Fuzzy Relations, Rules and Inferences

Debasis Samanta

IIT Kharagpur
dsamanta@iitkgp.ac.in

13.01.2024

Concept of fuzzy system

Fuzzy Relations

Crisp relations

To understand the fuzzy relations, it is better to discuss first crisp relation.

Suppose, A and B are two (crisp) sets. Then Cartesian product denoted as $A \times B$ is a collection of order pairs, such that
$A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$
Note :
(1) $A \times B \neq B \times A$
(2) $|A \times B|=|A| \times|B|$
(3) $A \times B$ provides a mapping from $a \in A$ to $b \in B$.

The mapping so mentioned is called a relation.

Crisp relations

Example 1:

Consider the two crisp sets A and B as given below. $A=\{1,2,3,4\}$ $B=\{3,5,7\}$.

Then, $A \times B=\{(1,3),(1,5),(1,7),(2,3),(2,5),(2,7),(3,3),(3,5)$, $(3,7),(4,3),(4,5),(4,7)\}$
Let us define a relation R as $R=\{(a, b) \mid b=a+1,(a, b) \in A \times B\}$ Then, $R=\{(2,3),(4,5)\}$ in this case.

We can represent the relation R in a matrix form as follows.

$$
R=\begin{gathered}
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{lll}
3 & 5 & 7 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Operations on crisp relations

Suppose, $R(x, y)$ and $S(x, y)$ are the two relations define over two crisp sets $x \in A$ and $y \in B$

Union:

$$
R(x, y) \cup S(x, y)=\max (R(x, y), S(x, y)) ;
$$

Intersection:

$$
R(x, y) \cap S(x, y)=\min (R(x, y), S(x, y)) ;
$$

Complement:

$$
\overline{R(x, y)}=1-R(x, y)
$$

Example: Operations on crisp relations

Example:
Suppose, $R(x, y)$ and $S(x, y)$ are the two relations define over two crisp sets $x \in A$ and $y \in B$
$R=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ and $S=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$;
Find the following:
(1) $R \cup S$
(2) $R \cap S$
(3) \bar{R}

Composition of two crisp relations

Given R is a relation on X, Y and S is another relation on Y, Z. Then $R \circ S$ is called a composition of relation on X and Z which is defined as follows.

$$
R \circ S=\{(x, z) \mid(x, y) \in R \text { and }(y, z) \in S \text { and } \forall y \in Y\}
$$

Max-Min Composition

Given the two relation matrices R and S, the max-min composition is defined as $T=R \circ S$;

$$
T(x, z)=\max \{\min \{R(x, y), S(y, z) \text { and } \forall y \in Y\}\}
$$

Composition: Composition

Example:

Given
$X=\{1,3,5\} ; Y=\{1,3,5\} ; R=\{(x, y) \mid y=x+2\} ; S=\{(x, y) \mid x<y\}$ Here, R and S is on $X \times Y$.

Thus, we have
$R=\{(1,3),(3,5)\}$
$S=\{(1,3),(1,5),(3,5)\}$
$R=$
1
3
5 $\left[\begin{array}{lll}1 & 3 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $\mathrm{S}=$

Using max-min composition $R \circ S=$
$1\left[\begin{array}{lll}1 & 3 & 5 \\
0 & 1 & 1 \\
3 \\
0 & 0 & 1 \\
0 & 0 & 0\end{array}\right]$

1	1	5
3		\(\left[\begin{array}{lll}0 \& 0 \& 1

0 \& 0 \& 0

0 \& 0 \& 0\end{array}\right]\)

Fuzzy relations

- Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp set $X_{1}, X_{2}, \ldots, X_{n}$
- Here, n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ may have varying degree of memberships within the relationship.
- The membership values indicate the strength of the relation between the tuples.
Example:
$X=\{$ typhoid, viral, cold $\}$ and $Y=\{$ running nose, high temp, shivering \}
The fuzzy relation R is defined as
typhoid
viral
cold $\left[\begin{array}{ccc}\text { runningnose } & \text { hightemperature } & \text { shivering } \\ 0.1 & 0.9 & 0.8 \\ 0.2 & 0.9 & 0.7 \\ 0.9 & 0.4 & 0.6\end{array}\right]$

Fuzzy Cartesian product

Suppose

A is a fuzzy set on the universe of discourse X with $\mu_{A}(x) \mid x \in X$
B is a fuzzy set on the universe of discourse Y with $\mu_{B}(y) \mid y \in Y$
Then $R=A \times B \subset X \times Y$; where R has its membership function given by $\mu_{R}(x, y)=\mu_{A \times B}(x, y)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$

Example :

$A=\left\{\left(a_{1}, 0.2\right),\left(a_{2}, 0.7\right),\left(a_{3}, 0.4\right)\right\}$ and $B=\left\{\left(b_{1}, 0.5\right),\left(b_{2}, 0.6\right)\right\}$
$R=A \times B=$
$\left.\begin{array}{l} \\ a_{1} \\ a_{2} \\ a_{3}\end{array} \begin{array}{cc}b_{1} & b_{2} \\ 0.2 & 0.2 \\ 0.5 & 0.6 \\ 0.4 & 0.4\end{array}\right]$

Operations on Fuzzy relations

Let R and S be two fuzzy relations on $A \times B$.

Union:

$$
\mu_{R \cup S}(a, b)=\max \left\{\mu_{R}(a, b), \mu_{S}(a, b)\right\}
$$

Intersection:

$$
\mu_{R \cap S}(a, b)=\min \left\{\mu_{R}(a, b), \mu_{S}(a, b)\right\}
$$

Complement:

$$
\mu_{\bar{R}}(a, b)=1-\mu_{R}(a, b)
$$

Composition

$$
\begin{gathered}
T=R \circ S \\
\mu_{R \circ S}=\max _{y \in Y}\left\{\min \left(\mu_{R}(x, y), \mu_{S}(y, z)\right)\right\}
\end{gathered}
$$

Operations on Fuzzy relations: Examples

Example:

$X=\left(x_{1}, x_{2}, x_{3}\right) ; Y=\left(y_{1}, y_{2}\right) ; Z=\left(z_{1}, z_{2}, z_{3}\right) ;$
$R=\quad \begin{aligned} & \\ & x_{1} \\ & x_{2} \\ & x_{3}\end{aligned}\left[\begin{array}{cc}y_{1} & y_{2} \\ 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6\end{array}\right]$

$\mu_{R \circ S}\left(x_{1}, y_{1}\right)=\max \left\{\min \left(x_{1}, y_{1}\right), \min \left(y_{1}, z_{1}\right), \min \left(x_{1}, y_{2}\right), \min \left(y_{2}, z_{1}\right)\right\}$
$=\max \{\min (0.5,0.6), \min (0.1,0.5)\}=\max \{0.5,0.1\}=0.5$ and so on.

Fuzzy relation : An example

Consider the following two sets P and D, which represent a set of paddy plants and a set of plant diseases. More precisely
$P=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ a set of four varieties of paddy plants
$D=\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$ of the four various diseases affecting the plants In addition to these, also consider another set $S=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ be the common symptoms of the diseases.
Let, R be a relation on $P \times D$, representing which plant is susceptible to which diseases, then R can be stated as

$R=\quad$| |
| :--- |
| P_{1} |
| P_{2} |
| P_{3} |
| P_{4} |\(\left[\begin{array}{cccc}D_{1} \& D_{2} \& D_{3} \& D_{4}

0.6 \& 0.6 \& 0.9 \& 0.8

0.1 \& 0.2 \& 0.9 \& 0.8

0.9 \& 0.3 \& 0.4 \& 0.8

0.9 \& 0.8 \& 0.4 \& 0.2\end{array}\right]\)

Fuzzy relation : An example

Also, consider T be the another relation on $D \times S$, which is given by
$S=\begin{aligned} & D_{1} \\ & D_{2} \\ & D_{3} \\ & D_{4}\end{aligned}\left[\begin{array}{llll}0.1 & 0.2 & 0.7 & 0.9 \\ 1.0 & 1.0 & 0.4 & 0.6 \\ 0.0 & 0.0 & 0.5 & 0.9 \\ 0.9 & 1.0 & 0.8 & 0.2\end{array}\right]$
Obtain the association of plants with the different symptoms of the disease using max-min composition.

Hint: Find $R \circ T$, and verify that

$R \circ S=\quad$| |
| :--- |
| P_{1} |
| P_{2} |\(\left[\begin{array}{cccc}S_{1} \& S_{2} \& S_{3} \& S_{4}

0.8 \& 0.8 \& 0.8 \& 0.9

0.8 \& 0.8 \& 0.8 \& 0.9

P_{3}

P_{4}\end{array}\left[$$
\begin{array}{llll} \\
0.8 & 0.8 & 0.8 & 0.9 \\
0.8 & 0.7 & 0.9\end{array}
$$\right]\right.\)

Fuzzy relation : Another example

Let, $R=x$ is relevant to y
and $S=y$ is relevant to z
be two fuzzy relations defined on $X \times Y$ and $Y \times Z$, respectively, where $X=\{1,2,3\}, Y=\{\alpha, \beta, \gamma, \delta\}$ and $Z=\{a, b\}$.
Assume that R and S can be expressed with the following relation matrices:

Fuzzy relation : Another example

Now, we want to find $R \circ S$, which can be interpreted as a derived fuzzy relation x is relevant to z.

Suppose, we are only interested in the degree of relevance between $2 \in X$ and $a \in Z$. Then, using max-min composition,

$$
\begin{aligned}
& \mu_{R \circ S}(2, a)=\max \{(0.4 \wedge 0.9),(0.2 \wedge 0.2),(0.8 \wedge 0.5),(0.9 \wedge 0.7)\} \\
& \quad=\max \{0.4,0.2,0.5,0.7\}=0.7
\end{aligned}
$$

2D Membership functions : Binary fuzzy relations

(Binary) fuzzy relations are fuzzy sets $A \times B$ which map each element in $A \times B$ to a membership grade between 0 and 1 (both inclusive). Note that a membership function of a binary fuzzy relation can be depicted with a 3D plot.

Important: Binary fuzzy relations are fuzzy sets with two dimensional MFs and so on.

2D membership function : An example

Let, $X=R^{+}=y$ (the positive real line)
and $R=X \times Y=$ "y is much greater than x "
The membership function of $\mu_{R}(x, y)$ is defined as
$\mu_{R}(x, y)=\left\{\begin{array}{cll}\frac{(y-x)}{4} & \text { if } & y>x \\ 0 & \text { if } & y \leq x\end{array}\right.$
Suppose, $X=\{3,4,5\}$ and $Y=\{3,4,5,6,7\}$, then
$\left.R=\begin{array}{c} \\ \\ 3\end{array} \begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 0 & 0.25 & 0.5 & 0.75 & 1.0 \\ 0 & 0 & 0.25 & 0.5 & 0.75 \\ 0 & 0 & 0 & 0.25 & 0.5\end{array}\right]$

Problems to ponder:

How you can derive the following?
If x is A or y is B then z is C;
Given that
(1) R_{1} : If x is A then z is $\mathrm{c}\left[R_{1} \in A \times C\right]$
(2) R_{2} : If y is B then z is $\mathrm{C}\left[R_{2} \in B \times C\right]$

- Hint:
- You have given two relations R_{1} and R_{2}.
- Then, the required can be derived using the union operation of R_{1} and R_{2}

Fuzzy Propositions

Two-valued logic vs. Multi-valued logic

- The basic assumption upon which crisp logic is based - that every proposition is either TRUE or FALSE.
- The classical two-valued logic can be extended to multi-valued logic.
- As an example, three valued logic to denote true(1), false(0) and indeterminacy $\left(\frac{1}{2}\right)$.

Two-valued logic vs. Multi-valued logic

Different operations with three-valued logic can be extended as shown in the following truth table:

\mathbf{a}	\mathbf{b}	\wedge	\vee	$\neg \mathbf{a}$	\Longrightarrow	$=$
0	0	0	0	1	1	1
0	$\frac{1}{2}$	0	$\frac{1}{2}$	1	1	$\frac{1}{2}$
0	1	0	1	1	1	0
$\frac{1}{2}$	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{1}{2}$
1	0	0	1	1	0	0
1	$\frac{1}{2}$	$\frac{1}{2}$	1	1	$\frac{1}{2}$	$\frac{1}{2}$
1	1	1	1	1	1	1

Fuzzy connectives used in the above table are:
AND (\wedge), OR (\vee), NOT (\neg), IMPLICATION (\Longrightarrow) and EQUAL $(=)$.

Three-valued logic

Fuzzy connectives defined for such a three-valued logic better can be stated as follows:

Symbol	Connective	Usage	Definition
\neg	NOT	$\neg \mathrm{P}$	$1-T(P)$
\vee	OR	$P \vee Q$	$\max \{\mathrm{~T}(\mathrm{P}), \mathrm{T}(\mathrm{Q})\}$
\wedge	AND	$P \wedge Q$	$\min \{\mathrm{~T}(\mathrm{P}), \mathrm{T}(\mathrm{Q})\}$
\Longrightarrow	IMPLICATION	$(P \Longrightarrow Q)$ or	$\max \{(1-\mathrm{T}(\mathrm{P}))$,
		$(\neg P \vee Q)$	$\mathrm{T}(\mathrm{Q})\}$
	EQUALITY	$(P=Q)$ or	$1-\|T(P)-T(Q)\|$
		$[(P \Longrightarrow Q) \wedge$	
		$(Q \Longrightarrow P)]$	

Fuzzy proposition

Example 1:

P : Ram is honest
(1) $T(P)=0.0 \quad$: Absolutely false
(2) $T(P)=0.2:$ Partially false
(3) $T(P)=0.4 \quad$ May be false or not false
(4) $\mathrm{T}(\mathrm{P})=0.6 \quad$: May be true or not true
(5) $T(P)=0.8 \quad$: Partially true
(6) $T(P)=1.0 \quad$: Absolutely true.

Example 2 :Fuzzy proposition

P : Mary is efficient ; $T(P)=0.8$;
Q : Ram is efficient ; $T(Q)=0.6$
(1) Mary is not efficient.

$$
T(\neg P)=1-T(P)=0.2
$$

(2) Mary is efficient and so is Ram.

$$
T(P \wedge Q)=\min \{T(P), T(Q)\}=0.6
$$

(3) Either Mary or Ram is efficient
$T(P \vee Q)=\max T(P), T(Q)=0.8$
(4) If Mary is efficient then so is Ram
$T(P \Longrightarrow Q)=\max \{1-T(P), T(Q)\}=0.6$

Fuzzy proposition vs. Crisp proposition

- The fundamental difference between crisp (classical) proposition and fuzzy propositions is in the range of their truth values.
- While each classical proposition is required to be either true or false, the truth or falsity of fuzzy proposition is a matter of degree.
- The degree of truth of each fuzzy proposition is expressed by a value in the interval $[0,1]$ both inclusive.

Canonical representation of Fuzzy proposition

- Suppose, X is a universe of discourse of five persons. Intelligent of $x \in X$ is a fuzzy set as defined below. Intelligent: $\left\{\left(x_{1}, 0.3\right),\left(x_{2}, 0.4\right),\left(x_{3}, 0.1\right),\left(x_{4}, 0.6\right),\left(x_{5}, 0.9\right)\right\}$
- We define a fuzzy proposition as follows:
$P: x$ is intelligent
- The canonical form of fuzzy proposition of this type, P is expressed by the sentence $P: v$ is F.
- Predicate in terms of fuzzy set.
$\mathrm{P}: v$ is F ; where v is an element that takes values v from some universal set V and F is a fuzzy set on V that represents a fuzzy predicate.
- In other words, given, a particular element v, this element belongs to F with membership grade $\mu_{F}(v)$.

Graphical interpretation of fuzzy proposition

- For a given value v of variable V in proposition $\mathrm{P}, \mathrm{T}(\mathrm{P})$ denotes the degree of truth of proposition P .

Fuzzy Implications

Fuzzy rule

- A fuzzy implication (also known as fuzzy If-Then rule, fuzzy rule, or fuzzy conditional statement) assumes the form :

If x is A then y is B

where, A and B are two linguistic variables defined by fuzzy sets A and B on the universe of discourses X and Y, respectively.

- Often, x is A is called the antecedent or premise, while y is B is called the consequence or conclusion.

Fuzzy implication : Example 1

- If pressure is High then temperature is Low
- If mango is Yellow then mango is Sweet else mango is Sour
- If road is Good then driving is Smooth else traffic is High
- The fuzzy implication is denoted as $R: A \rightarrow B$
- In essence, it represents a binary fuzzy relation R on the (Cartesian) product of $A \times B$

Fuzzy implication : Example 2

- Suppose, P and T are two universes of discourses representing pressure and temperature, respectively as follows.
- $P=\{1,2,3,4\}$ and $T=\{10,15,20,25,30,35,40,45,50\}$
- Let the linguistic variable High temperature and Low pressure are given as
- $T_{\text {HIGH }}=$ $\{(20,0.2),(25,0.4),(30,0.6),(35,0.6),(40,0.7),(45,0.8),(50,0.8)\}$
- $P_{\text {LOW }}=(1,0.8),(2,0.8),(3,0.6),(4,0.4)$

Fuzzy implications : Example 2

- Then the fuzzy implication If temperature is High then pressure is Low can be defined as

$$
R: T_{\text {HIGH }} \rightarrow P_{\text {LOW }}
$$

where, $\mathrm{R}=$| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 20 | | | | |
| | 25 | 2 | 3 | 4 |
| | 30 | | | |\(\left[\begin{array}{cccc} \& 0.2 \& 0.2 \& 0.2

0.4 \& 0.4 \& 0.4 \& 0.4

0.6 \& 0.6 \& 0.6 \& 0.4

0.6 \& 0.6 \& 0.6 \& 0.4

0.7 \& 0.7 \& 0.6 \& 0.4

0.8 \& 0.8 \& 0.6 \& 0.4

0.8 \& 0.8 \& 0.6 \& 0.4\end{array}\right]\)

Note : If temperature is 40 then what about low pressure?

Interpretation of fuzzy rules

In general, there are two ways to interpret the fuzzy rule $A \rightarrow B$ as

- A coupled with B
- A entails B

Interpretation as

$R: A \rightarrow B=A \times B=\left.\int_{X \times Y} \mu_{A}(x) * \mu_{B}(y)\right|_{(x, y)}$; where $*$ is called a T-norm operator.

T-norm operator

The most frequently used T-norm operators are:
Minimum : $T_{\min }(a, b)=\min (a, b)=a \wedge b$
Algebric product : $T_{a p}(a, b)=a b$
Bounded product : $T_{b p}(a, b)=0 \vee(a+b-1)$
Drastic product : $T_{d p}=\left\{\begin{array}{llc}a & \text { if } & b=1 \\ b & \text { if } & a=1 \\ 0 & \text { if } & a, b<1\end{array}\right.$
Here, $\mathrm{a}=\mu_{A}(x)$ and $\mathrm{b}=\mu_{B}(y) . T_{*}$ is called the function of T-norm operator.

Interpretation as

Based on the T-norm operator as defined above, we can automatically define the fuzzy rule $R: A \rightarrow B$ as a fuzzy set with two-dimentional MF:
$\mu_{R}(x, y)=f\left(\mu_{A}(x), \mu_{B}(y)\right)=f(a, b)$ with $a=\mu_{A}(x), b=\mu_{B}(y)$, and f is the fuzzy implication function.

Interpretation as

In the following, few implications of $R: A \rightarrow B$

Min operator:

$$
R_{m}=A \times B=\left.\int_{X \times Y} \mu_{A}(x) \wedge \mu_{B}(y)\right|_{(x, y)} \text { or } f_{\min }(a, b)=a \wedge b
$$

[Mamdani rule]
Algebric product operator

$$
R_{a p}=A \times B=\left.\int_{X \times Y} \mu_{A}(x) \cdot \mu_{B}(y)\right|_{(x, y)} \text { or } f_{a p}(a, b)=a b
$$

Product Operators

Bounded product operator

$R_{b p}=A \times B=\left.\int_{X \times Y} \mu_{A}(x) \odot \mu_{B}(y)\right|_{(x, y)}=$
$\left.\int_{X \times Y} 0 \vee\left(\mu_{A}(x)+\mu_{B}(y)-1\right)\right|_{(x, y)}$
or $f_{b p}=0 \vee(a+b-1)$

Drastic product operator

$R_{d p}=A \times B=\left.\int_{X \times Y} \mu_{A}(x) \hat{\bullet} \mu_{B}(y)\right|_{(x, y)}$
or $f_{d p}(a, b)=\left\{\begin{array}{clc}a & \text { if } & b=1 \\ b & \text { if } & a=1 \\ 0 & \text { if } & \text { otherwise }\end{array}\right.$

Interpretation of

There are three main ways to interpret such implication:
Material implication :
$R: A \rightarrow B=\bar{A} \cup B$

Propositional calculus :
$R: A \rightarrow B=\bar{A} \cup(A \cap B)$
Extended propositional calculus :
$R: A \rightarrow B=(\bar{A} \cap \bar{B}) \cup B$

Interpretation of

With the above mentioned implications, there are a number of fuzzy implication functions that are popularly followed in fuzzy rule-based system.

Zadeh's arithmetic rule :

$R_{z a}=\bar{A} \cup B=\left.\int_{X \times Y} 1 \wedge\left(1-\mu_{A}(x)+\mu_{B}(y)\right)\right|_{(x, y)}$
or
$f_{z a}(a, b)=1 \wedge(1-a+b)$

Zadeh's max-min rule :

$R_{m m}=\bar{A} \cup(A \cap B)=\left.\int_{X \times Y}\left(1-\mu_{A}(x)\right) \vee\left(\mu_{A}(x) \wedge \mu_{B}(y)\right)\right|_{(x, y)}$
or
$f_{m m}(a, b)=(1-a) \vee(a \wedge b)$

Interpretation of

Boolean fuzzy rule

$R_{b f}=\bar{A} \cup B=\left.\int_{X \times Y}\left(1-\mu_{A}(x)\right) \vee \mu_{B}(x)\right|_{(x, y)}$
or
$f_{b f}(a, b)=(1-a) \vee b ;$

Goguen's fuzzy rule:
$R_{g f}=\left.\int_{X \times Y} \mu_{A}(x) * \mu_{B}(y)\right|_{(x, y)}$ where $a * b=\left\{\begin{array}{lll}1 & \text { if } & a \leq b \\ \frac{b}{a} & \text { if } & a>b\end{array}\right.$

Example 3: Zadeh's Max-Min rule

If \mathbf{x} is \mathbf{A} then \mathbf{y} is \mathbf{B} with the implication of Zadeh's max-min rule can be written equivalently as:

$$
R_{m m}=(A \times B) \cup(\bar{A} \times Y)
$$

Here, Y is the universe of discourse with membership values for all $y \in Y$ is 1 , that is, $\mu_{Y}(y)=1 \forall y \in Y$.

Suppose $X=\{a, b, c, d\}$ and $Y=\{1,2,3,4\}$
and $A=\{(a, 0.0),(b, 0.8),(c, 0.6),(d, 1.0)\}$
$B=\{(1,0.2),(2,1.0),(3,0.8),(4,0.0)\}$ are two fuzzy sets.
We are to determine $R_{m m}=(A \times B) \cup(\bar{A} \times Y)$

Example 3: Zadeh's min-max rule:

The computation of $R_{m m}=(A \times B) \cup(\bar{A} \times Y)$ is as follows:

$$
\begin{aligned}
& \\
& A \times B=\begin{array}{cccc}
a \\
b \\
c \\
d
\end{array}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 \\
0.2 & 0.8 & 0.8 & 0 \\
0.2 & 0.6 & 0.6 & 0 \\
0.2 & 1.0 & 0.8 & 0
\end{array}\right] \text { and } \\
& \bar{A} \times Y=\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
0.2 & 0.2 & 0.2 & 0.2 \\
0.4 & 0.4 & 0.4 & 0.4 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Example 3: Zadeh's min-max rule:

Therefore,

$$
R_{m m}=(A \times B) \cup(\bar{A} \times Y)=
$$

\quad
a
b
c
$d$$\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0.2 & 0.8 & 0.8 & 0.2 \\ 0.4 & 0.6 & 0.6 & 0.4 \\ 0.2 & 1.0 & 0.8 & 0\end{array}\right]$

Example 3 :

$$
\begin{aligned}
& X=\{a, b, c, d\} \\
& Y=\{1,2,3,4\} \\
& \text { Let, } A=\{(a, 0.0),(b, 0.8),(c, 0.6),(d, 1.0)\} \\
& B=\{(1,0.2),(2,1.0),(3,0.8),(4,0.0)\}
\end{aligned}
$$

Determine the implication relation :
If x is \mathbf{A} then y is B

Here, $A \times B=$

$$
\begin{aligned}
& \\
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 \\
0.2 & 0.8 & 0.8 & 0 \\
0.2 & 0.6 & 0.6 & 0 \\
0.2 & 1.0 & 0.8 & 0
\end{array}\right]
$$

Example 3 :

$$
\left.\begin{array}{cc}
\text { and } \bar{A} \times Y= & b \\
c & d
\end{array} \begin{array}{cccc}
0.2 & 0.2 & 0.2 & 0.2 \\
0.4 & 0.4 & 0.4 & 0.4 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

This R represents If x is \mathbf{A} then y is \mathbf{B}

Example 3 :

IF x is A THEN y is B ELSE y is C.
The relation R is equivalent to

$$
R=(A \times B) \cup(\bar{A} \times C)
$$

The membership function of R is given by
$\mu_{R}(x, y)=\max \left[\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, \min \left\{\mu_{\bar{A}}(x), \mu_{C}(y)\right]\right.$

Example 4:

$$
\begin{aligned}
& X=\{a, b, c, d\} \\
& Y=\{1,2,3,4\} \\
& A=\{(a, 0.0),(b, 0.8),(c, 0.6),(d, 1.0)\} \\
& B=\{(1,0.2),(2,1.0),(3,0.8),(4,0.0)\} \\
& C=\{(1,0),(2,0.4),(3,1.0),(4,0.8)\}
\end{aligned}
$$

Determine the implication relation :
If x is \mathbf{A} then y is B else y is \mathbf{C}

Here, $A \times B=$
a
b
c
$d$$\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0.2 & 0.8 & 0.8 & 0 \\ 0.2 & 0.6 & 0.6 & 0 \\ 0.2 & 1.0 & 0.8 & 0\end{array}\right]$

Example 4:

$$
\begin{gathered}
\\
\text { and } \bar{A} \times C=\begin{array}{c}
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
d
\end{array}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0.4 & 1.0 & 0.8 \\
0 & 0.2 & 0.2 & 0.2 \\
0 & 0.4 & 0.4 & 0.4 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\quad b \\
d
\end{gathered}\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
0 & 0.4 & 1.0 & 0.8 \\
0.2 & 0.8 & 0.8 & 0.2 \\
0.2 & 0.6 & 0.6 & 0.4 \\
0.2 & 1.0 & 0.8 & 0
\end{array}\right] .
$$

Interpretation of fuzzy implication

If x is A then y is B

If x is A then y is B else y is C

Fuzzy Inferences

Fuzzy inferences

Let's start with propositional logic. We know the following in propositional logic.
(1) Modus Ponens : $P, P \Longrightarrow Q$,

$$
\Leftrightarrow Q
$$

(2) Modus Tollens : $P \Longrightarrow Q, \neg Q \quad \Leftrightarrow, \neg P$
(3) Chain rule : $P \Longrightarrow Q, Q \Longrightarrow R \quad \Leftrightarrow, P \Longrightarrow R$

An example from propositional logic

Given
(1) $C \vee D$
(2) $\sim H \Longrightarrow(A \wedge \sim B)$
(3) $C \vee D \Longrightarrow \sim H$
(4) $(A \wedge \sim B) \Longrightarrow(R \vee S)$

From the above can we infer $R \vee S$?

Similar concept is also followed in fuzzy logic to infer a fuzzy rule from a set of given fuzzy rules (also called fuzzy rule base).

Inferring procedures in Fuzzy logic

Two important inferring procedures are used in fuzzy systems :

- Generalized Modus Ponens (GMP)

> If x is A Then y is B
> x is A^{\prime}
y is B^{\prime}

- Generalized Modus Tollens (GMT)

```
If \(x\) is \(A\) Then \(y\) is \(B\)
```

y is B^{\prime}
x is A^{\prime}

Fuzzy inferring procedures

- Here, A, B, A^{\prime} and B^{\prime} are fuzzy sets.
- To compute the membership function A^{\prime} and B^{\prime} the max-min composition of fuzzy sets B^{\prime} and A^{\prime}, respectively with $R(x, y)$ (which is the known implication relation) is to be used.
- Thus,

$$
\begin{array}{ll}
B^{\prime}=A^{\prime} \circ R(x, y) & \mu_{B}(y)=\max \left[\min \left(\mu_{A^{\prime}}(x), \mu_{R}(x, y)\right)\right] \\
A^{\prime}=B^{\prime} \circ R(x, y) & \mu_{A}(x)=\max \left[\min \left(\mu_{B^{\prime}}(y), \mu_{R}(x, y)\right)\right]
\end{array}
$$

Generalized Modus Ponens

Generalized Modus Ponens (GMP)

$P:$ If x is A then y is B
Let us consider two sets of variables x and y be
$X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$, respectively.
Also, let us consider the following.
$\boldsymbol{A}=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 1\right),\left(x_{3}, 0.6\right)\right\}$
$B=\left\{\left(y_{1}, 1\right),\left(y_{2}, 0.4\right)\right\}$
Then, given a fact expressed by the proposition x is A^{\prime}, where $A^{\prime}=\left\{\left(x_{1}, 0.6\right),\left(x_{2}, 0.9\right),\left(x_{3}, 0.7\right)\right\}$
derive a conclusion in the form y is B^{\prime} (using generalized modus ponens (GMP)).

Example: Generalized Modus Ponens

If x is A Then y is B
x is A^{\prime}
y is B^{\prime}
We are to find $B^{\prime}=A^{\prime} \circ R(x, y)$ where $R(x, y)=\max \{A \times B, \bar{A} \times Y\}$
$A \times B=\begin{aligned} & x_{1} \\ & x_{2} \\ & x_{3}\end{aligned}\left[\begin{array}{cc}y_{1} & y_{2} \\ 0.5 & 0.4 \\ 1 & 0.4 \\ 0.6 & 0.4\end{array}\right]$ and $\bar{A} \times Y=\begin{aligned} & x_{1} \\ & x_{2} \\ & x_{3}\end{aligned}\left[\begin{array}{cc}y_{1} & y_{2} \\ 0.5 & 0.5 \\ 0 & 0 \\ 0.4 & 0.4\end{array}\right]$
Note: For $A \times B, \mu_{A \times B}(x, y)=\min \left(\mu_{A} x, \mu_{B}(y)\right)$

Example: Generalized Modus Ponens

$$
R(x, y)=(A \times B) \cup(\overline{\boldsymbol{A}} \times y)=\begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}\left[\begin{array}{cc}
y_{1} & y_{2} \\
0.5 & 0.5 \\
1 & 0.4 \\
0.6 & 0.4
\end{array}\right]
$$

Now, $A^{\prime}=\left\{\left(x_{1}, 0.6\right),\left(x_{2}, 0.9\right),\left(x_{3}, 0.7\right)\right\}$
Therefore, $B^{\prime}=A^{\prime} \circ R(x, y)=$
$\left[\begin{array}{lll}0.6 & 0.9 & 0.7\end{array}\right] \circ\left[\begin{array}{cc}0.5 & 0.5 \\ 1 & 0.4 \\ 0.6 & 0.4\end{array}\right]=\left[\begin{array}{ll}0.9 & 0.5\end{array}\right]$
Thus we derive that y is B^{\prime} where $B^{\prime}=\left\{\left(y_{1}, 0.9\right),\left(y_{2}, 0.5\right)\right\}$

Example: Generalized Modus Tollens

Generalized Modus Tollens (GMT)

P: If x is A Then y is B
Q: $\quad y$ is B^{\prime}
x is A^{\prime}

Example: Generalized Modus Tollens

- Let sets of variables x and y be $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $y=\left\{y_{1}, y_{2}\right\}$, respectively.
- Assume that a proposition If x is A Then y is B given where $A=\left\{\left(x_{1}, 0.5\right),\left(x_{2}, 1.0\right),\left(x_{3}, 0.6\right)\right\}$ and $B=\left\{\left(y_{1}, 0.6\right),\left(y_{2}, 0.4\right)\right\}$
- Assume now that a fact expressed by a proposition y is B is given where $B^{\prime}=\left\{\left(y_{1}, 0.9\right),\left(y_{2}, 0.7\right)\right\}$.
- From the above, we are to conclude that x is A^{\prime}. That is, we are to determine A^{\prime}

Example: Generalized Modus Tollens

- We first calculate $R(x, y)=(A \times B) \cup(\bar{A} \times y)$

$$
R(x, y)=\begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}\left[\begin{array}{cc}
y_{1} & y_{2} \\
0.5 & 0.5 \\
1 & 0.4 \\
0.6 & 0.4
\end{array}\right]
$$

- Next, we calculate $A^{\prime}=B^{\prime} \circ R(x, y)$

$$
A^{\prime}=\left[\begin{array}{ll}
0.9 & 0.7
\end{array}\right] \circ \begin{aligned}
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}\left[\begin{array}{cc}
0.5 & 0.5 \\
1 & 0.4 \\
0.6 & 0.4
\end{array}\right]=\left[\begin{array}{lll}
0.5 & 0.9 & 0.6
\end{array}\right]
$$

- Hence, we calculate that x is A^{\prime} where

$$
A^{\prime}=\left[\left(x_{1}, 0.5\right),\left(x_{2}, 0.9\right),\left(x_{3}, 0.6\right)\right]
$$

Practice

Apply the fuzzy GMP rule to deduce Rotation is quite slow
Given that :

- If temperature is High then rotation is Slow.
- temperature is Very High

Let,
$X=\{30,40,50,60,70,80,90,100\}$ be the set of temperatures.
$Y=\{10,20,30,40,50,60\}$ be the set of rotations per minute.

Practice

The fuzzy set High(H), Very High (VH), Slow(S) and Quite Slow (QS) are given below.
$H=\{(70,1),(80,1),(90,0.3)\}$
$V H=\{(90,0.9),(100,1)\}$
$S=\{(30,0.8),(40,1.0),(50,0.6)\}$
$Q S=\{(10,1),(20,0.8)\}$
(1) If temperature is High then the rotation is Slow.

$$
R=(H \times S) \cup(\bar{H} \times Y)
$$

(2) temperature is Very High

Thus, to deduce "rotation is Quite Slow", we make use the composition rule $Q S=V H \circ R(x, y)$

Any questions??

