Fuzzy Logic : Introduction

Debasis Samanta

IIT Kharagpur dsamanta@iitkgp.ac.in

06.01.2024

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

伺 ト イ ヨ ト イ ヨ

- Fuzzy logic is a <u>mathematical language</u> to <u>express</u> something. This means it has grammar, syntax, semantic like a language for communication.
- There are some other mathematical languages also known
 - Relational algebra (operations on sets)
 - Boolean algebra (operations on Boolean variables)
 - **Predicate logic** (operations on well formed formulae (wff), also called predicate propositions)
- Fuzzy logic deals with Fuzzy set.

< 回 > < 回 > < 回 >

A brief history of Fuzzy Logic

• First time introduced by Lotfi Abdelli Zadeh (1965), University of California, Berkley, USA (1965).

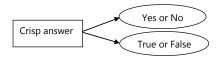
He is fondly nick-named as LAZ

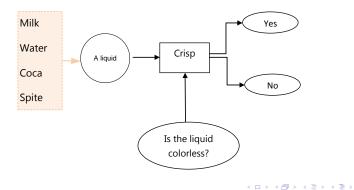
A brief history of Fuzzy logic

- Dictionary meaning of **fuzzy** is not clear, noisy etc. Example: Is the picture on this slide is fuzzy?
- Antonym of fuzzy is crisp

Example: Are the chips crisp?

Example : Fuzzy logic vs. Crisp logic





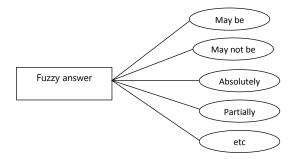
Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

06.01.2024

э

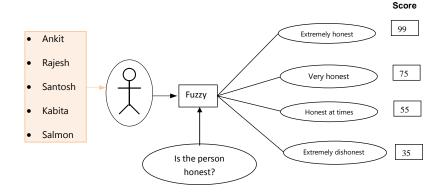
Example : Fuzzy logic vs. Crisp logic



・ロ・・ (日・・ モ・・ ・ 日・・

æ

Example : Fuzzy logic vs. Crisp logic



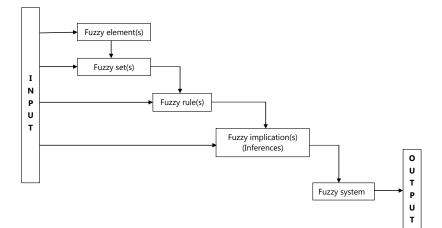
э

World is fuzzy!

イロト イヨト イヨト イヨト

э

Concept of fuzzy system



Debasis Samanta (IIT Kharagpur)

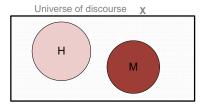
æ

イロト イヨト イヨト イヨト

Concept of fuzzy set

To understand the concept of **fuzzy set** it is better, if we first clear our idea of **crisp set**.

- X = The entire population of India.
- $H = AII Hindu population = \{ h_1, h_2, h_3, \dots, h_L \}$
- M = All Muslim population = { $m_1, m_2, m_3, \dots, m_N$ }



Here, All are the sets of finite numbers of individuals.

Such a set is called crisp set.

Let us discuss about fuzzy set.

- X = AII students in IT60108.
- S = All Good students.

S = $\{ \ (s, \, g) \mid s \in X \ \}$ and g(s) is a measurement of goodness of the student s.

Example:

 $S = \{ (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) \} etc.$

A (10) A (10)

Crisp Set	Fuzzy Set			
1. $S = \{ s \mid s \in X \}$	1. $F = (s, \mu) s \in X$ and			
	μ (s) is the degree of s.			
2. It is a collection of el-	2. It is collection of or-			
ements.	dered pairs.			
3. Inclusion of an el-	3. Inclusion of an el-			
ement $s \in X$ into S is	ement $s \in X$ into F is			
crisp, that is, has strict	fuzzy, that is, if present,			
boundary yes or no .	then with a degree of			
	membership.			

æ

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a crisp set.

Example:

 $\mathsf{H} = \{ (h_1, 1), (h_2, 1), \dots, (h_L, 1) \}$

Person = { $(p_1, 1), (p_2, 0), \dots, (p_N, 1)$ }

In case of a crisp set, the elements are with extreme values of degree of membership namely either 1 or 0.

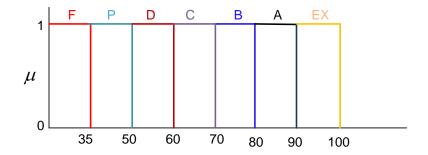
How to decide the degree of memberships of elements in a fuzzy set?

City	Bangalore	Bombay	Hyderabad	Kharagpur	Madras	Delhi
DoM	0.95	0.90	0.80	0.01	0.65	0.75

How the cities of comfort can be judged?

- EX = Marks ≥ 90
- ② A = 80 ≤ Marks < 90</p>
- Image: B = 70 ≤ Marks < 80</p>
- $C = 60 \le Marks < 70$
- **(5)** $D = 50 \le Marks < 60$
- Image: Image: Image: Optimized and the second s
- F = Marks < 35</p>

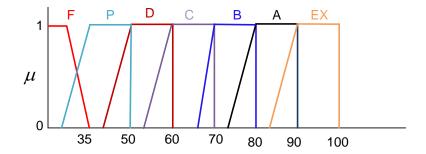
Example: Course evaluation in a crisp way



06.01.2024

< 17 ▶

Example: Course evaluation in a fuzzy way



< 17 ▶

э

- High Temperature
- Low Pressure
- Color of Apple
- Sweetness of Orange
- Weight of Mango

Note: Degree of membership values lie in the range [0...1].

A .

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and $x \in X$, then a fuzzy set A in X is defined as a set of ordered pairs, that is

 $A = \{(x, \mu_A(x)) | x \in X\}$ where $\mu_A(x)$ is called the membership function for the fuzzy set A.

Note:

 $\mu_A(x)$ map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

Question:

How (and who) decides $\mu_A(x)$ for a Fuzzy set A in X?

Example:

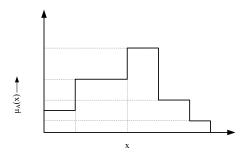
- X = All cities in India
- A = City of comfort

A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennai, 0.8), (Hyderabad, 0.6), (Kolkata, 0.3), (Kharagpur, 0)}

A .

Membership function with discrete membership values

The membership values may be of discrete values.

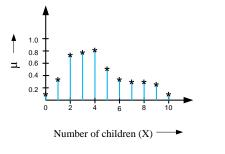


A fuzzy set with discrete values of $\,\mu$

A

Membership function with discrete membership values

Either elements or their membership values (or both) also may be of discrete values.



A = "Happy family"

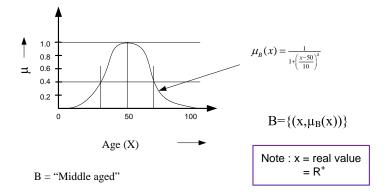
 $A = \{(0,0.1), (1,0.30), (2,0.78), \dots, (10,0.1)\}$

Note : X = discrete value

How you measure happiness ??

A .

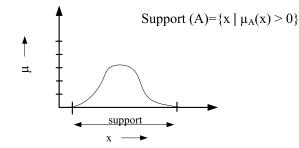
Membership function with continuous membership values



06.01.2024

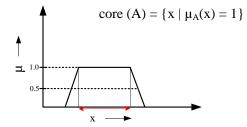
A (10) > A (10) > A (10)

Support: The support of a fuzzy set *A* is the set of all points $x \in X$ such that $\mu_A(x) > 0$

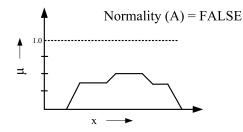


< 6 k

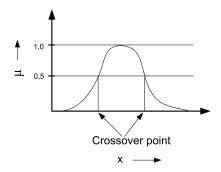
Core: The core of a fuzzy set *A* is the set of all points *x* in *X* such that $\mu_A(x) = 1$



Normality : A fuzzy set *A* is a normal if its core is non-empty. In other words, we can always find a point $x \in X$ such that $\mu_A(x) = 1$.



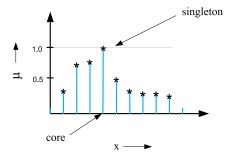
Crossover point : A crossover point of a fuzzy set *A* is a point $x \in X$ at which $\mu_A(x) = 0.5$. That is Crossover (*A*) = { $x | \mu_A(x) = 0.5$ }.



A .

Fuzzy terminologies: Fuzzy Singleton

Fuzzy Singleton : A fuzzy set whose support is a single point in *X* with $\mu_A(x) = 1$ is called a fuzzy singleton. That is $|A| = |\{x \mid \mu_A(x) = 1\}| = 1$. Following fuzzy set is not a fuzzy singleton.



$\alpha\text{-cut}$ and strong $\alpha\text{-cut}$:

The α -cut of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{ \mathsf{x} \mid \mu_{\mathcal{A}}(\mathsf{x}) \geq \alpha \}$$

Strong α -cut is defined similarly :

$$A_{\alpha}$$
' = {x | $\mu_A(x) > \alpha$ }

Note : Support(A) = A_0 ' and Core(A) = A_1 .

4 A N

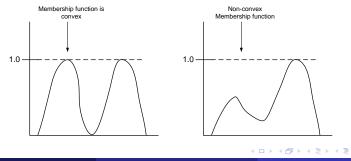
Fuzzy terminologies: Convexity

Convexity : A fuzzy set *A* is convex if and only if for any x_1 and $x_2 \in X$ and any $\lambda \in [0, 1]$

$$\mu_{\mathcal{A}} (\lambda x_1 + (1 - \lambda) x_2) \geq \min(\mu_{\mathcal{A}}(x_1), \mu_{\mathcal{A}}(x_2))$$

Note :

- A is convex if all its α- level sets are convex.
- Convexity $(A_{\alpha}) \Longrightarrow A_{\alpha}$ is composed of a single line segment only.



Bandwidth :

For a normal and convex fuzzy set, the bandwidth (or width) is defined as the distance the two unique crossover points:

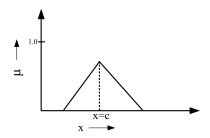
```
\mathsf{Bandwidth}(A) = |x_1 - x_2|
```

where $\mu_A(x_1) = \mu_A(x_2) = 0.5$

く 同 ト く ヨ ト く ヨ ト -

Symmetry :

A fuzzy set *A* is symmetric if its membership function around a certain point x = c, namely $\mu_A(x + c) = \mu_A(x - c)$ for all $x \in X$.



A .

Fuzzy terminologies: Open and Closed

A fuzzy set A is

Open left

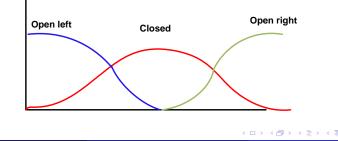
If $\lim_{x\to -\infty} \mu_A(x) = 1$ and $\lim_{x\to +\infty} \mu_A(x) = 0$

Open right:

If $\lim_{x\to -\infty} \mu_A(x) = 0$ and $\lim_{x\to +\infty} \mu_A(x) = 1$

Closed

If : $\lim_{x \to -\infty} \mu_A(x) = \lim_{x \to +\infty} \mu_A(x) = 0$



Fuzzy : When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty 40%. Here, in stead of flue, other diseases with some other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means that out of 100 matches, India own 60 matches.

(日)

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

Prediction : When you start guessing about things.

Forecasting : When you take the information from the past job and apply it to new job.

The main difference:

Prediction is based on the best guess from experiences. **Forecasting** is based on data you have actually recorded and packed from previous job.

Fuzzy Membership Functions

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

06.01.2024

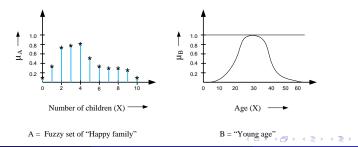
- A - TH

35/69

Fuzzy membership functions

A fuzzy set is completely characterized by its membership function (sometimes abbreviated as *MF* and denoted as μ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

Note: A membership function can be on (a) a discrete universe of discourse and (b) a continuous universe of discourse. Example:



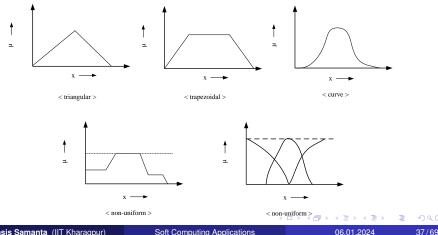
Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

Fuzzy membership functions

So, membership function on a discrete universe of course is trivial. However, a membership function on a continuous universe of discourse needs a special attention.

Following figures shows a typical examples of membership functions.



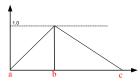
Debasis Samanta (IIT Kharagpur)

Fuzzy MFs : Formulation and parameterization

In the following, we try to parameterize the different MFs on a continuous universe of discourse.

Triangular MFs : A triangular MF is specified by three parameters $\{a, b, c\}$ and can be formulated as follows.

$$triangle(x; a, b, c) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ \frac{c-x}{c-b} & \text{if } b \le x \le c \\ 0 & \text{if } c \le x \end{cases}$$



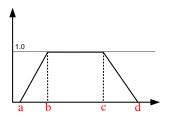
Debasis Samanta (IIT Kharagpur)

(1)

Fuzzy MFs: Trapezoidal

A trapezoidal MF is specified by four parameters $\{a, b, c, d\}$ and can be defined as follows:

$$trapeziod(x; a, b, c, d) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & \text{if } b \le x \le c \\ \frac{d-x}{d-c} & \text{if } c \le x \le d \\ 0 & \text{if } d \le x \end{cases}$$
(2)



Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

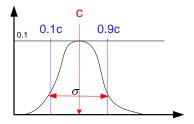
06.01.2024

A .

39/69

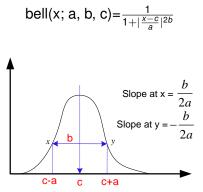
A Gaussian MF is specified by two parameters $\{c, \sigma\}$ and can be defined as below:

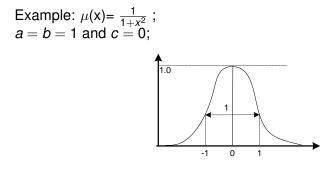
gaussian(x;c,
$$\sigma$$
) = $e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$.



A b

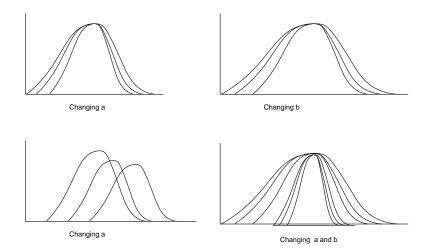
It is also called Cauchy MF. A generalized bell MF is specified by three parameters $\{a, b, c\}$ and is defined as:





A ►

Generalized bell MFs: Different shapes

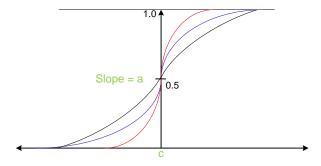


イロト イヨト イヨト イヨト

Fuzzy MFs: Sigmoidal MFs

Parameters: $\{a, c\}$; where c = crossover point and a = slope at c;

Sigmoid(x;a,c)=
$$\frac{1}{1+e^{-\left[\frac{a}{x-c}\right]}}$$



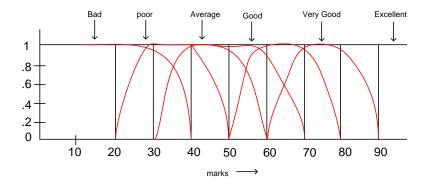
< (17) × <

Example : Consider the following grading system for a course.

- Excellent = Marks \leq 90
- Very good = $75 \le Marks \le 90$
- Good = $60 \le Marks \le 75$
- Average = $50 \le Marks \le 60$
- Poor = $35 \le Marks \le 50$
- Bad= Marks \leq 35

< 回 > < 回 > < 回 > -

A fuzzy implementation will look like the following.



You can decide a standard fuzzy MF for each of the fuzzy garde.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Operations on Fuzzy Sets

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

4 ≣ ▶ < ≣ ▶ 06.01.2024

< 6 b

47/69

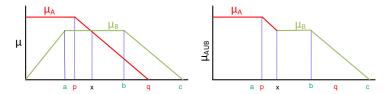
Basic fuzzy set operations: Union

Union (*A* ∪ *B*):

$$\mu_{A\cup B}(x) = \max\{\mu_A(x), \, \mu_B(x)\}$$

Example:

 $A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\} \text{ and } B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\}; C = A \cup B = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.5)\}$



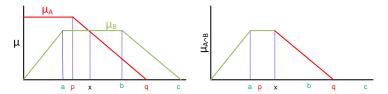
A > + = + + =

Intersection ($A \cap B$):

$$\mu_{A\cap B}(x) = \min\{\mu_A(x), \, \mu_B(x)\}$$

Example:

 $A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\} \text{ and } B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\}; C = A \cap B = \{(x_1, 0.2), (x_2, 0.1), (x_3, 0.4)\}$



a 🕨

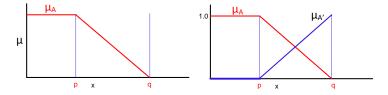
Basic fuzzy set operations: Complement

Complement (A^C):

$$\mu_{A_{A^{C}}}(x) = 1 - \mu_{A}(x)$$

Example:

 $A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$ $C = A^C = \{(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)\}$



A b

Algebric product or Vector product (A•B):

$$\mu_{A\bullet B}(\mathbf{x}) = \mu_A(\mathbf{x}) \bullet \mu_B(\mathbf{x})$$

Scalar product ($\alpha \times A$):

$$\mu_{\alpha A}(\mathbf{x}) = \alpha \cdot \mu_{A}(\mathbf{x})$$

51/69

Basic fuzzy set operations: Sum and Difference

Sum (*A* + *B***):**

$$\mu_{A+B}(\mathbf{x}) = \mu_{A}(\mathbf{x}) + \mu_{B}(\mathbf{x}) - \mu_{A}(\mathbf{x}) \cdot \mu_{B}(\mathbf{x})$$

Difference $(A - B = A \cap B^{C})$:

$$\mu_{A-B}(x) = \mu_{A\cap B^C}(x)$$

Disjunctive sum: $A \oplus B = (A^C \cap B) \cup (A \cap B^C)$)

Bounded Sum: $| A(x) \oplus B(x) |$

$$\mu_{|A(x)\oplus B(x)|} = \min\{1, \, \mu_A(x) + \mu_B(x)\}$$

Bounded Difference: $| A(x) \ominus B(x) |$

$$\mu_{|A(x)\ominus B(x)|} = \max\{0, \mu_A(x) + \mu_B(x) - 1\}$$

Equality (A = B):

$$\mu_A(\mathbf{x}) = \mu_B(\mathbf{x})$$

Power of a fuzzy set A^{α} :

$$\mu_{\mathcal{A}^{\alpha}}(\mathbf{X}) = \{\mu_{\mathcal{A}}(\mathbf{X})\}^{\alpha}$$

- If $\alpha < 1$, then it is called *dilation*
- If $\alpha > 1$, then it is called *concentration*

Caretsian Product ($A \times B$):

$$\mu_{A\times B}(x, y) = \min\{\mu_A(x), \mu_B(y)\}$$

Example 3:

 $A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$ B(y) = {(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)}

 $A \times B = \min{\{\mu_A(x), \mu_B(y)\}} =$

$$\begin{array}{c|ccccc} & y_1 & y_2 & y_3 \\ x_1 & 0.2 & 0.2 & 0.2 \\ x_2 & 0.3 & 0.3 & 0.3 \\ x_3 & 0.5 & 0.5 & 0.3 \\ x_4 & 0.6 & 0.6 & 0.3 \end{array}$$

Commutativity :

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

Associativity :

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributivity :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Debasis Samanta (IIT Kharagpur)

イロト イポト イヨト イヨト

Properties of fuzzy sets

Idempotence :

$$A \cup A = A$$
$$A \cap A = \emptyset$$
$$A \cup \emptyset = A$$
$$A \cap \emptyset = \emptyset$$

Transitivity:

If
$$A \subseteq B, B \subseteq C$$
 then $A \subseteq C$

Involution :

$$(A^c)^c = A$$

De Morgan's law :

 $(A \cap B)^c = A^c \cup B^c$ $(A \cup B)^c = A^c \cap B^c$

Debasis Samanta (IIT Kharagpur)

Few Illustrations on Fuzzy Sets

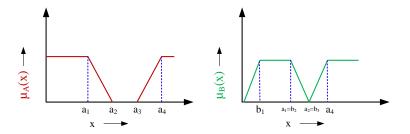
Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

06.01.2024

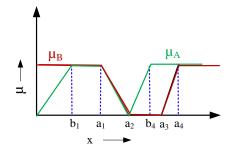
57/69

Let A and B are two fuzzy sets defined over a universe of discourse X with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively. Two MFs $\mu_A(x)$ and $\mu_B(x)$ are shown graphically.



Example 1: Plotting two sets on the same graph

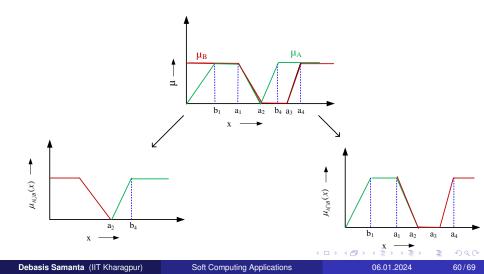
Let's plot the two membership functions on the same graph



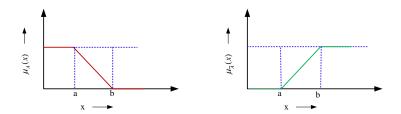
- **A**

Example 1: Union and Intersection

The plots of union $A \cup B$ and intersection $A \cap B$ are shown in the following.



The plots of union $\mu_{\bar{A}}(x)$ of the fuzzy set *A* is shown in the following.



Consider the following two fuzzy sets A and B defined over a universe of discourse [0,5] of real numbers with their membership functions

$$\mu_{A}(x) = \frac{x}{1+x}$$
 and $\mu_{B}(x) = 2^{-x}$

Determine the membership functions of the following and draw them graphically.

- i. \overline{A} , \overline{B}
- ii. *A* ∪ *B*
- iii. *A* ∩ *B*

iv. $(A \cup B)^c$ [Hint: Use De' Morgan law]

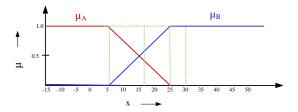
A (10) A (10)

Example 2: A real-life example

Two fuzzy sets *A* and *B* with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively defined as below.

A = **Cold climate** with $\mu_A(x)$ as the MF.

B = Hot climate with $\mu_B(x)$ as the M.F.



Here, X being the universe of discourse representing entire range of temperatures.

What are the fuzzy sets representing the following?

- Not cold climate
- 2 Not hold climate
- Extreme climate
- Pleasant climate

Note: Note that "Not cold climate" \neq "Hot climate" and vice-versa.

< 回 > < 回 > < 回 > -

Example 2 : A real-life example

Answer would be the following.

Not cold climate

 \overline{A} with $1 - \mu_A(x)$ as the MF.

Output Description 10 Particular State 20 P

B with $1 - \mu_B(x)$ as the MF.

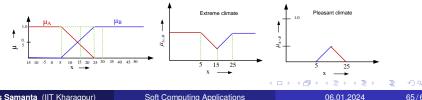
Extreme climate

 $A \cup B$ with $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$ as the MF.

Pleasant climate

 $A \cap B$ with $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ as the MF.

The plot of the MFs of $A \cup B$ and $A \cap B$ are shown in the following.



Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

Few More on Membership Functions

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

06.01.2024

66/69

Generation of MFs

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of Concentration and Dilation.

Concentration:

$$oldsymbol{A}^k = [\mu_{oldsymbol{A}}(x)]^k$$
 ; $k>1$

• Dilation:

$$\mathcal{A}^k = [\mu_\mathcal{A}(x)]^k$$
 ; $k < 1$

Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have : Not young, Very young, Not very young and so on.

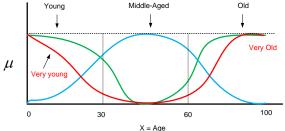
Similarly, with Old we can have : old, very old, very very old, extremely old etc.

Thus, Extremely old = $(((old)^2)^2)^2$ and so on

Or, More or less old = $A^{0.5} = (old)^{0.5}$

イロン イ団と イヨン 一

Linguistic variables and values



$$\mu_{young}(x) = bell(x, 20, 2, 0) = \frac{1}{1 + (\frac{x}{20})^4}$$

$$\mu_{old}(x) = bell(x, 30, 3, 100) = \frac{1}{1 + (\frac{x - 100}{30})^6}$$

$$\mu_{middle-aged} = bell(x, 30, 60, 50)$$

Not young = $\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$
Young but not too young = $\mu_{young}(x) \cap \overline{\mu_{young}(x)}$

크

Any questions??

A (10) A (10)