the cells (present in both critical and non-critical paths) is checked

for, and replaced if area advantage exists.

Depending on H, W constraints a wide variety of nodes can be formed during the

Raw_Map step. This increase in diversity of nodes proportionately increases the number

of cells present in the Equivalence Table. We can conclude that, for a given circuit with

mapping constraints the size of an equivalence table (ET) is finite. In the following section,

we further describe a combined delay, area aware optimization of the above mentioned

mapping approach.

4.2.3 Critical path optimization

In this section, first we state the need for finding an optimum re-ordering of cells along

the critical path. Next, we state the optimization problem clearly defining objectives,
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constraints and design parameters in it. Finally, we propose a two objective Particle Swarm

based approach to solve the cell re-ordering optimization problem.

After performing the re-ordering of cells along the critical path, it is observed that

replacing different sets of cells give different delay advantage and area penalty. As a

consequence, arbitrarily reordering various cells along the critical path may not lead to

optimum results with respect to delay advantage and area penalty. In fact we have a

flexibility to choose a set of re-ordering cells such that the final re-ordering will be optimum

in terms of delay and area. Therefore, a judicial choice must be made, in order to achieve

optimum realization for a given Reo_Map. We call this problem as Cell Re-ordering

Optimization problem (CROPT). We formally define the CROPT problem in the following.

We refer the following notations in our optimization.

Table 4.1: Example of an equivalence table (ET) for two different original cells (Delay measured
as number of levels, area as number of transistors)

Original cell Original function Re-ordered cell Re-ordered function Delay1 Area2

name name
C0

1 (a + bc)(c + a)(ab + c) — — 5 8
C0

1 (a + bc)(c + a)(ab + c) C1
1 (a + bc)(ab + c) 4 6

C0
1 (a + bc)(c + a)(ab + c) C2

1 (a + c)(ab + ac + bc) 3 8
C0

1 (a + bc)(c + a)(ab + c) C3
1 ab + ac + bc 2 6

C0
2 (ad + be + cd)(a + ef)(gc + abd) — — 7 14

C0
2 (ad + be + cd)(a + ef)(gc + abd) C1

2 (ad + abe + bef + cdef)(gc + abd) 7 17
C0

2 (ad + be + cd)(a + ef)(gc + abd) C2
2 (ad + be + cd)(agc + efgc + abd) 6 16

C0
2 (ad + be + cd)(a + ef)(gc + abd) C3

2 (a + ef)(gcd + begc + abd) 6 13
C0

2 (ad + be + cd)(a + ef)(gc + abd) C4
2 (abd + acdg + abceg + cdefg + bcefg) 5 21

C1

f

C3

C2

C4 C5

Critical Path

Figure 4.6: Cells C1, C2 along the critical path suitable for re-ordering
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Notations used in solving CROPT

RS : Re-ordering set

REP : Repository

W : Damping co-efficient [114]

r1 : cognitive coefficient [114]

r2 : social coefficient [114]

K : number of cells along critical path

LBEST : Local best particle in current iteration

GBEST : Global best particle over all occurred iterations

Xj
i : Position vector for particle i

in jth iteration

V j
i : Velocity vector for particle i

in jth iteration

MAX : Population size

ITER : Limit on number of iterations

For a given initial re-ordering RSinit, let {CR1
1 , CR2

2 , . . . , CRi
i } be the i number of re-

ordering cells for a number of original cells along the critical path of a circuit Cinit. These

are obtained from the Reo_Map step. The value of Ri can range from 0 to the maximum

number of equivalence cases possible for cell i. Our objective is to find an optimum re-

ordering set (RSopt) resulting in a particular re-ordering of critical path. That is

Reo_Map(RSinit) → Opt_Reo(RSopt)

We consider the following two objective functions to judge the optimality of RS.

Suppose an arbitrary re-ordering set be RSk = {CR1
1 , CR2

2 , . . . , CRk
k }. Let fd(Cinit, RSk)

denotes the delay advantage (Dsav) obtained by re-ordering the circuit with RSk. Similarly,

fa(Cinit, RSk) denotes the estimation of area penalty (Apen) incurred while re-ordering. We

aim to model our CROPT as a minimization problem. Hence, we define another function

InDsav which is the inverse of Dsav and is defined as InDsav = (1 + Dsav)−1.

We define an operation to find the optimum re-ordering set {RSopt} as the Opt_Reo, if

it satisfies the following.
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Given Reo_Map(Cinit, CR1
1 , CR2

2 , . . . , CRi
i ):

Opt_Reo (Cinit, RSopt) = minimize {Apen = fa(Cinit, RSk)},

minimize {InDsav = (1 + fd(Cinit, RSk))−1},

subject to InDsav ≤ D0, Apen ≤ A0, {RSk} ⊆ {CR1
1 , CR2

2 , . . . , CRi
i },

for given constraints D0, A0 [115]

and Ri ranges from 0 to the maximum number

of equivalence cases for cell Ci

PSO optimization: We follow a Particle Swarm multi objective optimization algorithm

(MOPSO) [114] approach to solve the CROPT problem. A brief explanation of fitting

our problem in the MOPSO framework is presented in the following. We have chosen

the MOPSO procedure, since it has got a high speed of convergence compared to other

multiobjective optimization approaches [115], [116], [117]. Also this procedure has less

dependence on the set of initial points when compared with other Domino based approaches

[114], [118], [119]. Various steps followed in the MOPSO procedure are mentioned below.

We have defined the limit of population as MAX. For each particle in the population

we have initialized the position vectors, the re-ordering set (RS). At the beginning of the

optimization all the particles are assigned zero velocity. Using respective position vectors,

the fitness values of InD, A are computed. The positions of the particles that represent

the non-dominated vectors are stored in the repository. We generate a two dimensional

hypercube for each particle corresponding to each objective function to be optimized. The

local best for each particle is also stored in the memory for each iteration. The velocity

vectors for the particles are updated in each iteration using eqn. 4.5 [115]. The velocity

vector of ith particle for (j +1)th iteration is computed using the particle’s position vector in

jth iteration and the local best particle (LBEST), global best particle (GBEST) computed

at jth iteration. The values of r1, r2 are taken as mentioned in [114].

V j+1
i = W × V j

i + r1 × (LBEST [j] − Xj
i ) + r2 × (GBEST [j] − Xj

i ) (4.5)

The LBEST of the population is computed in every single iteration. The GBEST is

obtained for the overall number of iterations took place till current instance. Velocity of a
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RS is computed for each of its dimension, in this case InD, Area separately. The procedure

for selecting GBEST for jth iteration involves fitness sharing [114] and Roultewheel based

selection, as explained in [115]. After the new velocities for the RSs are computed the

new positions for each RS are also computed using Eqn. 4.6. If the respective RSs go

beyond the search space then either they are stuck to the relevant boundary or the velocity

is multiplied by (-1) such that they go in opposite direction. Again the RSs are evaluated

using both the objective functions.

Xj+1
i = Xj

i + V j
i (4.6)

At each iteration, non dominated solutions go into the repository (REP ) and the

dominated RSs are removed. Whenever the REP size gets full, the RSs located in the

less populated areas are given preference over the highly crowded RSs. This is done in

order to obtain well distributed pareto fronts. In this way the iterations of the process

continues till the limit on the iterations (ITER) is reached. Our optimization procedure

terminates then.

The REP maintains a historical record of all the nondominated RSs. To decide a certain

RS should be added to the REP or not, the nondominated RSs found at each iteration

in the primary population of are compared (on a one-per-one basis) with respect to the

contents of the REP which, at the beginning of the search will be empty. If the REP is

empty, then the current RS is accepted. If this new RS is dominated by an individual

within the REP , then such a RS is automatically discarded. Otherwise, if none of the

RSs contained in the REP dominates the RS wishing to enter, then such a RS is stored

in the REP . If there are RSs in the REP that are dominated by the new RS, then such

RSs are removed from the REP . If REP is full, then we start selecting less crowded RSs

to maintain good spread in the solution set. Finally, from the repository of nondominated

RSs, we select one RS based on nadir point computation [111]. This will give us the RSopt,

that is the exact cells that are to be re-ordered along the critical path, so that we can get

the maximum benefit on delay and at a minimum area penalty. For the example circuit

shown in Fig. 4.6, 20 number of distinct RSs are possible. After performing CROPT we

obtained the pareto front as {C3
1 , C4

2}, {C3
1 , C3

2}. Out of both we choose first set as optimal

solution based on Nadir point computation [111].
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4.3 Experiments and Experimental Results

In this section, we present details of the experiments we have conducted to substantiate

the efficacy of our proposed approach. First, we mention the objectives of our experiments.

Next, the experimental setup, which we have used while implementing our proposed method

and the results obtained. We also mention the benchmark circuits that we have considered

in our experiments. Finally, we compare our results with the related work.

4.3.1 Objectives

Objective of our approach is to compare of the proposed node mapping approach with the

standard library based mapping approaches. Our next objective is to estimate the number

of possible re-ordering cases with respect to height, width constraints of Domino cell and

the effect of carrying out cell re-ordering along the critical path. Finally, to assess the

advantages of optimum re-ordering approach in comparison to raw mapping and re-ordered

mapping approaches. Also, we aim to compare other mapping approaches with different

steps in our proposed methods namely, Raw_Map, Reo_Map and Opt_Map.

4.3.2 Experimental setup

All cells generated during the Raw_Map step belong to the Domino logic style. In order

to track the connectivity of various gates present in the initial Dominonetlist, we used

the Berkeley SIS tool, Version 1.3 [113]. The delay savings and area penalty of various

Domino cells are computed using simulations performed in 0.18µm CMOS process, 1.8V,

27oC. Area penalty is computed in terms of number of transistors, and delay in order of

nanoseconds.

The node mapping algorithm is written in C programming language and compiled using

GCC compiler. Experiments are performed on Linux platform with an Intel Core2 Duo(2.8

GHz) processor. For applying the node mapping algorithm, we restrict the dimensions of

cells, height and width to be 4 and 6, respectively. We increase the height and width of the

cells step by step and whenever the constraints have crossed the limit, we obtained a new

cell by performing gate formation operation (GF_Oper).

The overall delay savings (Dsav) and area penalty (Apen) is computed by summing up
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4. Technology Mapping for Domino Logic

the delay savings and area penalty of individual re-ordered cells. For the various height and

width constraints the number of possible re-ordering sets are shown in Fig. 4.8.

For performing the optimization we coded the MOPSO [115] procedure in C

programming language and compiled using GCC compiler. Experiments are performed in

a similar environment as used for implementing Node Mapping algorithm. The population

size is taken as N = 4×k where k is the number of cells present along the critical path. We

set the ITER value to 2000, where convergence is expected to happen as mentioned in [114].

Also in order to choose the optimal solution from the REP [115], we have used the approach

of computing Nadir Point as mentioned in [111]. We aimed to validate our approaches on

some standard benchmark circuits. In addition to circuits mentioned in Table 3.3, we have

considered some practical circuits like Hans-Carlson adder (HC2.blif), Sparse Kogge Stone

Adder (S2-KS2.blif).

4.3.3 Experimental results

Before discussing the experimental results we define two parameters area ratio (α), delay

ratio (β) which we refer to subsequently in this section. The area ratio denoted by αp1
p2 , gives

the ratio of area occupied by a circuit designed using process p1 to area occupied by the same

circuit designed using process p2. Here, area is measured in number of transistors needed

for design. Similarly, the delay ratio denoted by βp1
p2 , gives the ratio of delay produced by

a circuit designed using process p1 to delay produced by the same circuit designed using

process p2.

In our experiments, first we run our node mapping algorithm on the set of benchmark

circuits we considered. The overall area (transistor count) and delay obtained using the

Raw_Map step (RM) for each circuit is mentioned in columns 4, 5 of Table 4.3, respectively.

Table 4.2: Delay of the cells in ns with various height and width

Width of the cell

H
ei

gh
t

of

th
e

ce
ll 1 2 3 4 5 6

1 1.08 1.32 1.56 1.8 1.98 2.11
2 1.23 1.44 1.67 1.89 2.1 2.34
3 1.67 1.89 2.13 2.45 2.79 3.12
4 2.15 2.52 2.81 3.11 3.45 3.81
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We also present the area, delay results obtained by implementing a library based technology

mapping approach [113], in columns 2, 3, respectively. We can clearly observe that the

approach raw mapping performs better both in terms of area and delay. This is possible

because the technology mapping approach repeatedly used 2-input, 3-input AND/Or gates

which are present in the library. These gates can’t exploit the Domino advantage because

of less number of inputs (Lemma 4.1). The raw mapping required less number of levels,

since the Comb_Oper of cells will merge many small cells into cells of high dimension. On

an average the raw mapping approach gave savings of 28% on delay and 19% on area when

compared to the result obtained using technology mapping approach. The ratio of area

and delay of various circuits obtained using raw mapping approach to that of the values

obtained using technology mapping approach namely αRM
T M , βRM

T M are shown in Fig. 4.7(a)

and Fig. 4.7(b), respectively.

After the Raw_Map step is over, we carried out the Reo_Map step on various

benchmarks. For the given height, width constraints of cell, we derived various possible

original cell structures and obtained the corresponding re-ordering cell (if exists) for each

structure. In Fig. 4.8, we show the number of possible re-ordering cells for various cases;

height ranging from 2 to 4 and width ranging from 2-6. It is clearly known that for case

H=1, W=1 no re-ordering is possible and hence not shown in the plot. It can be observed

from the plot that, as the dimension of a cell increases, there is an increase in the number

of re-ordering cells. This is due to the fact that, higher dimension limits the cell result

in formation of wide range of original cell. Also, such cells can be further reduced using

Boolean reduction techniques. Using these cells, we build the equivalence table (ET) and

used it to carryout the Reo_Map step. It can be concluded from Fig. 4.8, that for a given

height, width constraints of cells, there exists a bound on the number of possible re-ordering

cells.

After doing the re-ordering we have computed the revised delay and area values for

all the benchmarks. These are presented in columns 6, 7 of Table. 4.4 respectively. The

approaches Binpack [59] and CCMAP [96] are also applied on the considered benchmarks

and their respective area, delay measures are shown in columns 2 to 5 respectively. It is clear

from the analysis that approach Binpack gives better results in terms of both area and delay

compared to approach in CCMAP because of heavy logic duplication deficit which occurs
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in the later approach. Also, CCMAP approach is based on dynamic programming approach

which takes large time to converge. Yet both the approaches Binpack, CCMAP are super

ceded by the results of delay obtained using Reo_Map by 13%, 17%, respectively. This is

clear from the fact that the cell re-ordering along the critical path further reduces delay

compared to Raw_Map step and better than Binpack, CCMAP because of the significant

reduction in the number of transistors along critical path. Since re-ordering constitute

penalty on area we see a 6% increase in area for Reo_Map compared to Binpack approach.

This penalty is overcome further by Opt_Map step. It selectively re-orders the cells along
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Figure 4.7: (a) Delay comparison of RM/TM, (b) Area comparison of RM/TM
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critical path. This lead to a improvement in area by 14% with a minimal penalty on delay.

Table 4.3: Comparison of technology mapping with raw mapping

Circuit Technology mapping Raw mapping
name Area (count) Delay (ns) Area (count) Delay (ns)

b1 55 45 41 31.5
ex5 4123 303.4 2721 242.7

9sym 863 394.4 638 295.9
x3 4162 242.4 4078 135.7

C1908 1189 35.7 974 22.49
C5315 2983 29.3 2816 27.4
HC2 3843 45.7 3395 42.35

S2-KS2 3574 39.8 2252 28.65
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Table 4.4: Performance evaluation of various approaches

Circuit CCMap [96] Binpack [59] Reo_Map Opt_Map
Name Area (count) Delay (ns) Area (count) Delay (ns) Area (count) Delay (ns) Area (count) Delay (ns)

b1 43 38.25 47 35.1 48 22.9 35 25.2
ex5 3215 257.8 3463 236.6 3628 154.7 2638 169.9

9sym 673 335.4 725 307.8 759 201.2 552 220.9
x3 3246 206.1 3496 189.1 3662 123.6 2663 135.7

C1908 927 30.35 999 27.9 1046 18.2 761 19.9
C5315 2327 24.95 2505 22.8 2625 14.9 1909 16.4
HC2 2997 38.85 3266 35.65 3381 23.3 2459 25.6

S2-KS2 2787 33.83 3038 31.1 3145 20.3 2287 22.3

For a particular ISCAS benchmark circuit C1908.pla, w.r.t procedure TM, the delay ratio

βT M and the area ratio αT M for various procedures are shown in Fig. 4.9 (a) and 4.9 (b)

respectively.

4.4 Conclusion

A cell re-ordering based on-the-fly mapping for Domino logic circuits is proposed in this

work. In order to map Domino logic cells, the height and width flexibility offered by cells

is exploited. This enables us to provide an optimum mapped Domino circuit. Such a

circuit will be optimum in terms of both critical path delay and area penalty. Also, the

proposed mapping approach gives significant delay savings compared to the library based

mapping of Domino circuits. Cell re-ordering based approach for mapping is comparable

with other mapping techniques reported elsewhere. We may conclude that our on-the-fly

mapping approach especially suits for high speed applications like ALUs, processor chips

etc. However, aspects like considering area, power oriented mapping are not fully exploited

in this work and are yet to be investigated. Our, future research aims to modify the

Equivalence Table (ET) and design a power, area aware mapping procedure.
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Chapter 5

Clock Gating for Low Power

In Chapter 4, we focused on improving the delay of Domino block with the help of on-the-

fly mapping technique. In this chapter, we focus on reducing the power dissipation of the

Domino blocks using clock gating. Clock gating is an effective technique in blocking the

charging and discharging of redundant logic in a given circuit [107], [65]. Many works have

been reported in recent literature related to the implementation of clock gating. However,

majority of them focused on sequential circuits only. Since the outputs of a combinational

block solely depends on its inputs, the same technique for clock gating cannot hold true

for sequential and combinational circuits simultaneously. Further, many of these works

focused on minimizing the routing length of clock, addressing the slew constraints etc. In

fact, a method to reduce the redundant switching of gates in Domino circuits needs to be

investigated. Constant switching of Domino blocks with every rise in clock pulse is a power

hungry activity, which can be alleviated as a clock gating approach, implementing a gating

technique. Simultaneously reducing the redundant switching and keeping a control on logic

overhead appears to be a challenging task.

Keeping the above scope in view, in this chapter, we propose a clock gating scheme

based on pattern recognition technique for Domino circuits. First, we generate a list of

gate patterns which can undergo clock gating from the Domino cell library. From these, we

identify a list of favorable gate patterns (FGP), that is, patterns that can yield a positive

power savings when clock gating is applied. Next, we use an index based sub graph matching

algorithm (ISMA) which maps the obtained FGPs to the Domino block of a given circuit.
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Finally, we convert our problem into a two objective optimization problem which tries to

maximize the overall power savings, with a minimum penalty on area overhead. How we

address the issues that arise in identifying the FGPs, mapping the FGPs to the circuit and

finding an optimum set of patterns is presented in this chapter.

The rest of the chapter is organized as follows. Some key definitions and lemmas that

are needed for describing our work are mentioned in Section 5.1. Our proposed methodology

for implementing an optimum clock gating for Domino circuit is described in Section 5.2.

The experimental results and comparison with the existing techniques are given in Section

5.3. Finally, Section 5.4 concludes the chapter.

5.1 Some Basic Concepts and Definitions

Our proposed methodology for designing optimum clock gating for Domino circuits involve

finding favorable gate patterns (FGPs) and a subgraph matching algorithm. In this section,

we present some basic terminologies which we refer to in our discussion.

Definition 5.1 Node : Given a graphical representation of Boolean circuit, each gate of

the circuit is called as a node of the corresponding graph.

Definition 5.2 Link : Given a graphical representation of Boolean circuit, an

interconnection between two nodes (gates) of the graph (circuit) is called as a link of the

corresponding graph.

Definition 5.3 Type of link : A link to a node can be of two types. An incoming link

defined by type ’a’ and an outgoing link defined by type ’A’. For example, in Fig. 5.1, we

can see that link types for node 1 are ’A’,’A’, node 2 are ’a’,’A’ and node 3 are ’a’,’a’,

respectively.

Definition 5.4 Type of node : Given a graphical representation of a Boolean circuit, each

gate of circuit corresponds to a particular node in the graph. Each node belongs to a

particular type, based on the functionality of corresponding gate. For example, in Fig. 5.1,

type of nodes 1 and 2 is 2-input AND (2A) and type of node 3 is 2-input OR (2O).

Definition 5.5 Link cardinality table (LCT): Each link of the graph is associated with a
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node. This node may belong to various types depending on the functionality it realizes.

The LCT contains, for each type of link, number of nodes which are present along with

their respective cardinalities. For example, for the graph shown in Fig. 5.1, considering

type a link, 2A has 1 node and 2O has 1 node.

Definition 5.6 Favorable gate pattern (FGP): Adaption of clock gating minimizes

redundant switching of gates thereby reducing dynamic power (red(Pdyn)) dissipation but

needs additional logic which consumes additional power (Paddl). Those gate patterns which

can effectively save power, that is having red(Pdyn) − Paddl > 0, are called favorable gate

patterns (FGPs).

Definition 5.7 Priority node (PN): While implementing the subgraph matching algorithm,

we match the nodes of subgraph (FGP) to nodes of network (circuit) one by one. At a

given instance, the node belonging to the subgraph that is going to be matched is termed

as priority node (PN). Using the LCT, the node which has the least number of possible

network nodes, is chosen as PN.

Lemma 5.1: A minimum of 3 levels must be present in the gate pattern to undergo clock

gating.

Proof: In order to block the redundant switching, that is, to implement clock gating for a

gate at level I, the nature of gate at level I + 1 must be known. The gating logic that is

to be designed for level I should draw the input from the level I − 1. Hence, minimum 3

levels should exist in the gate pattern, in order to implement clock gating.

Lemma 5.2: If an AND gate at level I has one of its input turning low (at level I − 1),

the gates leading to other input (at level I − 1) of AND gate need not to be switched.

1(2A)

2(2A) 3(2O)

Figure 5.1: An example network
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Proof: The output of AND gate is true (1) when all of its input are true. In case one of

the inputs turns to be false (0), independent of other input the output of AND gate is false.

Hence, for this particular interval the gates leading to other input need not to be switched

and can save power.

5.2 Proposed Methodology

In this section, we present our methodology for performing optimum clock gating of Domino

circuits. An overview of our proposed methodology is shown in Fig. 5.2. Our overall

approach consists of the following operations.

Suppose, given a circuit Cinit which is completely unate in nature. Let Ldom be the

Domino cell library used for mapping. We brief the different tasks in our approach as

follows.

Pattern generation (Pat_Gen): A pattern generation step, denoted as Pat_Gen, which

tries to generate a set of favorable gate patterns (FGPs) from a given Ldom, such that

each individual gate pattern (pi) is associated with power savings (Psav), area penalty

(Apen) with it, simultaneously satisfying the constraint (Psav > 0). We can define this as

Pat_Gen{Ldom} → {p1, p2, . . . , pk} where {p1, p2, . . . , pk} are in the set of FGPs.

Pattern matching (Pat_Match): A subgraph matching operation, where the individual

Favorable Gate 

Pattern generation 

(Pat_Gen)

Pattern matching of

unate block 

(Pat_Match)

Input Domino 

block

Optimum clock 

gated Domino block

Domino cell 

library (Ldom)

Optimization of gate 

patterns

(Pat_Opt)

Figure 5.2: Overview of optimum clock gating of Domino circuit

82



5.2. Proposed Methodology

FGPs (subgraphs) are matched to the given circuit (Cinit) using an index based subgraph

matching algorithm (ISMA). We can formalize as, Pat_match{Cinit, pi} → {P i
sav, Ai

pen}

where pi is a considered FGP, P i
sav, Ai

pen are the obtained power savings and area penalty

after matching is performed.

Pattern optimization (Pat_Opt): An optimum set of patterns is explored, which when

used, can obtain maximum power savings with a minimum area penalty. Pat_Opt is the

optimization operator, p1, p2, . . . , pl are the l optimum patterns and {P opt
sav, Aopt

pen} are the

resulting power savings and area penalty after optimization.

In other words, Pat_Opt{Uopt, p1, p2, . . . , pk} → {p1, p2, . . . , pl, P opt
sav, Aopt

pen} is an

optimum pattern matching with respect to some objectives.

In the following sub sections, we discuss the above mentioned tasks in details.

5.2.1 Pattern generation (Pat_Gen)

We propose a method for generating patterns that takes a Domino cell library as input

and generates FGPs which can implement clock gating and have some fixed specifications.

Also, we describe models that we have used in obtaining the power savings (Psav) and area

penalty (Apen) for a given FGP.

To start with, we consider an example which has the following gates present in its cell

library Ldom. The notations we use in extracting FGPs are mentioned below.

To be members of a given pattern, we select the gates from the Domino cell library

Ldom. Suppose, the Ldom consists of 2 input OR, AND; 3 input OR, AND gates denoted

as 2O, 2A, 3O, 3A, respectively.

According to Lemma 5.1, a minimum of three levels are required in a FGP. Hence, we

start framing FGPs with a basic minimum of a single gate in each level of the pattern.

Notations used in extracting FGPs

Ldom Domino cell library

2A 2-input Domino AND gate

3A 3-input Domino AND gate

2O 2-input Domino OR gate

3O 3-input Domino OR gate
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1(2A)

2(2A) 3(3A)
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5(X)
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clk
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B

p4

Level
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I

Level

I+1

(b)

Figure 5.3: A Scenario of (a) without clock gating, (b) with clock gating using FGP p4

For the considered cell library, we formulated a possible pattern as shown in Fig. 5.3

(b). Non-clock gated version of this circuit appears in Fig. 5.3 (a). The pattern p4 (shown

in fig. 5.3 (b)) has three levels (I + 1, I, I − 1) with one gate in each level. For the part of a

circuit shown in Fig. 5.3, in order to clock-gate the gates at level I, there is an AND gate

(3A) at level I + 1, which satisfies Lemma 5.2. Next, the condition when one of the input
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gates at level I goes low, the remaining gates present at level I, which are providing inputs

to the 3A gate, can be clock gated. These are marked as ’X’, (see Fig. 5.3). Depending

on the input to the gate at I − 1, (in this case A and B to 2A gate), the clock-gating logic

is devised. Here, if either A=0 or B=0 happens, then all the gates (i.e. 4 and 5) would be

low. Hence, as shown in Fig. 5.3, we choose the 3A gate for generating the gated clock for

both "X" gates.

Estimation of power (Psav): Here, we present a model, which we have adopted to estimate

the power savings, obtained by introducing clock gating. We assume that the switching

power (Pdyn) of gate ’X’ (shown in Fig. 5.3), linearly depends on the clock frequency (fclk),

as stated in Eqn. 5.1.

Pdyn = 1
2

CLV 2
ddfclk (5.1)

where CL is the load capacitance, Vdd is the supply voltage and fclk is the switching

frequency. Assuming that the probability of inputs A, B to be ’0’ or ’1’ is pA(0)=pB(0)=

0.5 each, then the probability of gated clock to be ’0’ denoted by, pclkg (0) = 1 − pA(1)pB(1)

= 1−0.25 = 0.75. This implies that 75% of power savings can be obtained in X gates. This

comes at the cost of one additional 3A static gate (gate 6, in Fig. 5.3 ) which is used as

clock gating logic, that consumes additional power (Paddl). Hence, the overall power savings

can be obtained by adding the power savings of ’X’ gates and reducing the extra power

penalty caused by clock gating logic. It is formulated in Eqn. 5.2.

Psav = Psav(X1) + Psav(X2) − Paddl (5.2)

Estimation of area (Apen): In our work, to estimate the area overhead caused due to

insertion of clock gating, we consider only the gate area. We estimate the penalty in terms

of number of transistors. For the considered pattern p1 (as shown in Fig. 5.3), we employ a

3A static gate as gating logic which needs 8 transistors. Hence, Apen = 8, for the considered

p4.

After obtaining the patterns, we consider only those patterns whose Psav > 0. From the

previously defined library Ldom, we got four different FGPs, as shown in Fig. 5.4. These

form the set of favorable gate patterns (FGPs). Next, we try to identify the presence of
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1(2A) 2(3A) 3(2A)

(a) p1

1(2O) 2(3A) 3(2A)

(b) p2

1(2O)

2(2A) 3(3A)

(c) p3

1(2A)

2(2A) 3(3A)

(d) p4

Figure 5.4: Various possible FGPs for considered Ldom

various FGPs in the considered Domino circuit. The detail procedure is mentioned in the

following sub section.

5.2.2 Pattern matching (Pat_Match)

After obtaining a set of FGPs which can implement clock gating, we further try to find

the presence of these FGPs in a given Domino circuit. To do this we follow an index

based subgraph matching algorithm (ISMA) proposed in [120], which finds the presence of

a desired sub graph in a given graph. In the following, we describe ISMA algorithm with
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the help of an example. The notations used in the algorithm are mentioned below.

To start with, we consider a circuit with 13 Domino gates (as shown in Fig. 5.5), as

the graph for which gate patterns are to be matched. The gate pattern p4 obtained using

Pat_gen is used as FGP for matching the circuit.

Various steps in ISMA are shown as the flowchart in Fig. 5.6.

Step 1: In this step, we extract the link cardinality table (LCT) (Definition 5.5) for all link

types present in the circuit. These are of types A and a for our current example.

Step 2: Here, we check for unmarked nodes in the FGP. Initially, all nodes are unmarked

in the FGP.

Step 3: We use the LCT of the circuit, to select the priority node (PN) from the FGP. For

the current example, the LCT is shown in Table. 5.1. From Table. 5.1, we can infer that

the gate of type 2O, is having least cardinality. Yet, this type of node doesn’t exist in the

considered FGP (p4). Hence we go for the gate which has the next highest cardinality (3 in

this case).

Notations used in ISMA algorithm

LCT Link cardinality table // Used for selecting PN

PN Priority node // Node that is selected for matching

1(2A)

2(2O)

3(2O)

4(2A)

5(2O)

6(3A)

7(2A)

8(2O)

9(3A)

10(2A)

11(2A)

12(3A)

13(2O)

Figure 5.5: Graphical representation a considered Domino circuit
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Table 5.1: Link Cardinality Table for circuit graph shown in Fig. 5.5

S. No Type of link Type of gate Gate number Cardinality
3A 6, 9, 12 3

1 A 2A 4, 7, 10, 11 4
2O 2, 3, 5, 8 4
3A 6, 9, 12 3

2 a 2A 4, 7, 10, 11 4
2O 5, 13 2

This matched with gate type 3A, having either an incoming link or an outgoing link. We

can see that node 3 of FGP, which is a 3A type has the minimum incoming links, that is of

type a. Hence, the current PN will be node 3. We also mark this node.

Step 4: This step checks for the node of type 3A having a link type a in the circuit. It

matches to node numbers 6, 9, 12 of the circuit. All nodes are equally favorable. We

randomly choose circuit node 6 and proceed further. The remaining possible nodes will be

considered, if and only if, FGP can’t be mapped in this iteration.

Step 5: Since a match exists (FGP node 3 is matched to circuit node 6), we return back to

Step 2.

Repeat Steps 2, 3, 4: We still find that FGP nodes 1, 2 are unmarked. To find PN for these

nodes, we explore the neighboring circuit nodes of 6 from which an incoming link comes to

6. These happen to be type a links from circuit nodes 3, 4, 5. Out of these only circuit

node 4 is of similar type to FGP node 2. Hence, current PN will be FGP node 2. We mark

node 2 of FGP and match it to network node 4.

Repeat Steps 5, 2, 3, 4: Since match exists we repeat once again steps 2, 3, 4. In a similar

fashion, we get circuit node 1 as the matching node for FGP node 1. As in Step 3, we

mark this FGP node. Final checking happens in Step 2. Since all nodes are marked, final

matched circuit will be returned.

Step 5: If at all a particular node of FGP has no matching node in the circuit, we say FGP

cannot be matched with the circuit. Hence, the algorithm will terminate at that point and

state that no match is found. In our example, the final matched circuit, using the given

FGP is shown in Fig. 5.7.

If a situation exists, where more than a single match occurs (e.g. nodes 6, 9, 12 in this

case), we randomly choose one match (say ’6’ in this case) and proceed with further steps
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of our algorithm. If the entire FGP can’t be mapped (successfully mapped in this case),

then we consider the other possible matches one after another and apply ISMA on them. If

we have to match a set of patterns to the circuit, we first sort the patterns based on their

individual power savings. Then we apply our ISMA algorithm repeatedly, choosing the

patterns in the decreasing order of power savings. This helps us in reducing the complexity

of search tree of ISMA. The search tree for the considered example is show in Fig. 5.8.

Next, we perform an optimization on the set of FGPs, to find a best set of FGPs that

can cover the entire circuit, yielding maximum power savings with a minimum area penalty.

Given test circuit

and a FGP

Extract LCS of            

input circuit

All nodes in FGP 

are marked ?

no

Find PN of FGP

and mark it

Match PN to nodes

of circuit

Does match 

exist ?

yes

yes

no

FPG can’t be 

mapped

Return FGP 

mapped circuit

1

2

3

4

5

Figure 5.6: Flowchart representation of ISMA algorithm
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1(2A)

2(2O)

p4

3(2O)

4(2A)

5(2O)

6(3A)

7(2A)

8(2O)

9(3A)

10(2A)

11(2A)

13(2O)

12(3A)

Figure 5.7: FGP mapped circuit

It is discussed in the following sub section.

5.2.3 Pattern Optimization (Pat_Opt)

In this section, first we state the need for finding an optimum set of FGPs used for matching

a Domino circuit. Next, we state the problem of optimizing Pat_Match, clearly defining

the objectives, constraints and design parameters in it. Finally, we suggest a two objective

Genetic algorithm based approach to solve the pattern set optimization problem (PSOPT).

After performing mapping of the circuit with a particular FGP, it is observed that

using different set of FGPs, termed as pattern set (ps) give different power savings and

area penalty (various cases are shown in Fig. 5.9). As a consequence, the mapping of

R

6 4 1

9 7

12 10

Figure 5.8: Search tree for the considered example
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2A

2A 3A

2O

3A

2A

2A

3A

2A

2O

2O

2O

2O

(a) considered circuit

1(2A)

2(2O)

p4

3(2O)

4(2A)

5(2O)

6(3A)

7(2A)

8(2O)

9(3A)

10(2A)

11(2A)

13(2O)

12(3A)

p1

p3

(b) Pattern 1

1(2A)

2(2O)

p3

3(2O)

4(2A)

5(2O)

6(3A)

7(2A)

8(2O)

9(3A)

10(2A)

11(2A)

13(2O)

12(3A)

p1

p3

(c) Pattern 2

1(2A)

2(2O)

3(2O)

4(2A)

5(2O)

6(3A)

7(2A)

8(2O)

9(3A)

10(2A)

11(2A)

13(2O)

12(3A)

p2

p3

(d) Pattern 3

Figure 5.9: An example test circuit and possible matching

Domino circuit with a particular ps may not be optimum in terms of power savings and

area penalty. In fact, we have the flexibility to choose a ps that can cover the entire Domino

circuit such that the final mapping is optimum in terms of power savings and area penalty.

Therefore, a judicial choice must be made, in order to achieve optimum realization for a

given Pat_Match. We call this problem as pattern set optimization problem (PSOPT). We

formally define the PSOPT problem in the following. We refer the following notations in

our optimization.
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Notations used in solving PSOPT

ps : FGP set

α : cooling rate

temp : temperature of the iteration

Tmax : maximum allowed temperature

Tmin : minimum possible temperature

iter : maximum possible iterations

: at a given temperature

HL : hard limit for clustering

SL : soft limit for clustering

i : total number of FGPs

Archive : stored set of pss

For a given circuit Cinit, let {p1, p2, . . . , pi} are the i number of FGPs obtained after

Pat_gen step. Our objective is to find an optimum pattern (psopt) resulting a optimum

gating of the circuit. We call it as pattern optimization (PSOPT), that is

Pat_Match (Cinit, p1, p2, . . . , pi) → Pat_Opt (Cinit,psopt).

We consider the following two objective functions to judge the optimality of ps. Suppose, an

arbitrary pattern set be psk = {p1, p2, . . . , pk}. Let fp(Cinit, psk) denote the power savings

obtained by matching the circuit with psk. Similarly, fa(Cinit, psk) denote the estimation

of area penalty incurred while performing the matching. We aim to model our PSOPT as a

minimization problem. Hence, we define another function P −1
sav which is the inverse of Psav

and is defined as P −1
sav = (1 + Psav)−1

We define the operation to find an optimum pattern set {psopt} as the Pat_Opt, if it

satisfies the following.

Input: Given Pat_Map (Cinit, p1, p2, . . . , pi):

Pat_Opt (Cinit, psopt) =minimize{Apen = fa(Cinit, psk)},

minimize{P −1
sav = (1 + fp(Cinit, psk))−1},

subject to P −1
sav ≤ P0, Apen ≤ A0, {psk} ⊆ {ps1, p2, . . . , pi},

for some constraints P0, A0
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SA based optimization: We follow an Archived Multi Objective Simulated Annealing

(AMOSA) [121] approach to solve the PSOPT problem. A brief explanation of fitting our

PSOPT problem into the framework of the AMOSA procedure is mentioned below. We have

chosen the AMOSA procedure because it is accurate and computationally efficient with time

complexity O(MNlog(N)) compared to other multiobjective optimization approaches [122],

[123]. Also, this procedure doesn’t discard an improbable candidate straight away as is done

in other domination based approaches [124], [125]. Various steps followed in the AMOSA

procedure are mentioned below.

We have followed a binary encoding to define a chromosome in AMOSA. As shown

in Fig. 5.10, first we form an Archive of pss. To do this, we select γ × SL number of

pss (0 < γ < 1), in the Archive. Later, by using a simple hill climbing technique, we

refine these pss, accepting a ps if only it dominates the previous one. It is continued over

sufficient number of iterations such that the pss are non-dominating to each other. In case

the number of pss exceed HL clustering is applied to reduce the number of pss to HL. Using

the clustering technique, preserves the diversity of solutions in the Archive [121]. The size of

cluster is allowed up to SL > HL and later grouped into HL size clusters [121]. This helps

in reducing the clustering calls. The clustering technique namely Single linkage algorithm

[126] is used for clustering.

In AMOSA procedure, we used the concept of amount of domination in computing the

acceptance probability of a new set of ps. Given two pattern sets ps1 and ps2, the amount

of domination is defined as,

∆domps1,ps2 = fp(Cinit,ps1)−fp(Cinit,ps2)
R1

× fa(Cinit,ps1)−fa(Cinit,ps2)
R2

where, R1 and R2 are the ranges of power and area objectives, respectively. These

ranges are computed from the solutions present in the Archive along with the new and

current pss used for computing it [121]. This amount of domination is used for computing

the acceptance probability of a new set of FGP.

At the beginning of AMOSA process, one of the ps from the archive is randomly selected

as an initial solution at temp = Tmax. The current ps is perturbed to generate a new

solution, representing a new ps. The domination status of new ps is checked with the
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current ps and pss present in the Archive. It gives rise to the following three cases:

Case I : If the current ps dominates the new ps and k(k ≥ 0) pss from the Archive dominate

the new ps, then we follow selection procedure I, as mentioned [121]. The new ps is selected

as the current ps with

probability = 1
1 + exp(∆domavg × temp)

, (5.3)

where ∆domavg = ((
∑k

i=1 ∆domi,new−ps) + ∆domcurrent−ps,new−ps).

Case II : If the current ps and the new ps are non-dominating with each other, then we

follow selection procedure II. The new ps is compared with the pss in Archive. Based on

whether it is dominated fully, dominated by some pss or completely non dominated the new

ps is either accepted with a probability (as mentioned in Eqn. 5.3), or made as the current

ps or stored in Archive replacing all other existing pss.

Case III : Finally, if new ps dominates the current ps, selection procedure III is followed.

The new ps is checked with other pss in the Archive. If k pss from the Archive dominate the

new ps then, the ps from the Archive which amounts for minimum difference of domination

is selected as current ps with a

probability = 1
1 + exp(−∆dommin)

(5.4)

where (∆dom = minimum of difference of domination amounts between new ps and pss

present in the Archive). If the new ps dominates k pss of the Archive, then the new ps is

made as the current ps and all the k existing pss are removed from the Archive.

The above process is repeated iter number of times at each temp. Based on the cooling

rate α, temperature is reduced to α × temp at every stage, till the minimum temperature

(Tmin) is attained. After the process is terminated, the pss present in Archive form the non-

dominated solutions. From these, we choose the best ps based on Nadir point computation

as mentioned in [111]. This forms the optimum pattern set (psopt), which yields maximum

power savings with minimum area penalty, when clock gating is applied.
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5.3 Experiments and Experimental Results

In this section, we present details on various experiments conducted to substantiate the

efficacy of our proposed approach. First, we mention the various objectives for which the

experiments are carried out. Then we describe the experimental setup, which we have

used while implementing our proposed method and results obtained. We also mention the

benchmarks that we have considered for carrying out the experiments. Finally, we present

a comparative study of obtained results with those of existing techniques.

5.3.1 Objectives

We validate our mapping approach on a set of benchmark circuits. Initially, we present

the proportion of FGP in the total possible gate pattern for a given cell library. Also, we

present the variation of number of FGPs with increase in number of gate levels in a pattern.

Next, we estimate the performance of circuits with reference to the operations Pat_Gen,

Pat_Match and Pat_Opt. Also, we compare the performance of Pat_Match approach

with the no clock gating approach. Finally, we compare our approach with the existing

approaches in realizing clock gated Domino logic circuits.

5.3.2 Experimental setup

The FGPs generated according to the Pat_Gen algorithm are completely based on the

Domino cell library Ldom which is used for mapping a Domino circuit. In order to track the

connectivity of various gates present in the Domino netlist, we used the Berkely SIS tool,

Version 1.3 [113]. The power savings of Domino gates and area penalty of the gating logic

are computed using simulations performed in 0.18µm CMOS process, 1.8V, 27oC. Since,

area penalty is computed in terms of number of transistors, we got the transistor count of

the gating logic from Lstat which is used to map the binate block of mixed CMOS circuit.

We use static logic gates only for generating clock gating signals.

The ISMA algorithm is implemented in C programming language and compiled using

GCC compiler. Experiments are performed on Linux platform with an Intel Core2Duo(2.8

GHz) processor. For applying the ISMA algorithm, we restrict the size of FGP to 3 levels

only, since it is the minimum number of levels required to implement clock gating. We
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mapped the available FGPs to this connectivity graph one after another, giving top priority

to the ones which have high power savings. Overall power savings and area penalty is

computed by summing up the individual power savings and area penalty of individual

FGPs. For the FGP’s shown in Fig. 5.4, the Psav and Apen are reported in Table 5.2.

For the sake of simplicity, in Table 5.2, the power savings are mentioned in terms of power

dissipation of standard 3-input Domino AND gate P3A.

For performing the optimization, we implement AMOSA procedure in C programming

language and compiled using GCC compiler. Experiments are performed in a similar

environment as used for implementing ISMA algorithm. Tmax and Tmin are set to be

20, 000oC and 1oC respectively [122]. The cooling rate (α) is chosen to be 0.5. Maximum

number of iterations at a given temperature is set to be 25. HL and SL in our experiment

are chosen as 5% and 10% of total population [121]. We aimed to validate our approaches

on some standard benchmark circuits. In addition to circuits mentioned in Table 3.3, we

have considered some daily life circuits like Hans-Carlson adder (HC2.blif), Sparse Kogge

Stone Adder (S2-KS2.blif).

5.3.3 Experimental results

For the considered example of Section 5.2, an estimate of total number of possible gate

patterns (PGPs) and number of FGPs is shown in Fig. 5.10. For the example, we enlisted

four gate patterns for which clock gating can be applied. For each pattern various gating

architectures are possible. Only some of them yield benefits in terms of power. Out of the

20 possible gating architectures only four of them result in positive power savings. Hence,

for this case the FGP are 20% of the total possible gate patterns. We have also computed

the possible gating architectures keeping number of gate levels 3, 4, 5 (shown in Fig. 5.11).

Table 5.2: Psav and Apen for FGPs shown in Fig. 5.4.

S. No FGP Power savings Area penalty
name (quantified) (transistor count)

1 p1 0.75(P3A) 8
2 p2 0.25(P3A) 12
3 p3 0.25(P3A) 12
4 p4 0.75(P3A) 8
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Figure 5.10: Percentage of favorable gate Patterns compared to total possible gate patterns
obtained for the considered example

We can see that there is a steep rise in the possible gating architectures. This signifies the

exponential rise in the number of gating architectures with increase in number of gate levels

in the pattern.

We have carried out various operations mentioned in our methodology, on the chosen

set of benchmarks. Respective power dissipation of the circuit in uW and total area in
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Figure 5.11: Number of possible gating architectures with increase in gate levels
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terms of transistor count are shown in Table 5.3. We have also computed the results using

approaches mentioned in [83] and [65]. These are shown in columns 2 to 5 of Table 5.3.

Columns 6 to 9 mention the power and area results obtained from initial pattern matching

(Pat_Match) and optimum pattern (Pat_Opt) matching approach. For a particular test

case ex5.pla the power consumed without clock gating approach of Subirats et al. [83],

is more than that consumed by Banerjee et al. [65]. The similar trends follow for other

test cases too. This supports the motivation behind implementing clock gating logic. Note

that for the same test case approach [65] needed 91 transistors which is 40% more than the

non-clock gating approach.

Analysis of Table. 5.3 shows that Pat_Match operation produced 35% power savings

with an area penalty of 20%. This is further improved, after applying AMOSA based

optimization. The high area penalty for approach [65], could be ascertained to the fact

that, it excessively used 2-input AND/OR gates. Also, usage of Bubble pushing algorithm in

approach [65], lead to high logic duplication and hence affected the obtained power savings.

Pattern recognition based clock gating approach has shown 15% better power savings, since

it had less gating logic. Each pattern is considered, if only it can yield power savings.

The optimization process further offered 20% improvement in power savings and 8% area

penalty. For a particular case, C5315.pla we have computed the percentage increase of power

savings and area penalty for various approaches like Pat_Match, Pat_Opt and FCG [65]

with respect to work done in [83]. These results are shown in Fig. 5.12. In the same figure,

we have also presented comparison of our work with the approaches mentioned in Safeeen

et al. [108], Hurst et al. [64]. Observation of these results show that, Safeen’s approach

Table 5.3: Comparison of power dissipation and area penalty

Circuit Name OUD [83] FCG [65] Initial matching Optimum Matching
(Pat_Match) (Pat_opt)

P (uW) A(tr.count) P (uW) A(tr.count) P (uW) A(tr.count) P (uW) A(tr.count)
b1 18.4 57 32.4 91 12.4 72 10.1 68
ex5 269.3 2635 392.5 3982 208.5 2917 176.3 2732

9sym 288.3 592 433.7 793 210.3 663 180.4 621
x3 3002.1 2654 4890.8 3847 2204.4 2931 1897.4 2812

C1908 2693.4 535 3934.1 925 1832.3 596 1539.7 557
C5315 12835.3 2314 16530.4 3682 8342.4 2602 6324.5 2499
HC2 14742.8 2754 19832.6 4133 9632.3 3032 8013.2 2892

S2-KS2 15331.5 2532 21632.4 3989 9934.4 2734 8543.4 2681
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Figure 5.12: Percentage change of power savings and area compared to non clock gated
approach of [83] for the circuit C5315.pla

produced more area penalty, as the approach is oriented specifically for FPGAs (which

includes both coarse grain and fine garing clock gating). However, Hurst et al. approach

gave more power savings than Safeen’s approach as it involved finding of maximum gating

condition obtained from pruning of gating candidates.

5.4 Conclusion

A pattern recognition based clock gating for mixed static Domino logic circuits is proposed

in this work. In order to implement clock gating for dynamic circuits, additional logic and

routing is required. If not taken into consideration, it leads to increase in area and power

dissipation of the overall circuit. This work proposes to obtain an optimum clock gated

circuit. Such a circuit will be optimum in terms of both power dissipation and area. Also

the proposed clock gating approach gives significant power savings compared to the non

clock gated circuits. Pattern recognition based approach for clock gating is comparable

with other clock gating techniques reported elsewhere. We may conclude that our proposed

clock gating approach especially suits for low power applications like hand held gadgets,

rechargeable devices etc.
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Chapter 6

Conclusion and Future Research

In this thesis, we have proposed an approach to synthesize VLSI circuits using mixed static

Domino CMOS logic style. The main objective of our research is to synthesize Boolean

circuits targeting low power dissipation and offering high performance. In this Chapter,

we present the various contributions of this thesis. A critical review of our research

achievements vis-a-vis objectives is presented in Section 6.2. Finally, in Section 6.3, we

present the scope for future work and directions for further extensions of our research.

6.1 Contribution of this Thesis

The main contributions of our research work can be summarized as follows.

Unate Decomposition: The first contribution of this thesis is an approach to decompose

a Boolean logic suitable for realization of a mixed static Domino circuit. In order to realize

a circuit using Domino logic, it must be completely unate. However, complete unate circuit

is impractical. This work proposes an approach to obtain an optimum unate binate circuit.

Such a circuit can be synthesized reducing power, area and delay. Given a circuit, we

perform an initial unate decomposition (IUD) which we optimize to reduce power dissipation

and delay.

On-the-fly Mapping: Our next contribution in this dissemination is a cell re-ordering

based on-the-fly mapping approach for Domino logic circuits. In order to map Domino

logic cells the height, width flexibility of cells has been investigated, which in turn leads

to decrease in area, delay of the overall circuit. This work proposes to obtain an optimum
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mapped Domino circuit. Such a circuit will be optimum in terms of both critical path delay

and area penalty. Given a Domino block, first we perform an initial on-the-fly mapping of

Domino logic using a node mapping algorithm. Later, we perform the re-ordering of the

cells along the critical path so that the delay can be minimized. Finally, we find an optimum

set of re-ordering of cells that can yield maximum delay savings with a minimum penalty

on area. Also the proposed mapping approach gives significant delay savings compared to

the library based mapping of Domino circuits.

Clock Gating: A pattern recognition based clock gating for Domino logic circuits is the

third contribution of our work. In order to implement clock gating for dynamic circuits,

additional logic and routing is required. If proper care is not taken, it leads to increase in

area and power dissipation of the overall circuit. This work proposes to obtain an optimum

clock gated circuit. Such a circuit will be optimum in terms of both power dissipation and

area penalty. Given a Domino block, first we generate the favorable gate patterns from

the Domino cell library and map the circuit using the available favorable gate patterns.

Later we find the optimum set of patterns that can yield maximum power savings with a

minimum penalty on area.

6.2 Significance of our Research

The proposed decomposition based approach presented in Chapter 3, yields lower transistor

count compared to static CMOS logic style. Mixed CMOS circuits are comparable with

only dynamic and only static realizations according to works reported elsewhere. We may

conclude that mixed CMOS circuit is suitable for low power and high speed applications

such as mobile and handheld digital gadgets etc.

The cell re-ordering based mapping approach presented in Chapter 4, offered a significant

delay advantage compared to the standard Domino mapping technique. Also, the area

penalty imposed while cell re-ordering is kept as minimal as possible. Especially, this

approach makes the design suitable for high performance applications.

Significant power savings were recorded by using the pattern recognition based clock

gating approach, presented in Chapter 5. The clock signal, which is highly active in the

Domino block is thoroughly dealt with in this chapter. This made the overall design
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comparable to other low power approaches reported in the literature. This encourages

the design to be used in various application of handheld gadgets.

6.3 Future Scope of Work

This work however leaves a number of issues opens and problems to address giving a scope

for further extension of this research. We mention few such issues.

The decomposition methods can be further generalized for incompletely specified

Boolean functions.

Also, various other approaches for multi objective optimization and choosing of the

best candidate from the Pareto optimal front can be explored.

The raw mapping approach considered the gates to be of "and", "or" natures only.

Further functionalities can be considered in the initial mapped circuit and new set of rules

can be derived accordingly for combination operations. Concepts like average case delay

in terms of incompletely defined Boolean functions and usage of logical effort in estimating

the delay can also be employed.

Our cell mapping strategies attempted to optimize area and delay in the proposed

technique. We can also study the effects on parameters like power delay product and energy

delay product so that circuits with low power and high performance can be designed.

The clock gating logic is optimized using our proposed approach in terms of switching

power and area. However, the gating logic significantly affects the delay of the circuit. Hence

performance parameter can also be included in the analysis.

Further, precise models based on deterministic clock gating can be explored which

will help in pipelining of circuits.
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