OBJECT ORIENTED PROGRAMMING WITH JAVA
Input-Output Handling in Java -1

Debasis Samanta
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Input-Output Streams in Java

%Siream in Java

Java treats flow of data as
stream.

Java streams are classified into
two basic types, namely, input
stream and output stream.

The java.io package contains a
large number of stream classes
to support the streams.

Keyboard »_
s Input stream

Java Program

@ Input and output sireams

Input Stream

Reads
Source — > Program
(a) Reading data into a program
Output Stream
Program o i—— Source

(b) Writing data to a destination

Java Classes for |-O Streams

@ 1-0 siream classes in Java

Java provides java.io package which contains a large number of stream
classes to process all types of data

»Byte stream classes
» Support for handling I/O operations on bytes

» Character stream classes
» Supports for handling I/O operations on characters

@ Taxonomy: Java siream classes

Java Stream
Class

Byte Stream
Class

Character
Stream Class

Input Stream Output
Class Stream Class

Memory Memory

Java Input Stream Classes

@ Taxonomy: Java siream classes

Java Stream
Class

Byte Stream
Class

Character
Stream Class

Input Stream Output
Class Stream Class

Memory Memory

@ Java input sireams classes

— FilelnputStream

— LineNumberInputStrean ‘
- PipedInputStream

— DataInputStream ‘
= FilterInputStrean —

— BufferedInputStream ‘

I InputStream ByteArrayInputStream

PushbackInputStream ‘
= SequencelnputStream

— CheckedInputStream ‘
- StringBufferlnputStream

— CipherInputStream ‘
— ObjectInputStream

— MgestInputStream ‘

- InflaterInputStream ‘

— ProgressMonitorInputStrean

@ Java input siream classes

classes 1s used to read 8-bit bytes and supports a number

of input-related methods

» Reading bytes

* Closing streams

» Marking positions in streams

« Skipping ahead in streams

» Finding the number of bytes in stream
* and many more...

@ some input siream methods

Method Description

read()

Read a byte from the input stream

read (byte b[1)

Read an array of bytesinto b

read(byte b[], int n, int m)

Reads m bytes into b starting from nth byte

Example:

DataInputStream

readShort() readDouble()
readint() readLine()
readLong() readChar()

available()

Gives number of bytes available in the input

readFloat()

readBoolean()

readUTF()

skip (n) Skips over n bytes from the input stream
reset() Goes back to the beginning of the stream
close() Close the input steam

@ Example: Use of class InputStream

* Reading bytes
* int read()

* int read (byte b[])
* int read (byte b[], int off, int len)

* Closing streams
* void close()

* Finding the number of bytes in a stream
* int availlable ()

Skipping ahead in a stream
long skip (long n)

Marking positions in a stream
volid mark (int l1imit)
void reset ()
boolean markSupported ()

Java Output Stream Classes

@ Taxonomy: Java siream classes

Java Stream
Class

Byte Stream
Class

Character
Stream Class

Input Stream Output
Class Stream Class

Memory Memory

© Java output stream classes

classes 1s used to write 8-bit bytes and supports a number
of input-related methods

Writing bytes
Closing streams
Flushing streams
etc.

@ Java output stream classes

@ some methods in output siream classes

Method Description

write ()

Write a byte from the input stream

write (byte b[1)

Write all bytes in the array b to the

output steam

write (byte b[|, int n, int m)

Write m bytes from array b starting

Example:

DataOutputStream

writeShort() writeDouble()
writeInt() writeLine()
writeLong() writeChar ()
writeFloat() WriteBoolean()

writeUTF()

from nt" byte
close() Close the output stream
flush() Flushes the output stream

© use of class OutputSiream

Writing bytes

e void write (byte b)
e void write (byte b[])
e void write (byte b[], int off, int len)

Closing a stream

e void close()

Clearing a buffer

e void flush()

Character Stream Classes

@ Taxonomy: Java siream classes

Java Stream
Class

Byte Stream
Class

Character
Stream Class

Input Stream Output
Class Stream Class

Memory Memory

© Character siream classes

Character stream classes 1s used to read and write characters and
supports a number of input-output related methods

»Reader stream classes
* To read characters from files.
* In many way, identical to InputStream classes.

» Writer stream classes
* To write characters into files.
* In many way, identical to OutputStream classes.

@ Reader siream classes

(Reader)

BuffereedReader StringReader
CharArrayReader /) PipeReader

InputStreamReader FilterReader

(File Reader) C PushbackReader)

@ Writer stream classes

(Writer)

BuffereedWriter
CharArrayWriter)

StringReader
PipeWriter

(OutputStreamWriter)

FileWriter

© List of Important tasks and their Classes

Task

Performing input operations
Buffering input
Keeping track of line numbers
Reading from an array
Translating byte stream
into a character stream
Reading from files
Filtering the input
Pushing back characters/bytes
Reading from a pipe
Reading from a string
Reading primitive types
Performing output operations
Buffering output
Writing to an array
Filtering the output
Translating character stream
into a byte stream
Writing to a file
Printing values and objects
Writing to a pipe
Writing to a string
Writing primitive types

Character Stream Class
Reader

BufferedReader

LineNumberReader
CharArrayReader
InputStreamReader

FileReader
FilterReader
PushbackReader
PipedReader
StringReader
(none)

Writer
BufferedWriter
CharArrayWriter
FilterWriter
OutputStreamWriter

FileWriter
PrintWriter
PipedWriter
StringWriter
(none)

Byte Stream Class

InputStream
BufferedinputStream
LineNumberlnputStream
ByteArraylnputStream
(none)

FilelnputStream
FilterInputStream
PushbackInputStream
PipedInputStream
StringBufferInputStream
DatalnputStream
OutputStream
BufferedOutputStream
ByteArrayOutputStream
FilterOutputStream
(none)

FileOutputStream
PrintStream
PipedOutputStream
(none)
DataOutputStream

OBJECT ORIENTED PROGRAMMING WITH JAVA
Input-Output Handling in Java - I

Debasis Samanta
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Usage of [-O Stream Classes

OGet input using DatalnputStream class

Calculartor Frogram

import java.io.¥*;
class InterestCalculator

{

public static void main(String args[])

{

Float principalBAmount = new Float (0);
Float rateOfInterest = new Float (0);
int numberOfYears = 0;

DataInputStream in = new
DataInputStream(System.in) ;
String tempString;
System.out.print ("Enter Principal
Amount: ") ;

System.out.flush() ;

tempString = in.readLine() ;

System.out.flush() ;

tempString = in.readLine() ;

rateOfInterest =

Float.valueOf (tempString) ;

System.out.print ("Enter Number of Years:");
System.out.flush() ;

tempString = in.readLine();

numberOfYears =

Integer.parselnt (tempString) ;

// Input is over: calculate the interest
int interestTotal =
principalAmount*rateOfInterest*numberOfYears;
System.out.println("Total Interest = " +
interestTotal) ;

principalAmount =

Float.valueOf (tempString) ;
System.out.print ("Enter Rate of
Interest: ");

Files Handling in Java

@ JavaFile 1/0

Java provides java.io package which includes numerous class definitions
and methods to manipulate file and flow of data (called File I/O streams)

Fil
There are -

four major
classes:

FileInputStream
FileOutputStream

RandomAccessFile

© Using class File

WHAT Opening a File object
“ ¢ There are three constructors

e Way 1:

*File myFile;

emyFile = new File (fileName) ; // Constructor 1
e Way 2:

*File myFile;

emyFile = new File (pathName, filename); //Constructor 2
e Way 3:

*File myFile;

eFile myFile = new File (myDir, fileName); //Constructor3

© Using class File

WHATf

* String getName()

* String getPath()

* String getAbsolutePath()
« String getParent()

* boolean renameTo(File newFilename)

9Using class File

>

* boolean exists()

* boolean canWrite()

* boolean canRead()

* boolean isFile()

* boolean isDirectory()
* boolean isAbsolute()

L@ Using class File

WHAT ‘ Getting file information

‘ * long lastModified()
* long length ()
e boolean delete ()

- Directory utilities

e poolean mkDir (File newDir)
e boolean mkDirs (File newDir)
e String [] list()

Checking Status of a File

@Using class File: An example

[public static void getPaths (File f) throws IOException {

~ PR ~ o RN N

void main (string args [1)
File

import java.io.File
class FileTest { 3
public static void main (String args []) throws IOException {
File fileToCheck; ion {
if (args.length > 0) {
for (int 1 = 0; i1 < args.length;i++) {
fileToCheck = new File(args[1 1):; able" : "");
getPaths (fileToCheck) ; public static veid geteaths (File) Shrows IoBsception (_

System.out.println ("Name S

getInfo(fileToCheck) ; oreEney) e e e (I B 06

getPath ());
System.out.println ("Parent : " +
} f.getParent ());
}

public static void getInfo (File f) throws IOException {
} if (f.exists) {
System.out.print ("File e

e exists ");
else System.out.println (f.canRead() ?
"and is readable” : "");

System.out.println (f.canWrite()

System.out.println (" Usage : Java file test <filename (s) Ty i A (PR e Tt

modified : + f£.lastModified());

System.out.println ("File is " +
f.length() + "bytes");
}

else
} System.err.println (" File does not

Reading a File

g Example: class FilelnputStream

class InputStreamTest System.out.println (" Remaining bytes :" 4+ fin.available());
public static void 1 System.out.println ("Next Y% is displayed : Using read(b[]1)"):;
int size: byte b[] = new bytel[size/4];
// To open a file if (fin.read (b? 1= b.leggth)
) : System.err.println ("File reading error : ");
FileInputStream fi1 else {
fin = new FileInpul String temp = new String (b, 0, 0, b.length);
size = fin.availab. // Convert the bytes into string
// returns the nur System.out.println (temp) ;
System.out.println // display text string.
System.out.println System.out.println (" Still available:"+fin.available());
for (int i = 0; i 1 System.out.println (" skipping *4 : Using skip ()")
fin.skip(size/4);
System, System.out.println (" File remaining for read ::"
} | +fin.available())
. }

fin.close (); // Close the input stream

Writing into a File

@ Example: Writing bytes into file

import java.io.*;
class WriteBytes {
public static void main(String args[]) {
cities[]={'D','E','L','H','I','\n','M','A",'D','R",'A','S",'"\n','L','0",'N','D",'0",
'N'",'\n'}; //Declare and initialize a byte array byte
FileOutputStream outfile=null; //create an output file stream

try |
outfile = new FileOutputStream("city.txt");
// Connect the outfile stream to "city.txt"
outfile.write(cities); //Write data to the stream
outfile.close();

}

catch (IOException ioe) {
System.out.println(ioe) ;
System.exit(-1);

Reading from a File

@ Example: Reading

bytes from file

import java.io.*;

class ReadBytes {

public static void main (String args[])

FileInputStream infile

int b;
try |
infile =
// Connect
while((b = infile
System.out
}

infile.close();

}
catch (IOException ioe)

System.out

{
null;

// Create an input file stream

new FileInputStream(args[O]);

infile stream to the required file
.read()) '= -1) {
.print ((char)b); // Read and display data

{

.println(ioe) ;

Copy a File into Other File

(CharacterStream Class)

g Example: Reading/ writing characters

//Copying characters from one file into another
import java.io.*;
class CopyCharacters
{
public static void main (String args[])
{
//Declare and create input and output files
File inFile = new File("input.dat");
File outFile = new File("output.dat");
FileReader ins = null; // Creates file stream ins
FileWriter outs = null;
// Creates file stream outs
try {
ins = new FileReader (inFile) ;
// Opens inFile
outs = new FileWriter (outFile) ;
// Opens outFile
int ch; // Read and write till the end

while ((ch = ins.read()) '= -1)
{

outs.write(ch) ;

}

catch (IOException e) {
System.out.println(e) ;
System.exit (-1);

}
finally //Close files
{
try {
ins.close();
outs.close() ;
}
catch (IOException e) { }
}
} // main
} // class

Copying a File into Other File
(ByteStream Class)

MExample: Copying bytes from one file to another

import java.io.*;
try {)
class CopyBytes //cConnect infile to in.dat catch (FileNotFoundException e) {
f infile = new System.out.println("File not
R FilelnputStream("in.dat"); found") ;
public static void main (String args[]) (et s o Gt
{ outfile = new catch (TOException e) {
. FileOutputStream("out.dat") ; System.out.println(e.
Decl utput file p
//beclare input and outpu © //Reading bytes from in.dat getMessage()) ;
streams N - and writina to out.dat 1
lose files

FilelnputStream infile = null;

et e catch(FileNotFoundException e) {
FileOutputStream outfile = null;

//0utput. stxean System.out.println("File not
//Declare a variable to hold a

- found") ;

byte byteRead; }

catch (IOException e) {
System.out.println(e.
getMessage ()) ;
}
finally //Close files
{
try {
infile.close();
outfile.close()

catch (IOException e){}

Storing Data into a File

@ Example: Storing and reading data

import java.io.*;

class ReadWritePrimitive
dos.close() ;
{ fos.close();
public static void main (String args[]) throws IOException //Read data from the "prim.dat" file
{ FileInputStream fis = new FilelInputStream(primitive);

DataInputStream dis = new DatalnputStream(fis) ;
System.out.println(dis.ReadInt()) ;
System.out.println(dis.ReadDouble()) ;
DataOutputStream dos = new DataOutputStream(fos); . .

utpu t S a utpu * () System.out.println(dis.ReadBoolean()) ;

System.out.println(dis.ReadChar()) ;

File primitive = new File("prim.dat");
FileOutputStream fos = new FileOutputStream(primitive) ;

//Write primitive data to the "prim.dat"file

dOS.WriteInt(l999); diS.Close();
dos.WriteDouble (375.85); fis.close();
dos.WriteBoolean (false) ; }

dos.WriteChar('X");

e Example: Storing and reading data in same file

import java.io.*;
class ReadWritelntegers

{

public static void main (String
args[])

{
Datalnpy

>
DataOut]
File inf
File("ral

//Writing integ}

//Create outputl

* |

dos.writelnt ((int)

catch (IOException ioe) {

System.out.println(ice.getMessage())

for(int 1=0;i<20;i++)
}
! f£inally {

try {
dis = new DatalnputStream(new

FilelnputStream(intFile)) ;
for(int i=0;i<20;i++) {
int n = dis.readlnt():;
System.out.print(n + " "); } }
catch (IOException ioce) {
System.out.println(ioe.
getMessage()) ;

//Create input stream for

}
finally {
try {
dis.close();

}
catch (IOException ioce){ }

dos = new DataOutputStream(new FileOutputStream(intFile)); try (
dis = new DatalnputStream(new

(Math. random () *100)); FilelnputStream(intFile));

for (int i=0;i<20;i++) {
int n = dis.readlnt();
System.out.print(n + " ");

catch (TI0Excention ioe) {

intFile file

//Create input stream for intFile file

catch (IOException ioe)

Merging two Files into a File

g Example: Concatenation and buffering

{

import java.io.*;

class SequenceBuffer

public static void main (String args[]) throws

IOException

{

//Declare file streams
FilelnputStream filel = null;
FilelnputStream file2 = null;

SequencelnputStream file3 = null;

//Declare file3 to store combined files
filel = new FilelnputStream("textl.dat");
//Open the files to be concatenated
file2 = new FilelnputStream("text2.dat");
//Open the files to be concatenated
file3 = new SequencelnputStream(filel,file2)
//Concatenate filel and file2

//Create buffered input and output streams
BufferedlnputStream inBuffer = new
BufferedlnputStream(file3) ;
BufferedOutputStream outBuffer = new
BufferedOutputStream(System.out) ;

//Read and wri te till the end of buffers
int ch;
while((ch = inBuffer.read()) '= -1)

outBuffer.write((char)ch);
inBuffer.close() ;
outBuffer.close();
filel.close() ;
file2.close();

Thank You

OBJECT ORIENTED PROGRAMMING WITH JAVA
Input-Output Handling in Java - lli

Debasis Samanta
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Random Access Files in Java

O use of class RandomAccessFile

* As the name implies the class RandomAccessFile allows us to handle a
file randomly 1n contrast to sequentially 1n InputStream or
OutputStream classes

* It allows to move file pointer randomly

* Moreover, it allows read or write or read-write simultaneously.

g Class: RandomAccessFile

Object

Datalnput DataOutput

N

RandomAccessFile

Example: RandomAccessFile

import java.io.*; ! System.out.println(file.readlnt ());
class RandomIO System.out.println(file.readDouble()) ;
{ file.seek(2); // Go to the second item
public static void main (String args[)) System.out.println(file.readlnt());
{ // Go to the end and append false to

the file
file.seek(file.length())
file.writeBoolean (false) ;
file. seek (4) ;
System.out.println(file.readBoolean()) ;
file.close();
}
catch (IOException e)
{

RandomAccessFile file = null;
try {
file = new
RandomAccessFile("rand.dat","rw") ;
// Writing to the file
file.writeChar('xX");
file.writelnt (555);
file.writeDouble (3.1412);
file.seek (0);
// Go to the beginning System.out.println(e);
// Reading from the file }
System.out.println(file.readChar()) }

g Example: Appending to a RAF

import java.io.*;
class RandomAccess
{
static public void main(String args[])
{
RandomAccessFile rFile;
try
{
rFile = new RandomAccessFile("city.txt","rw'");
rFile.seek(rFile.lenght()); // Go to the end
rFile.writeByte ("MUMBAI\n"); //Append MUMBAI
rFile.close();
}
catch (IOException ioe)
{
System.out.println (ioe) ;
}
}
}

Interactive Input-Output

g Interactive input and output

// Writing to the file "invent.dat"
dos.writelnt (code) ;
dos.writeInt (items) ;
dos.writeDouble (cost) ;
dos.close() ;
// Processing data from the file
DatalInputStream dis=new DatalnputStream(new
FileInputStream("invent.dat"));
int codeNumber = dis.readInt();
int totalltems = dis.readInt();
double itemCost = dis.readDouble() ;

// Reading fr?m confole double totalCost = total Items * itemCost;
System.out.println("Enter ¢ dis.close() ;

st = new StringTokenizer (di // Writing to console [/ e e e e
int code = In?eger.parseInt System.out.println() ;
System.out.println("Enter 1

i en 4 System.out.println ("Code
S = nan gErshugiolkenlze (© | System.out.println("Item

ini dibens = Igteger;parselr System.out.println("Total a i :a o
System.out.prlntln(Enter ? System.out.println("Total
st = new StringTokenizer (di }

import java. util. *; // For usi
import java.io.¥*;
class Inventory {
static DatalInputStream din
static StringTokenizer st;
public static void main (St
IOException
{
DataOutputStream dos = new
FileOutputStream("invent.dsa

ream (new

" + codeNumber) ;
: "+ itemCost);

"+ totalltems);
" + totalCost);

double cost = new Doubl })

Graphical Input-Output

%Graphical input and output

B4 Create Student File

Roll Number

Student Name

Graphical input and output

import java.io.¥*;

import java.awt.¥*; number = new TextField(25);
class StudentFile extends Frame number = new TextField(”5);
{ numLabel = new Label ("Roll Number'™) ;
// Defining window components name = new TextField(25);
TextField number, name, marks; namelabel = new Label ("Student Name") ;
Button enter, done; marks = new TextField(25);
Label numLabel, nameLabel, markLabel; markLabel = new Label ("Marks'");
DataOutputStream dos; enter = new Button ("ENTER") ;
done = new Button ("DONE") ;
// Initialize the Frame // Add the components to the Frame
public StudentFile() add (numLabel) ;
{ add (number) ;
super ("Create Student File"); add (namelLabel) ;
} add (name) ;
// Setup the window add (markLabel) ;
public void setup() add (marks) ;
{ add (enter) ;
resize (400, 200); add (done) ;
setLayout (new GridLayout(4,2)); // Show the Frame

// Create the components of the Frame show () ;

¢ Graphical input and output

// Open the file catch (IOException e) { }
try { // Clear the text fields
dos new DataOutputStream(new number.setText (" ") ;
FileOutputStream("student.dat")) ; name.setText (" ") ;
} marks.setText (" ") ;
catch (IOException e) { }
System.err.println(e.toString()); // Adding the record and clearing the
System.exit (1) ; TextFields
} public void cleanup ()
} {
// Write to the file if ('number.getText (). equals (" ")) {
public void addRecord() { addRecord () ;
int num; }
Double d; try {
pum = (new dos. flush() ;
Integer (number.getText ())) .intValue() ; dos.close() ;
try { }
dos.writelnt (num) ; catch (IOException e) { }
dos.writeUTF (name.getText ()) ; }
d = new Double (marks.getText()) ;
dos.writeDouble (d.doublevValue()) ;
}

gGraphical input and output

// Processing the event
public boolean action(Event
event,Object o)

{

if (event.target instanceof
Button)
if (event.arg.equals ("ENTER")) {
addRecord() ;
return true;

}

return super.action(event, 0);

}
public boolean handleEvent (Event

event)

{

if (event.target instanceof Button)
if (event.arg.equals ("DONE")) {

cleanup() ;
System.exit (0) ;
return true;

}

return super.handleEvent (event) ;

}

// Execute the program

public static void main (String argsl[])

{
StudentFile student = new StudentFile();

student.setup () ;
}

© Another graphical Input/Output

import java.io.*;

import java.awt.*;

class ReadStudentFile extends Frame

{
// Defining window components
TextField number, name, marks;
Button next, done;
Label numLabel, namelLabel, markLabel;
DataInputStream dis;
boolean moreRecords = true;

// Initialize the Frame

public ReadStudentFile()

{

// Setup the window

public void setup ()

{
resize (400,200) ;
setLayout (new

GridLayout (4,2));

// Create the components of the Frame

number = new TextField(25);
numLabel = new Label ("Roll Number");
name = new TextField(25);
namelLabel = new Label ("Student Name");
marks = new TextField(25);
markLabel = new Label ("Marks");
next new Button ("NEXT") ;
done = new Button ("DONE") ;
// Add the components to the Frame
add (numLabel) ;
add (number) ;
add (nameLabel) ;
add (name) ;
add (markLabel) ;
add (marks) ;
add (next) ;
add (done) ;
// Show the Frame
show () ;
// Open the file

Another graphical Input/Output

try {
dis new DatalnputStream(new
FilelnputStream("student.dat")
}
catch (IOException e)
{
System.err.println(e.toString()) ;
System.exit (1) ;
}
}
// Read from the file
public void readRecord()
{
int n;
String s;
double d;

try {
n = dis.readlnt();

s = dis.readUTF () ;

d dis.readDouble() ;

number.setText (String.valueOf (n)) ;
name.setText (String.valueOf (s));
marks.setText (String.valueOf(d)) ;
}

catch (IOException ioe) {
System.out.println("IO ErrorN) ;
System.exit (1) ;

}

// Closing the input file
public void cleanup()
{
try
{
dis.close();
}
catch (IOException e) { }

© Another graphical Input/Output

// Processing the event
public boolean action(Event event,Object o)
{
if (event.target instanceof Button)
if (event.arg.equals ("NEXT"))
readRecord() ;

// Execute the program
public static void main (String

return true; args[])
} {
public boolean handleEvent (Event event) ReadStudentFile student =
{ new ReadStudentFile() ;
if (event.target instanceof Button) student.setup() ;
if (event.arg.equals ("DONE") || moreRecords == }
false) { }
cleanup() ;

System.exit (0) ;
return true;

}

return super.handleEvent (event) ;

@) Question to think...

* How Java helps programmers to develop
GUIs?

- - How one can develop programs like Google?

	1
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

	2
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

	3
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

