
OBJECT ORIENTED PROGRAMMING WITH JAVA
Input-Output Handling in Java – I

Debasis Samanta
Department of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Input-Output Streams in Java

Java treats flow of data as
stream.

Java streams are classified into
two basic types, namely, input
stream and output stream.

The java.io package contains a
large number of stream classes
to support the streams.

Java Program

Keyboard

Printer

Screen

Network

Disk

Memory

Mouse

Network

Memory

Disk

Input stream

Output stream

Stream in Java

Input and output streams

Source

SourceProgram

Program
Input Stream

Output Stream

Reads

(a) Reading data into a program

(b) Writing data to a destination

Java Classes for I-O Streams

Java provides java.io package which contains a large number of stream
classes to process all types of data

Byte stream classes
• Support for handling I/O operations on bytes

Character stream classes
• Supports for handling I/O operations on characters

I-O stream classes in Java

Taxonomy: Java stream classes
Java Stream

Class

Byte Stream
Class

Character
Stream Class

Input Stream
Class

Output
Stream Class

Reader
Class

Writer
Class

Memory File Pipe Memory File Pipe

Java Input Stream Classes

Taxonomy: Java stream classes
Java Stream

Class

Byte Stream
Class

Character
Stream Class

Input Stream
Class

Output
Stream Class

Reader
Class

Writer
Class

Memory File Pipe Memory File Pipe

Java input streams classes

Java input stream classes

InputStream classes is used to read 8-bit bytes and supports a number
of input-related methods

• Reading bytes
• Closing streams
• Marking positions in streams
• Skipping ahead in streams
• Finding the number of bytes in stream
• and many more…

Method Description
read() Read a byte from the input stream

read(byte b[]) Read an array of bytes into b

read(byte b[], int n, int m) Reads m bytes into b starting from nth byte

available() Gives number of bytes available in the input

skip(n) Skips over n bytes from the input stream

reset() Goes back to the beginning of the stream

close() Close the input steam

readShort() readDouble()

readInt() readLine()

readLong() readChar()

readFloat() readBoolean()

readUTF()

Example:

DataInputStream

Some input stream methods

• Reading bytes
• int read()
• int read (byte b[])
• int read (byte b[], int off, int len)

• Closing streams
• void close()

• Finding the number of bytes in a stream
• int available()

Example: Use of class InputStream
• Skipping ahead in a stream

long skip (long n)

• Marking positions in a stream
void mark (int limit)
void reset()
boolean markSupported()

Java Output Stream Classes

Taxonomy: Java stream classes
Java Stream

Class

Byte Stream
Class

Character
Stream Class

Input Stream
Class

Output
Stream Class

Reader
Class

Writer
Class

Memory File Pipe Memory File Pipe

OutputStream classes is used to write 8-bit bytes and supports a number
of input-related methods

• Writing bytes
• Closing streams
• Flushing streams
• etc.

Java output stream classes

Java output stream classes
Object

OutputStream

FileOutputStream ObjectOutputStream

PipedOutputStream ByteArrayOutputStreamFilterOutputStream

BufferedOutputStream PushbackOutputStream
DataOutputStream

DataOutput

Method Description
write () Write a byte from the input stream

write (byte b[]) Write all bytes in the array b to the

output steam

write (byte b[], int n, int m) Write m bytes from array b starting

from nth byte

close() Close the output stream

flush() Flushes the output stream

writeShort() writeDouble()

writeInt() writeLine()

writeLong() writeChar()

writeFloat() WriteBoolean()

writeUTF()

Some methods in output stream classes
Example:

DataOutputStream

• void write (byte b)
• void write (byte b[])
• void write (byte b[], int off, int len)

Writing bytes

• void close()

Closing a stream

• void flush()

Clearing a buffer

Use of class OutputStream

Character Stream Classes

Taxonomy: Java stream classes
Java Stream

Class

Byte Stream
Class

Character
Stream Class

Input Stream
Class

Output
Stream Class

Reader
Class

Writer
Class

Memory File Pipe Memory File Pipe

Character stream classes is used to read and write characters and
supports a number of input-output related methods
Reader stream classes

• To read characters from files.
• In many way, identical to InputStream classes.

Writer stream classes
• To write characters into files.
• In many way, identical to OutputStream classes.

Character stream classes

Reader stream classes
Object

Reader

BuffereedReader

CharArrayReader

InputStreamReader

File Reader

StringReader

PipeReader

FilterReader

PushbackReader

Writer stream classes
Object

Writer

BuffereedWriter

CharArrayWriter

FilterWriter

StringReader

PipeWriter

PrintWriter

OutputStreamWriter

FileWriter

Task Character Stream Class Byte Stream Class
Performing input operations
Buffering input
Keeping track of line numbers
Reading from an array
Translating byte stream

into a character stream
Reading from files
Filtering the input
Pushing back characters/bytes
Reading from a pipe
Reading from a string
Reading primitive types
Performing output operations
Buffering output
Writing to an array
Filtering the output
Translating character stream

into a byte stream
Writing to a file
Printing values and objects
Writing to a pipe
Writing to a string
Writing primitive types

Reader
BufferedReader
LineNumberReader
CharArrayReader
InputStreamReader

FileReader
FilterReader
PushbackReader
PipedReader
StringReader
(none)
Writer
BufferedWriter
CharArrayWriter
FilterWriter
OutputStreamWriter

FileWriter
PrintWriter
PipedWriter
StringWriter
(none)

InputStream
BufferedlnputStream
LineNumberlnputStream
ByteArrayInputStream
(none)

FileInputStream
FilterlnputStream
PushbackInputStream
PipedInputStream
StringBufferInputStream
DataInputStream
OutputStream
BufferedOutputStream
ByteArrayOutputStream
FilterOutputStream
(none)

FileOutputStream
PrintStream
PipedOutputStream
(none)
DataOutputStream

List of Important tasks and their Classes

OBJECT ORIENTED PROGRAMMING WITH JAVA
Input-Output Handling in Java – II

Debasis Samanta
Department of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Usage of I-O Stream Classes

import java.io.*;
class InterestCalculator
{

public static void main(String args[])
{

Float principalAmount = new Float(0);
Float rateOfInterest = new Float(0);
int numberOfYears = 0;

DataInputStream in = new
DataInputStream(System.in);
String tempString;
System.out.print("Enter Principal
Amount: ");
System.out.flush();
tempString = in.readLine();
principalAmount =
Float.valueOf(tempString);
System.out.print("Enter Rate of
Interest: ");

System.out.flush();
tempString = in.readLine();
rateOfInterest =
Float.valueOf(tempString);
System.out.print("Enter Number of Years:");
System.out.flush();
tempString = in.readLine();
numberOfYears =
Integer.parseInt(tempString);
// Input is over: calculate the interest

int interestTotal =
principalAmount*rateOfInterest*numberOfYears;
System.out.println("Total Interest = " +
interestTotal);

}
}

Get input using DataInputStream class
Calculator Program

Files Handling in Java

There are
four major
classes:

File

FileInputStream

FileOutputStream

RandomAccessFile

Java File I/O

Java provides java.io package which includes numerous class definitions
and methods to manipulate file and flow of data (called File I/O streams)

Opening a File object

• There are three constructors
• Way 1:
•File myFile;
•myFile = new File(fileName); // Constructor 1

• Way 2:
•File myFile;
•myFile = new File (pathName, filename); // Constructor 2

• Way 3:
•File myFile;
•File myFile = new File(myDir, fileName); // Constructor 3

Using class File

Dealing with file names
• String getName()

• String getPath()

• String getAbsolutePath()

• String getParent()

• boolean renameTo(File newFilename)

Using class File

Testing a file
• boolean exists()
• boolean canWrite()
• boolean canRead()
• boolean isFile()
• boolean isDirectory()
• boolean isAbsolute()

Using class File

Using class File
Getting file information

•long lastModified()
•long length()
•boolean delete()

Directory utilities

•boolean mkDir(File newDir)
•boolean mkDirs(File newDir)
•String [] list()

Checking Status of a File

public static void getPaths (File f) throws IOException {
System.out.println ("Name : " + f. getName());
System.out.println ("Path : " + f. getPath ());
System.out.println ("Parent : " + f.getParent ());

}
public static void getInfo (File f) throws IOException {
if (f.exists) {

System.out.print ("File exists ");
System.out.println (f.canRead() ? "and is readable" : "");
System.out.println (f.canWrite() ? "and is writable" : "");
System.out.println ("File is last modified : + f.lastModified());
System.out.println ("File is " + f.length() + "bytes");

}
else

System.err.println (" File does not exist.");
}

}

Using class File: An example
import java.io.File

class FileTest {
public static void main (String args []) throws IOException {

File fileToCheck;
if (args.length > 0) {

for (int i = 0; i <
args.length;i++) {

fileToCheck = new File(args[i
]);

getNames (fileToChecks);

getInfo(fileToCheck);
}

}
else

System.out.println (" Usage
: Java file test <filename (s) >);

}

import java.io.File
class FileTest {

public static void main (String args []) throws IOException {
File fileToCheck;
if (args.length > 0) {

for (int i = 0; i < args.length;i++) {
fileToCheck = new File(args[i]);
getPaths(fileToCheck);
getInfo(fileToCheck);

}
}
else

System.out.println (" Usage : Java file test <filename (s) >);

}

public static void getPaths (File f) throws IOException {
System.out.println ("Name : " + f.

getName());
System.out.println ("Path : " + f.

getPath ());
System.out.println ("Parent : " +

f.getParent ());
}
public static void getInfo (File f) throws IOException {

if (f.exists) {
System.out.print ("File exists ");
System.out.println (f.canRead() ?

"and is readable" : "");
System.out.println (f.canWrite()

? "and is writable" : "");
System.out.println ("File is last

modified : + f.lastModified());
System.out.println ("File is " +

f.length() + "bytes");
}
else

System.err.println (" File does not
exist.");

}
}

Reading a File

class InputStreamTest {
public static void main (String args []) {

int size;
// To open a file input stream.
FileInputStream fin;
fin = new FileInputStream (" C:\WINDOWS\SYSTEM\SYSTEM.INI");
size = fin.available();

// returns the number of bytes available
System.out.println("Total bytes ::" + size);
System.out.println (" First ¼ is displayed : Using read()");
for (int i = 0; i < size /4 ; i++) {

System.out.println ((char) fin.read());
}

System.out.println (" Remaining bytes :" + fin.available());
System.out.println ("Next ¼ is displayed : Using read(b[])");
byte b[] = new byte[size/4];
if (fin.read (b) != b.length)

System.err.println ("File reading error : ");
else {

String temp = new String (b, 0, 0, b.length);
// Convert the bytes into

string
System.out.println (temp) ;

// display text string.
System.out.println (" Still available:"+fin.available());
System.out.println (" skipping ¼ : Using skip ()");
fin.skip(size/4);
System.out.println (" File remaining for read ::" +fin.available());

}
fin.close (); // Close the input stream

}
}

Example: class FileInputStream
class InputStreamTest {

public static void main (String args []) {
int size;

// To open a file input stream.
FileInputStream fin;
fin = new FileInputStream (" C:\WINDOWS\SYSTEM\SYSTEM.INI");
size = fin.available();
// returns the number of bytes available
System.out.println("Total bytes ::" + size);
System.out.println (" First ¼ is displayed : Using read()");
for (int i = 0; i < size /4 ; i++) {

System.out.println ((char) fin.read());
}

System.out.println (" Remaining bytes :" + fin.available());
System.out.println ("Next ¼ is displayed : Using read(b[])");
byte b[] = new byte[size/4];
if (fin.read (b) != b.length)
System.err.println ("File reading error : ");

else {
String temp = new String (b, 0, 0, b.length);

// Convert the bytes into string
System.out.println (temp) ;

// display text string.
System.out.println (" Still available:"+fin.available());
System.out.println (" skipping ¼ : Using skip ()");
fin.skip(size/4);
System.out.println (" File remaining for read ::"
+fin.available());

}
fin.close (); // Close the input stream

}
}

Writing into a File

Example: Writing bytes into file
import java.io.*;
class WriteBytes {

public static void main(String args[]) {
cities[]={'D','E','L','H','I','\n','M','A','D','R','A','S','\n','L','O','N','D','O',
'N','\n'}; //Declare and initialize a byte array byte
FileOutputStream outfile=null; //create an output file stream
try {

outfile = new FileOutputStream("city.txt");
// Connect the outfile stream to "city.txt"
outfile.write(cities); //Write data to the stream
outfile.close();

}
catch(IOException ioe) {

System.out.println(ioe);
System.exit(-1);

}
}

}

Reading from a File

Example: Reading bytes from file
import java.io.*;

class ReadBytes {

public static void main (String args[]) {

FileInputStream infile = null; // Create an input file stream

int b;

try {

infile = new FileInputStream(args[O]);

// Connect infile stream to the required file

while((b = infile.read()) != -1) {

System.out.print((char)b); // Read and display data

}

infile.close();

}

catch(IOException ioe) {

System.out.println(ioe);

}

}

}

Copy a File into Other File
(CharacterStream Class)

Example: Reading/ writing characters
//Copying characters from one file into another
import java.io.*;
class CopyCharacters
{

public static void main (String args[])
{
//Declare and create input and output files
File inFile = new File("input.dat");
File outFile = new File("output.dat");
FileReader ins = null; // Creates file stream ins
FileWriter outs = null;
// Creates file stream outs
try {
ins = new FileReader (inFile) ;
// Opens inFile
outs = new FileWriter (outFile) ;
// Opens outFile
int ch; // Read and write till the end

while ((ch = ins.read()) != -1)
{

outs.write(ch) ;
}

}
catch(IOException e) {

System.out.println(e);
System.exit(-1);

}
finally //Close files
{

try {
ins.close();
outs.close();

}
catch (IOException e) { }
}

} // main
} // class

Copying a File into Other File
(ByteStream Class)

catch(FileNotFoundException e) {
System.out.println("File not
found");

}
catch(IOException e) {

System.out.println(e.
getMessage());

}
finally //Close files
{

try {
infile.close();
outfile.close();

}
catch(IOException e){}

}
}

}

import java.io.*;

class CopyBytes

{

public static void main (String args[])

{

//Declare input and output file

streams

FilelnputStream infile = null;

//Input stream \

FileOutputStream outfile = null;

//Output stream

//Declare a variable to hold a

byte

byte byteRead;

import java.io.*;

class CopyBytes

{

public static void main (String args[])

{

//Declare input and output file

streams

FilelnputStream infile = null;

//Input stream \

FileOutputStream outfile = null;

//Output stream

//Declare a variable to hold a

byte

byte byteRead;

try {
//Connect infile to in.dat
infile = new
FilelnputStream("in.dat");

//Connect outfile to out.dat
outfile = new
FileOutputStream("out.dat");
//Reading bytes from in.dat
and writing to out.dat
do {

byteRead = (byte) infile.read()
outfile.write(byteRea d);
}
while(byteRead != - 1);

}

catch(FileNotFoundException e) {
System.out.println("File not
found");

}
catch(IOException e) {

System.out.println(e.
getMessage());

}
finally //Close files
{

try {
infile.close();
outfile.close();

}
catch(IOException e){}

}
}

}

import java.io.*;
class CopyBytes
{
public static void main (String args[])
{
//Declare input and output file streams
FilelnputStream infile = null;
//Input stream \
FileOutputStream outfile = null;
//Output stream
//Declare a variable to hold a byte
byte byteRead;

try {
//Connect infile to in.dat
infile = new
FilelnputStream("in.dat");
//Connect outfile to out.dat
outfile = new
FileOutputStream("out.dat");
//Reading bytes from in.dat
and writing to out.dat
do {
byteRead = (byte) infile.read()
outfile.write(byteRea d);
}
while(byteRead != - 1);

}

Example: Copying bytes from one file to another

catch(FileNotFoundException e) {
System.out.println("File not
found");

}
catch(IOException e) {

System.out.println(e.
getMessage());

}
finally //Close files
{

try {
infile.close();
outfile.close();

}
catch(IOException e){}

}
}

}

Storing Data into a File

Example: Storing and reading data

import java.io.*;
class ReadWritePrimitive
{

public static void main (String args[]) throws IOException

{
File primitive = new File("prim.dat");
FileOutputStream fos = new FileOutputStream(primitive);

DataOutputStream dos = new DataOutputStream(fos);

//Write primitive data to the "prim.dat"file
dos.WriteInt(1999);
dos.WriteDouble(375.85);
dos.WriteBoolean(false);
dos.WriteChar('X');

dos.close();
fos.close();
//Read data from the "prim.dat" file
FileInputStream fis = new FileInputStream(primitive);
DataInputStream dis = new DataInputStream(fis);
System.out.println(dis.ReadInt());
System.out.println(dis.ReadDouble());
System.out.println(dis.ReadBoolean());
System.out.println(dis.ReadChar());

dis.close();
fis.close();

}
}

import java.io.*;

class ReadWriteIntegers

{

public static void main (String

args[])

{

DatalnputStream dis = null;

//Input stream

DataOutputStream dos = null;

//Output stream

File intFile = new

File("rand.dat"); //Construct a file

//Writing integers to rand.dat file

try

{

//Create output stream for intFile file dos = new

dos = new DataOutputStream(new FileOutputStream(intFile));
for(int i=0;i<20;i++)

dos.writelnt ((int) (Math. random () *100)); }
catch(IOException ioe) {
System.out.println(ioe.getMessage());

}
finally {

try {
dos.close()
}

catch(IOException ioe) { }
}

//Reading integers from rand.dat file

import java.io.*;

class ReadWriteIntegers

{

public static void main (String

args[])

{

DatalnputStream dis = null;

//Input stream

DataOutputStream dos = null;

//Output stream

File intFile = new

File("rand.dat"); //Construct a file

//Writing integers to rand.dat file

try

{

//Create output stream for intFile file dos = new

try {
dis = new DatalnputStream(new
FilelnputStream(intFile)); //Create input stream for intFile file

for(int i=0;i<20;i++) {
int n = dis.readlnt();
System.out.print(n + " "); } }

catch(IOException ioe) {
System.out.println(ioe.
getMessage());
}
finally {

try {
dis.close();

} catch(IOException ioe)
{ }

}
}

}

Example: Storing and reading data in same file
try {

dis = new DatalnputStream(new
FilelnputStream(intFile)); //Create input stream for intFile file

for(int i=0;i<20;i++) {
int n = dis.readlnt();
System.out.print(n + " "); } }

catch(IOException ioe) {
System.out.println(ioe.
getMessage());
}
finally {

try {
dis.close();

} catch(IOException ioe)
{ }

}
}

}

dos = new DataOutputStream(new FileOutputStream(intFile));
for(int i=0;i<20;i++)

dos.writelnt ((int) (Math. random () *100)); }
catch(IOException ioe) {
System.out.println(ioe.getMessage());

}
finally {

try {
dos.close()
}

catch(IOException ioe) { }
}

//Reading integers from rand.dat file DataOutputStream(new FileOutputStream(intFile));
for(int i=0;i<20;i++)

dos.writelnt ((int) (Math. random () *100)); }
catch(IOException ioe) {

System.out.println(ioe.getMessage());
}
finally {

try {
dos.close()

}
catch(IOException ioe) { }

}
//Reading integers from rand.dat file

import java.io.*;
class ReadWriteIntegers
{

public static void main (String
args[])

{
DatalnputStream dis = null;

//Input stream
DataOutputStream dos = null;

//Output stream
File intFile = new

File("rand.dat"); //Construct a file
//Writing integers to rand.dat file
try

{
//Create output stream for intFile file

try {
dis = new DatalnputStream(new
FilelnputStream(intFile)); //Create input stream for intFile file

for(int i=0;i<20;i++) {
int n = dis.readlnt();
System.out.print(n + " "); } }

catch(IOException ioe) {
System.out.println(ioe.
getMessage());

}
finally {

try {
dis.close();

}
catch(IOException ioe){ }

}
}

}

Merging two Files into a File

Example: Concatenation and buffering
import java.io.*;
class SequenceBuffer
{

public static void main (String args[]) throws
IOException
{
//Declare file streams
FilelnputStream file1 = null;
FilelnputStream file2 = null;

SequencelnputStream file3 = null;
//Declare file3 to store combined files

file1 = new FilelnputStream("text1.dat");
//Open the files to be concatenated
file2 = new FilelnputStream("text2.dat");
//Open the files to be concatenated
file3 = new SequencelnputStream(filel,file2) ;
//Concatenate filel and file2

//Create buffered input and output streams
BufferedlnputStream inBuffer = new
BufferedlnputStream(file3);
BufferedOutputStream outBuffer = new
BufferedOutputStream(System.out);

//Read and wri te till the end of buffers
int ch;
while((ch = inBuffer.read()) != -1)

outBuffer.write((char)ch);
inBuffer.close();
outBuffer.close();
file1.close();
file2.close();

}
}

OBJECT ORIENTED PROGRAMMING WITH JAVA
Input-Output Handling in Java - III

Debasis Samanta
Department of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Random Access Files in Java

• As the name implies the class RandomAccessFile allows us to handle a
file randomly in contrast to sequentially in InputStream or
OutputStream classes

• It allows to move file pointer randomly

• Moreover, it allows read or write or read-write simultaneously.

Use of class RandomAccessFile

Class: RandomAccessFile

DataInput DataOutput

RandomAccessFile

Object

Example: RandomAccessFile
import java.io.*;
class RandomIO
{

public static void main (String args[))
{

RandomAccessFile file = null;
try {

file = new
RandomAccessFile("rand.dat","rw");
// Writing to the file
file.writeChar('X');
file.writelnt(555);
file.writeDouble(3.1412);
file.seek (0);
// Go to the beginning
// Reading from the file
System.out.println(file.readChar());

System.out.println(file.readlnt());
System.out.println(file.readDouble());
file.seek(2); // Go to the second item
System.out.println(file.readlnt());
// Go to the end and append false to
the file
file.seek(file.length());
file.writeBoolean(false);
file. seek (4) ;
System.out.println(file.readBoolean());

file.close();
}
catch(IOException e)
{

System.out.println(e);
}

}
}

Example: Appending to a RAF
import java.io.*;
class RandomAccess
{

static public void main(String args[])
{

RandomAccessFile rFile;
try
{

rFile = new RandomAccessFile("city.txt","rw");

rFile.seek(rFile.lenght()); // Go to the end
rFile.writeByte("MUMBAI\n"); //Append MUMBAI
rFile.close();

}
catch(IOException ioe)
{

System.out.println(ioe);
}

}
}

Interactive Input-Output

import java. util. *; // For using StringTokenizer class
import java.io.*;
class Inventory {

static DataInputStream din = new DataInputStream(System.in);
static StringTokenizer st;
public static void main (String args[J) throws
IOException
{
DataOutputStream dos = new DataOutputStream(new
FileOutputStream("invent.dat"));
// Reading from console
System.out.println("Enter code number");
st = new StringTokenizer(din.readLine());
int code = Integer.parseInt(st.nextToken());
System.out.println("Enter number of items");
st = new StringTokenizer(din.readLine());
int items = Integer.parselnt(st.nextToken());
System.out.println("Enter cost");
st = new StringTokenizer(din.readLine());
double cost = new
Double(st.nextToken()).doubleValue{};

Interactive input and output
import java. util. *; // For using StringTokenizer class
import java.io.*;
class Inventory {

static DataInputStream din = new DataInputStream(System.in);
static StringTokenizer st;
public static void main (String args[J) throws
IOException
{
DataOutputStream dos = new DataOutputStream(new
FileOutputStream("invent.dat"));
// Reading from console
System.out.println("Enter code number");
st = new StringTokenizer(din.readLine());
int code = Integer.parseInt(st.nextToken());
System.out.println("Enter number of items");
st = new StringTokenizer(din.readLine());
int items = Integer.parselnt(st.nextToken());
System.out.println("Enter cost");
st = new StringTokenizer(din.readLine());
double cost = new Double(st.nextToken()).doubleValue{};

// Writing to the file "invent.dat"
dos.writeInt(code);
dos.writeInt(items);
dos.writeDouble(cost);
dos.close();
// Processing data from the file
DataInputStream dis=new DataInputStream(new
FileInputStream("invent.dat"));
int codeNumber = dis.readInt();
int totalItems = dis.readInt();
double itemCost = dis.readDouble();
double totalCost = total Items * itemCost;
dis.close();
// Writing to console
System.out.println();
System.out.println("Code Number : " + codeNumber);
System.out.println("Item Cost : " + itemCost);
System.out.println("Total Items : " + totalItems);
System.out.println("Total Cost : " + totalCost);
}

}

// Writing to the file "invent.dat"
dos.writeInt(code);
dos.writeInt(items);
dos.writeDouble(cost);
dos.close();
// Processing data from the file
DataInputStream dis=new DataInputStream(new
FileInputStream("invent.dat"));
int codeNumber = dis.readInt();
int totalItems = dis.readInt();
double itemCost = dis.readDouble();
double totalCost = total Items * itemCost;
dis.close();
// Writing to console
System.out.println();
System.out.println("Code Number : " + codeNumber);
System.out.println("Item Cost : " + itemCost);
System.out.println("Total Items : " + totalItems);
System.out.println("Total Cost : " + totalCost);
}

}

Graphical Input-Output

Graphical input and output

Graphical input and output
import java.io.*;
import java.awt.*;
class StudentFile extends Frame
{

// Defining window components
TextField number, name, marks;
Button enter, done;
Label numLabel, nameLabel, markLabel;
DataOutputStream dos;

// Initialize the Frame
public StudentFile()
{

super("Create Student File");
}
// Setup the window
public void setup()
{

resize(400, 200);
setLayout(new GridLayout(4,2));

// Create the components of the Frame

number = new TextField(25);
number = new TextField(25);
numLabel = new Label("Roll Number");
name = new TextField(25);
nameLabel = new Label ("Student Name");
marks = new TextField(25);
markLabel = new Label("Marks");
enter = new Button("ENTER");
done = new Button("DONE");
// Add the components to the Frame
add(numLabel);
add(number);
add(nameLabel);
add(name);
add(markLabel);
add(marks);
add(enter);
add(done);
// Show the Frame
show();

Graphical input and output
// Open the file
try {
dos new DataOutputStream(new
FileOutputStream("student.dat"));
}
catch(IOException e) {
System.err.println(e.toString());
System.exit(1);
}

}
// Write to the file

public void addRecord() {
int num;
Double d;
num = (new
Integer(number.getText())).intValue();
try {
dos.writelnt(num);
dos.writeUTF(name.getText());
d = new Double(marks.getText());
dos.writeDouble(d.doubleValue());
}

catch(IOException e) { }
// Clear the text fields
number.setText(" ");
name.setText(" ");
marks.setText(" ");
}

// Adding the record and clearing the
TextFields

public void cleanup()
{
if(!number.getText(). equals(" ")) {

addRecord();
}

try {
dos.flush();
dos.close();

}
catch(IOException e) { }

}

Graphical input and output
// Processing the event
public boolean action(Event
event,Object o)
{

if(event.target instanceof
Button)

if(event.arg.equals("ENTER")) {
addRecord();
return true;

}
return super.action(event, o);

}
public boolean handleEvent(Event
event)

{

if(event.target instanceof Button)
if(event.arg.equals("DONE")) {

cleanup();
System.exit(0);
return true;

}
return super.handleEvent(event);
}
// Execute the program
public static void main (String args[])
{
StudentFile student = new StudentFile();
student.setup();
}

}

Another graphical Input/Output
import java.io.*;
import java.awt.*;
class ReadStudentFile extends Frame
{

// Defining window components
TextField number, name, marks;
Button next, done;
Label numLabel, nameLabel, markLabel;
DataInputStream dis;
boolean moreRecords = true;

// Initialize the Frame
public ReadStudentFile()
{
// Setup the window
public void setup()
{

resize(400,200);
setLayout(new

GridLayout(4,2));
// Create the components of the Frame

number = new TextField(25);
numLabel = new Label ("Roll Number");
name = new TextField(25);
nameLabel = new Label ("Student Name");
marks = new TextField(25);
markLabel = new Label("Marks");
next new Button("NEXT");
done = new Button("DONE");
// Add the components to the Frame
add(numLabel);
add(number);
add(nameLabel);
add(name);
add(markLabel);
add(marks);
add(next);
add(done);
// Show the Frame
show();
// Open the file

Another graphical Input/Output
try {

dis new DatalnputStream(new
FilelnputStream("student.dat")

}
catch(IOException e)
{

System.err.println(e.toString());
System.exit(1);

}
}
// Read from the file

public void readRecord()
{
int n;
String s;
double d;

try {
n = dis.readlnt();

s = dis.readUTF();
d dis.readDouble();
number.setText(String.valueOf(n));
name.setText(String.valueOf(s));
marks.setText(String.valueOf(d));
}
catch(IOException ioe) {
System.out.println("IO ErrorN);
System.exit(l);
}

}
// Closing the input file
public void cleanup()
{

try
{

dis.close();
}
catch(IOException e) { }

}

Another graphical Input/Output
// Processing the event
public boolean action(Event event,Object o)
{

if(event.target instanceof Button)
if(event.arg.equals("NEXT"))

readRecord();
return true;

}
public boolean handleEvent(Event event)
{

if(event.target instanceof Button)
if (event.arg.equals ("DONE") || moreRecords ==

false){
cleanup();
System.exit(0);
return true;
}

return super.handleEvent(event);
}

// Execute the program
public static void main (String
args[])

{
ReadStudentFile student =
new ReadStudentFile();
student.setup() ;
}

}

Question to think…

• How Java helps programmers to develop
GUIs?

• How one can develop programs like Google?

	1
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

	2
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

	3
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

