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What is Fuzzy logic?

Fuzzy logic is a mathematical language to express something.

This means it has grammar, syntax, semantic like a language for
communication.

There are some other mathematical languages also known

• Relational algebra (operations on sets)
• Boolean algebra (operations on Boolean variables)
• Predicate logic (operations on well formed formulae (wff), also

called predicate propositions)

Fuzzy logic deals with Fuzzy set.
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A brief history of Fuzzy Logic

First time introduced by Lotfi Abdelli Zadeh (1965), University of
California, Berkley, USA (1965).

He is fondly nick-named as LAZ
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A brief history of Fuzzy logic

1 Dictionary meaning of fuzzy is not clear, noisy etc.

Example: Is the picture on this slide is fuzzy?

2 Antonym of fuzzy is crisp

Example: Are the chips crisp?
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Example : Fuzzy logic vs. Crisp logic

Milk

Water

Coca

Spite

 

Crisp answer 

Yes or No  

True or False 

 

Crisp 

Is the liquid 

colorless? 

Yes 

No 

A liquid
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Example : Fuzzy logic vs. Crisp logic

Fuzzy answer 

May be 

May not be 

Absolutely 

Partially 

etc 
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Example : Fuzzy logic vs. Crisp logic

 

Fuzzy 

Is the person 

honest? 

Extremely honest 

Very honest 

Honest at times 

Extremely dishonest 

99 

75 

 

55 

 

35 

 

· Ankit

· Rajesh

· Santosh

· Kabita

· Salmon

Score
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World is fuzzy!

 

 

Our world is better 

described with 

fuzzily! 
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Concept of fuzzy system

Fuzzy element(s) 

Fuzzy set(s) 

Fuzzy rule(s)

Fuzzy implication(s)
(Inferences) 

Fuzzy system

O
U 
T 
P 
U 
T 

 
 
 
 
 
I 
N 
P 
U 
T 
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Concept of fuzzy set

To understand the concept of fuzzy set it is better, if we first clear our
idea of crisp set.
X = The entire population of India.
H = All Hindu population = { h1, h2, h3, ... , hL }
M = All Muslim population = { m1, m2, m3, ... , mN }

H

M

XUniverse of discourse

Here, All are the sets of finite numbers of individuals.

Such a set is called crisp set.
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Example of fuzzy set

Let us discuss about fuzzy set.

X = All students in IT60108.

S = All Good students.

S = { (s, g) | s ∈ X } and g(s) is a measurement of goodness of the
student s.

Example:

S = { (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) } etc.
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Fuzzy set vs. Crisp set

Crisp Set Fuzzy Set
1. S = { s | s ∈ X } 1. F = (s, µ) | s ∈ X and

µ(s) is the degree of s.
2. It is a collection of el-
ements.

2. It is collection of or-
dered pairs.

3. Inclusion of an el-
ement s ∈ X into S is
crisp, that is, has strict
boundary yes or no.

3. Inclusion of an el-
ement s ∈ X into F is
fuzzy, that is, if present,
then with a degree of
membership.
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Fuzzy set vs. Crisp set

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a
crisp set.

Example:
H = { (h1, 1), (h2, 1), ... , (hL, 1) }

Person = { (p1, 1), (p2, 0), ... , (pN , 1) }

In case of a crisp set, the elements are with extreme values of degree
of membership namely either 1 or 0.

How to decide the degree of memberships of elements in a fuzzy set?

City Bangalore Bombay Hyderabad Kharagpur Madras Delhi
DoM 0.95 0.90 0.80 0.01 0.65 0.75

How the cities of comfort can be judged?
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Example: Course evaluation in a crisp way

1 EX = Marks ≥ 90

2 A = 80 ≤ Marks < 90

3 B = 70 ≤ Marks < 80

4 C = 60 ≤ Marks < 70

5 D = 50 ≤ Marks < 60

6 P = 35 ≤ Marks < 50

7 F = Marks < 35
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Example: Course evaluation in a crisp way

1

0

F P D C B A EX

35 50 60 70 80 90 100


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Example: Course evaluation in a fuzzy way

1

0

F P B A EX

35 50 60 70 80 90 100



D C
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Few examples of fuzzy set

High Temperature

Low Pressure

Color of Apple

Sweetness of Orange

Weight of Mango

Note: Degree of membership values lie in the range [0...1].
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Some basic terminologies and notations

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and x ∈ X, then a fuzzy set A in X is
defined as a set of ordered pairs, that is

A = {(x , µA(x))|x ∈ X} where µA(x) is called the membership function
for the fuzzy set A.

Note:
µA(x) map each element of X onto a membership grade (or
membership value) between 0 and 1 (both inclusive).

Question:
How (and who) decides µA(x) for a Fuzzy set A in X?
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Some basic terminologies and notations

Example:

X = All cities in India

A = City of comfort

A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennai, 0.8), (Hyderabad,
0.6), (Kolkata, 0.3), (Kharagpur, 0)}
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Membership function with discrete membership
values

The membership values may be of discrete values.

A


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Membership function with discrete membership
values

Either elements or their membership values (or both) also may be of
discrete values.

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

µ

Number of children (X)

A ={(0,0.1),(1,0.30),(2,0.78)……(10,0.1)}

Note : X = discrete value

How you measure happiness ??

A = “Happy family”

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.01.2024 21 / 69



Membership function with continuous
membership values

0 50 100

0.2

0.4

0.6

0.8

1.0

Age (X)

B = “Middle aged”

4
1

50
1

10

( )B x
x

  
 



B

Note : x = real value
= R+
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Fuzzy terminologies: Support

Support: The support of a fuzzy set A is the set of all points x ∈ X
such that µA(x) > 0

A
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Fuzzy terminologies: Core

Core: The core of a fuzzy set A is the set of all points x in X such that
µA(x) = 1

µ

core (A) = {x | µA(x) = 1}

x

0.5

1.0
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Fuzzy terminologies: Normality

Normality : A fuzzy set A is a normal if its core is non-empty. In other
words, we can always find a point x ∈ X such that µA(x) = 1.

1.0
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Fuzzy terminologies: Crossover points

Crossover point : A crossover point of a fuzzy set A is a point x ∈ X
at which µA(x) = 0.5. That is
Crossover (A) = {x |µA(x) = 0.5}.
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Fuzzy terminologies: Fuzzy Singleton

Fuzzy Singleton : A fuzzy set whose support is a single point in X
with µA(x) = 1 is called a fuzzy singleton. That is
|A| = |{ x | µA(x) = 1}| = 1. Following fuzzy set is not a fuzzy singleton.
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Fuzzy terminologies: α-cut and strong α-cut

α-cut and strong α-cut :

The α-cut of a fuzzy set A is a crisp set defined by

Aα = {x | µA(x) ≥ α }

Strong α-cut is defined similarly :

Aα’ = {x | µA(x) > α }

Note : Support(A) = A0’ and Core(A) = A1.
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Fuzzy terminologies: Convexity

Convexity : A fuzzy set A is convex if and only if for any x1 and x2 ∈ X
and any λ ∈ [0,1]

µA (λx1 + (1 -λ)x2) ≥ min(µA(x1), µA(x2))

Note :
• A is convex if all its α- level sets are convex.
• Convexity (Aα) =⇒ Aα is composed of a single line segment only.

Membership function is 
convex

1.0

Non-convex 
Membership function

1.0
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Fuzzy terminologies: Bandwidth

Bandwidth :

For a normal and convex fuzzy set, the bandwidth (or width) is defined
as the distance the two unique crossover points:

Bandwidth(A) = | x1 - x2 |

where µA(x1) = µA(x2) = 0.5
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Fuzzy terminologies: Symmetry

Symmetry :

A fuzzy set A is symmetric if its membership function around a certain
point x = c, namely µA(x + c) = µA(x - c) for all x ∈ X.
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Fuzzy terminologies: Open and Closed

A fuzzy set A is

Open left
If limx→−∞ µA(x) = 1 and limx→+∞ µA(x) = 0

Open right:
If limx→−∞µA(x) = 0 and limx→+∞ µA(x) = 1

Closed
If : limx→−∞ µA(x) = limx→+∞ µA(x) = 0

Open left Open right
Closed
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Fuzzy vs. Probability

Fuzzy : When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that
medicine can be prescribed.
Doctor prescribed a medicine with certainty 60% that the patient is
suffering from flue. So, the disease will be cured with certainty of 60%
and uncertainty 40%. Here, in stead of flue, other diseases with some
other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means
that out of 100 matches, India own 60 matches.
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Prediction vs. Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

Prediction : When you start guessing about things.

Forecasting : When you take the information from the past job and
apply it to new job.

The main difference:
Prediction is based on the best guess from experiences.
Forecasting is based on data you have actually recorded and packed
from previous job.
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Fuzzy Membership
Functions
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Fuzzy membership functions

A fuzzy set is completely characterized by its membership function
(sometimes abbreviated as MF and denoted as µ ). So, it would be
important to learn how a membership function can be expressed
(mathematically or otherwise).

Note: A membership function can be on
(a) a discrete universe of discourse and
(b) a continuous universe of discourse.
Example:

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

µ
A

Number of children (X)

A =  Fuzzy set of “Happy family”

0 30 60

0.2

0.4

0.6

0.8

1.0

µ
B

Age (X)

B = “Young age”

10 20 40 50
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Fuzzy membership functions

So, membership function on a discrete universe of course is trivial.
However, a membership function on a continuous universe of
discourse needs a special attention.
Following figures shows a typical examples of membership functions.

µ

x x x

< triangular > < trapezoidal > < curve >

x

< non-uniform >

x

< non-uniform >

µ µ

µ µ
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Fuzzy MFs : Formulation and parameterization

In the following, we try to parameterize the different MFs on a
continuous universe of discourse.

Triangular MFs : A triangular MF is specified by three parameters
{a,b, c} and can be formulated as follows.

triangle(x ;a,b, c) =


0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c
0 if c ≤ x

(1)

a b c

1.0
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Fuzzy MFs: Trapezoidal

A trapezoidal MF is specified by four parameters {a,b, c,d} and can
be defined as follows:

trapeziod(x ;a,b, c,d) =



0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
1 if b ≤ x ≤ c
d−x
d−c if c ≤ x ≤ d
0 if d ≤ x

(2)

a b c d

1.0
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Fuzzy MFs: Gaussian

A Gaussian MF is specified by two parameters {c, σ} and can be
defined as below:

gaussian(x;c,σ) =e− 1
2 (

x−c
σ )2.

c



0.9c0.1c
0.1
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Fuzzy MFs: Generalized bell

It is also called Cauchy MF. A generalized bell MF is specified by three
parameters {a,b, c} and is defined as:

bell(x; a, b, c)= 1
1+| x−c

a |2b

c c+ac-a

2

b

a


2

b

a

b

Slope at x =

x y

Slope at y =
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Example: Generalized bell MFs

Example: µ(x)= 1
1+x2 ;

a = b = 1 and c = 0;

1.0

-1 10

1
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Generalized bell MFs: Different shapes

Changing a Changing b

Changing a
Changing  a and b

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.01.2024 43 / 69



Fuzzy MFs: Sigmoidal MFs

Parameters: {a, c} ; where c = crossover point and a = slope at c;

Sigmoid(x;a,c)= 1
1+e−[ a

x−c ]

1.0

0.5

c

Slope = a
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Fuzzy MFs : Example

Example : Consider the following grading system for a course.

Excellent = Marks ≤ 90

Very good = 75 ≤ Marks ≤ 90

Good = 60 ≤ Marks ≤ 75

Average = 50 ≤ Marks ≤ 60

Poor = 35 ≤ Marks ≤ 50

Bad= Marks ≤ 35
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Grading System

A fuzzy implementation will look like the following.

1

0
50 60 70 80 9010 20 30 40

Bad poor Average Good Very Good Excellent

marks

.8

.6

.4

.2

You can decide a standard fuzzy MF for each of the fuzzy garde.

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.01.2024 46 / 69



Operations on Fuzzy Sets
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Basic fuzzy set operations: Union

Union (A ∪ B):

µA∪B(x) = max{µA(x), µB(x)}

Example:
A = {(x1, 0.5), (x2, 0.1), (x3, 0.4)} and
B = {(x1, 0.2), (x2, 0.3), (x3, 0.5)};
C = A ∪ B = {(x1, 0.5), (x2, 0.3), (x3, 0.5)}

p q

µA

µ

µB

b ca p q

µA

µB

b ca

µ
A
U
B

x x
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Basic fuzzy set operations: Intersection

Intersection (A ∩ B):

µA∩B(x) = min{µA(x), µB(x)}

Example:
A = {(x1, 0.5), (x2, 0.1), (x3, 0.4)} and
B = {(x1, 0.2), (x2, 0.3), (x3, 0.5)};
C = A ∩ B = {(x1, 0.2), (x2, 0.1), (x3, 0.4)}

p q

µA

µ

µB

b ca p qb cax x

µ
A
ᴖ
B
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Basic fuzzy set operations: Complement

Complement (AC):

µAAC (x) = 1-µA(x)

Example:
A = {(x1, 0.5), (x2, 0.1), (x3, 0.4)}

C = AC = {(x1, 0.5), (x2, 0.9), (x3, 0.6)}

p q

µA

µ

x p qx

1.0 µA’
µA
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Basic fuzzy set operations: Products

Algebric product or Vector product (A•B):

µA•B(x) = µA(x) • µB(x)

Scalar product (α× A):

µαA(x) = α · µA(x)
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Basic fuzzy set operations: Sum and Difference

Sum (A + B):

µA+B(x) = µA(x) + µB(x)− µA(x) · µB(x)

Difference (A − B = A ∩ BC):

µA−B(x) = µA∩BC (x)

Disjunctive sum: A ⊕ B = (AC ∩ B) ∪ (A ∩ BC))

Bounded Sum: | A(x) ⊕ B(x) |

µ|A(x)⊕B(x)| = min{1, µA(x) + µB(x)}

Bounded Difference: | A(x) ⊖ B(x) |

µ|A(x)⊖B(x)| = max{0, µA(x) + µB(x)− 1}
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Basic fuzzy set operations: Equality and Power

Equality (A = B):

µA(x) = µB(x)

Power of a fuzzy set Aα:

µAα(x) = {µA(x)}α

If α < 1, then it is called dilation
If α > 1, then it is called concentration
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Basic fuzzy set operations: Cartesian product

Caretsian Product (A × B):

µA×B(x , y) = min{µA(x), µB(y)

Example 3:
A(x) = {(x1, 0.2), (x2, 0.3), (x3, 0.5), (x4, 0.6)}
B(y) = {(y1, 0.8), (y2, 0.6), (y3, 0.3)}

A × B = min{µA(x), µB(y)} =


y1 y2 y3

x1 0.2 0.2 0.2
x2 0.3 0.3 0.3
x3 0.5 0.5 0.3
x4 0.6 0.6 0.3


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Properties of fuzzy sets

Commutativity :

A∪B = B∪A
A∩B = B∩A

Associativity :

A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributivity :

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
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Properties of fuzzy sets

Idempotence :

A ∪ A = A
A ∩ A = ∅
A ∪ ∅ = A
A ∩ ∅ = ∅

Transitivity :

If A ⊆ B,B ⊆ C then A ⊆ C

Involution :

(Ac)c = A

De Morgan’s law :

(A ∩ B)c = Ac ∪ Bc

(A ∪ B)c = Ac ∩ Bc
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Few Illustrations on Fuzzy
Sets

Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.01.2024 57 / 69



Example 1: Fuzzy Set Operations

Let A and B are two fuzzy sets defined over a universe of discourse X
with membership functions µA(x) and µB(x), respectively. Two MFs
µA(x) and µB(x) are shown graphically.

µ
A
(x

)

x

a1 a2 a3 a4
µ

B
(x

)
x

b1 a1=b2 a4a2=b3
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Example 1: Plotting two sets on the same graph

Let’s plot the two membership functions on the same graph

µ

x

b1 a1 a2 b4

µAµB

a3 a4
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Example 1: Union and Intersection

The plots of union A ∪ B and intersection A ∩ B are shown in the
following.

x

a2 b4

x

(
)

A
B

x


(
)

A
B

x


a2 a3 a4b1 a1

µ

x

b1 a1 a2 b4

µAµB

a3 a4
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Example 1: Intersection

The plots of union µĀ(x) of the fuzzy set A is shown in the following.

x

a b

(
)

A
x



x

a b
(

)
A

x

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Fuzzy set operations: Practice

Consider the following two fuzzy sets A and B defined over a universe
of discourse [0,5] of real numbers with their membership functions

µA(x) = x
1+x and µB(x) = 2−x

Determine the membership functions of the following and draw them
graphically.

i. A , B

ii. A ∪ B

iii. A ∩ B

iv. (A ∪ B)c [Hint: Use De’ Morgan law]
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Example 2: A real-life example

Two fuzzy sets A and B with membership functions µA(x) and µB(x),
respectively defined as below.

A = Cold climate with µA(x) as the MF.

B = Hot climate with µB(x) as the M.F.

µ

x

-15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

0.5

1.0

µA µB

Here, X being the universe of discourse representing entire range of
temperatures.
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Example 2: A real-life example

What are the fuzzy sets representing the following?
1 Not cold climate

2 Not hold climate

3 Extreme climate

4 Pleasant climate

Note: Note that ”Not cold climate” ̸= ”Hot climate” and vice-versa.
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Example 2 : A real-life example

Answer would be the following.
1 Not cold climate

A with 1 − µA(x) as the MF.
2 Not hot climate

B with 1 − µB(x) as the MF.
3 Extreme climate

A ∪ B with µA∪B(x) = max(µA(x), µB(x)) as the MF.
4 Pleasant climate

A ∩ B with µA∩B(x) = min(µA(x), µB(x)) as the MF.
The plot of the MFs of A ∪ B and A ∩ B are shown in the following.

x
5 15 25

A
B




x
5 25

A
B




µ

x

-

15

-

10 -5 0 5 10 15 20 25 30 35 40 45 50

0.

5

1.0
µA µB

Extreme climate Pleasant climate
1.0
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Few More on Membership
Functions
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Generation of MFs

Given a membership function of a fuzzy set representing a linguistic
hedge, we can derive many more MFs representing several other
linguistic hedges using the concept of Concentration and Dilation.

Concentration:
Ak = [µA(x)]k ; k > 1

Dilation:
Ak = [µA(x)]k ; k < 1

Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have : Not young, Very young, Not
very young and so on.

Similarly, with Old we can have : old, very old, very very old, extremely
old etc.
Thus, Extremely old = (((old)2)2)2 and so on

Or, More or less old = A0.5 = (old)0.5
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Linguistic variables and values

Young OldMiddle-Aged

0 30 60 100

Very Old

Very young


X = Age

µyoung(x) = bell(x ,20,2,0) = 1
1+( x

20 )
4

µold(x) = bell(x ,30,3,100) = 1
1+( x−100

30 )6

µmiddle−aged = bell(x ,30,60,50)

Not young = µyoung(x) = 1 − µyoung(x)
Young but not too young = µyoung(x) ∩ µyoung(x)
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Any questions??
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