Introduction to Soft Computing

Practice Sheet: FL-1

Topics:

- Introduction to Soft Computing
- Fuzzy logic
- Fuzzy membership functions
- Operations on Fuzzy sets
- 1) Any soft-computing methodology is characterized with
 - (a) precise solutions
 - (b) control actions are unambiguous and accurate
 - (c) Control action is formally defined
 - (d) algorithm which can easily adapt with the change of dynamic environment
- 2) A fuzzy set A is closed if:
 - (a) $\lim x \to -\infty \mu_A(x) = 1$ and $\lim x \to +\infty \mu_A(x) = 0$
 - (b) If $\lim x \to -\infty \mu_A(x) = \lim x \to +\infty \mu_A(x) = 0$
 - (c) If $\lim x \to -\infty \mu_A(x) = 0$ and $\lim x \to +\infty \mu_A(x) = 1$
 - (d) If $\lim x \to -\infty \mu_A(x) = \lim x \to +\infty \mu_A(x) = 1$
- 3) The support of Fuzzy Set A is the set of all points x in X (is the universe of discourse) such that
 - (a) $\mu_A(x) > 0$
 - (b) $\mu_A(x) = 1$
 - (c) $\mu_A(x) = 0.5$
 - (d) $\mu_A(x) \neq 1$
- 4) An equivalence between Fuzzy vs. Probability to that of Prediction vs. Forecasting is
 - (a) $Fuzzy \approx Prediction$
 - (b) $Fuzzy \approx Forecasting$
 - (c) $Probability \approx Forecasting$
 - (d) None of the above
- 5) Both fuzzy logic and artificial neural network are soft computing techniques because
 - (a) Both gives precise and accurate results.
 - (b) Artificial neural network gives accurate result, but fuzzy logic does not.
 - (c) In each, no precise mathematical model of the problem is required.
 - (d) Fuzzy gives exact result but artificial neural network does not.
- 6) Which of the following cannot be stated using Fuzzy logic?
 - (a) Color of an apple

- (b) Height of a person
- (c) Date of birth of a student
- (d) Speed of a car
- 7) Following which one is the example of *Sigmoid Membership* function?

(a)
$$\mu(x:c,\sigma) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2}$$

(b)
$$\mu(x:a,c) = \frac{1}{1+e^{-[a(x-c)]}}$$

(c)
$$\mu(x:a,b,c) = \frac{1}{1+\left|\frac{x-c}{a}\right|^{2b}}$$

(d)
$$\mu(x; c, b) = e^{-2x \cdot b}$$

(b) $\mu(x; a, c) = \frac{1}{1 + e^{-[a(x - c)]}}$
(c) $\mu(x; a, b, c) = \frac{1}{1 + \left|\frac{x - c}{a}\right|^{2b}}$
(d) $\mu(x; a, b, c) = \begin{cases} 0 & x \le a \\ \frac{x - a}{b - a} & a \le x \le b \\ \frac{c - x}{c - b} & b \le x \le c \\ 0 & c \le x \end{cases}$

- 8) How is Fuzzy Logic is different from the conventional control methods?
 - IF and THEN Approach (a)
 - (b) FOR Approach
 - (c) WHILE Approach
 - (d) DO Approach
- 9) The height h(A) of a fuzzy set A is defined as h(A) = support A(x), where x belongs to A. Then the fuzzy set A is called normal when
 - h(A)=0(a)
 - h(A)<0 (b)
 - h(A)=1(c)
 - (d) h(A)>1
- 10) Fuzzy logic is a form of
 - Two-valued logic (a)
 - (b) Crisp set logic
 - Many-valued logic (c)
 - (d) Binary set logic
- 11) For k > 1, which of the following concept can be used to generate other linguistic hedge
 - (e) Concentration and Dilation
 - (f) Dilation
 - Concentration (g)
 - (h) None of the above
- 12) Given two fuzzy set A and B as follows.

$$A = \{(x1, 0.5), (x2, 0.1), (x3, 0.4)\}$$
 and $B = \{(x1, 0.2), (x2, 0.3), (x3, 0.5)\}$

Union of the two set, that is, $A \cup B$ is given by

```
(a) \{(x1, 0.5), (x2, 0.1), (x3, 0.4)\}
```

(b)
$$\{(x1, 0.5), (x2, 0.3), (x3, 0.5)\}$$

(c)
$$\{(x1, 0.2), (x2, 0.3), (x3, 0.5)\}$$

(d)
$$\{(x1, 0.2), (x2, 0.1), (x3, 0.4)\}$$

- 13) Given two Fuzzy Sets A and B with MFs μ_A and μ_B , respectively. Algebraic product or Vector product is given by:
 - (a) $\mu_A(x) \cdot \mu_B(x)$
 - (b) $\mu_A(x) + \mu_B(x) \mu_A(x) \cdot \mu_B(x)$
 - (c) $\min\{1, \mu_A(x) + \mu_B(x)\}$
 - (d) $\max\{0, \mu_A(x) + \mu_B(x) 1\}$
- 14) Two fuzzy sets A and B with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively defined as below.

A = **Hot Climate** with $\mu_A(x)$ as the MF.

B = **Cold Climate** with $\mu_B(x)$ as the M.F.

Pleasant climate is given by:

- (a) $1 \mu_B(x)$
- (b) $\max(\mu_A(x), \mu_B(x))$
- (c) $min(\mu_A(x), \mu_B(x))$
- (d) $1 \mu_A(x)$
- 15) What is the **Bandwidth** of fuzzy set *A* which is given as follow.

$$A = (10,0.1), (15,0.2), (20,0.5), (25,0.4), (30,0.4), (35,0.5), (40,0.2), (45,0.1)$$

- (e) 15
- (f) -15
- (g) 35
- (h) 20

___*__