Fuzzy Relations, Rules and Inferences

Debasis Samanta

IIT Kharagpur

dsamanta@iitkgp.ac.in

15.01.2016

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

15.01.2016 1/64

Fuzzy Relations

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

15.01.2016 2/64

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

To understand the fuzzy relations, it is better to discuss first crisp relation.

Suppose, *A* and *B* are two (crisp) sets. Then Cartesian product denoted as $A \times B$ is a collection of order pairs, such that

```
A \times B = \{(a, b) | a \in A \text{ and } b \in B\}
```

Note :

(1) $A \times B \neq B \times A$

(2) $|A \times B| = |A| \times |B|$

(3) $A \times B$ provides a mapping from $a \in A$ to $b \in B$.

The mapping so mentioned is called a relation.

Crisp relations

Example 1:

Consider the two crisp sets *A* and *B* as given below. $A = \{1, 2, 3, 4\}$ $B = \{3, 5, 7\}.$

Then, $A \times B = \{(1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7), (4,3), (4,5), (4,7)\}$

Let us define a relation *R* as $R = \{(a, b) | b = a + 1, (a, b) \in A \times B\}$

Then, $R = \{(2,3), (4,5)\}$ in this case.

We can represent the relation R in a matrix form as follows.

Operations on crisp relations

Suppose, R(x, y) and S(x, y) are the two relations define over two crisp sets $x \in A$ and $y \in B$

Union:

$$R(x, y) \cup S(x, y) = max(R(x, y), S(x, y));$$

Intersection:

$$R(x, y) \cap S(x, y) = min(R(x, y), S(x, y));$$

Complement:

$$\overline{R(x,y)} = 1 - R(x,y)$$

Debasis Samanta (IIT Kharagpur)

A (1) > A (2) > A

Example:

Suppose, R(x, y) and S(x, y) are the two relations define over two crisp sets $x \in A$ and $y \in B$

$$R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

Find the following:

Given *R* is a relation on *X*, *Y* and *S* is another relation on *Y*,*Z*. Then $R \circ S$ is called a composition of relation on *X* and *Z* which is defined as follows.

$$R \circ S = \{(x, z) | (x, y) \in R \text{ and } (y, z) \in S \text{ and } \forall y \in Y\}$$

Max-Min Composition

Given the two relation matrices *R* and *S*, the max-min composition is defined as $T = R \circ S$;

$$T(x,z) = max\{min\{R(x,y), S(y,z) \text{ and } \forall y \in Y\}\}$$

Composition: Composition

Example:

Given

 $X = \{1,3,5\}; Y = \{1,3,5\}; R = \{(x,y)|y = x + 2\}; S = \{(x,y)|x < y\}$ Here, R and S is on $X \times Y$.

Thus, we have $R = \{(1,3), (3,5)\}$ $S = \{(1,3), (1,5), (3,5)\}$

 $R = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 5 & 0 & 0 & 0 \end{bmatrix} \text{ and } S =$

Using max-min composition $R \circ S$ =

Fuzzy relations

- Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp set X₁, X₂, ..., X_n
- Here, n-tuples (*x*₁, *x*₂, ..., *x_n*) may have varying degree of memberships within the relationship.
- The membership values indicate the strength of the relation between the tuples.

Example:

 $X = \{ \text{ typhoid, viral, cold } \}$ and $Y = \{ \text{ running nose, high temp, shivering } \}$

The fuzzy relation *R* is defined as

	runningnose	hightemperature	shivering
typhoid	0.1	0.9	0.8]
viral	0.2	0.9	0.7
cold	0.9	0.4	0.6

Debasis Samanta (IIT Kharagpur)

Suppose

A is a fuzzy set on the universe of discourse X with $\mu_A(x)|x \in X$

B is a fuzzy set on the universe of discourse *Y* with $\mu_B(y)|y \in Y$

Then $R = A \times B \subset X \times Y$; where R has its membership function given by $\mu_R(x, y) = \mu_{A \times B}(x, y) = min\{\mu_A(x), \mu_B(y)\}$

Example :

$$A = \{(a_1, 0.2), (a_2, 0.7), (a_3, 0.4)\}$$
 and $B = \{(b_1, 0.5), (b_2, 0.6)\}$

$$R = A \times B = \qquad \begin{array}{ccc} a_1 & b_2 \\ a_2 & 0.2 & 0.2 \\ a_3 & 0.5 & 0.6 \\ 0.4 & 0.4 \end{array} \right]$$

Operations on Fuzzy relations

Let *R* and *S* be two fuzzy relations on $A \times B$. Union:

$$\mu_{\mathsf{R}\cup \mathsf{S}}(\mathsf{a},\mathsf{b}) = max\{\mu_{\mathsf{R}}(\mathsf{a},\mathsf{b}),\mu_{\mathsf{S}}(\mathsf{a},\mathsf{b})\}$$

Intersection:

$$\mu_{\mathsf{R}\cap S}(\mathsf{a},\mathsf{b}) = \min\{\mu_{\mathsf{R}}(\mathsf{a},\mathsf{b}),\mu_{\mathsf{S}}(\mathsf{a},\mathsf{b})\}$$

Complement:

$$\mu_{\overline{R}}(a,b) = 1 - \mu_R(a,b)$$

Composition

$$T = R \circ S$$
$$\mu_{R \circ S} = \max_{y \in Y} \{ \min(\mu_R(x, y), \mu_S(y, z)) \}$$

• • • • • • • • • • • • •

Operations on Fuzzy relations: Examples

Example:

$$X = (x_1, x_2, x_3); Y = (y_1, y_2); Z = (z_1, z_2, z_3);$$

$$R = \begin{cases} y_1 & y_2 \\ 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6 \end{bmatrix}$$

$$S = \begin{cases} y_1 & z_2 & z_3 \\ y_2 & 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{bmatrix}$$

$$R \circ S = \begin{cases} x_1 & z_2 & z_3 \\ y_2 & 0.5 & 0.8 & 0.9 \\ 0.5 & 0.8 & 0.9 \end{bmatrix}$$

$$R \circ S = \begin{cases} x_1 & z_2 & z_3 \\ 0.5 & 0.8 & 0.9 \\ y_3 & 0.5 & 0.8 & 0.9 \\ 0.6 & 0.6 & 0.7 \end{bmatrix}$$

$$\mu_{R \circ S}(x_1, y_1) = max\{min(x_1, y_1), min(y_1, z_1), min(x_1, y_2), min(y_2, z_1)\}$$

$$= max\{min(0.5, 0.6), min(0.1, 0.5)\} = max\{0.5, 0.1\} = 0.5 \text{ and so on.}$$

Consider the following two sets P and D, which represent a set of paddy plants and a set of plant diseases. More precisely

 $P = \{P_1, P_2, P_3, P_4\}$ a set of four varieties of paddy plants $D = \{D_1, D_2, D_3, D_4\}$ of the four various diseases affecting the plants

In addition to these, also consider another set $S = \{S_1, S_2, S_3, S_4\}$ be the common symptoms of the diseases.

Let, *R* be a relation on $P \times D$, representing which plant is susceptible to which diseases, then *R* can be stated as

$$R =$$

Also, consider T be the another relation on $D \times S$, which is given by

$$S = \begin{bmatrix} S_1 & S_2 & S_3 & S_4 \\ D_1 & \begin{bmatrix} 0.1 & 0.2 & 0.7 & 0.9 \\ 1.0 & 1.0 & 0.4 & 0.6 \\ 0.0 & 0.0 & 0.5 & 0.9 \\ 0.9 & 1.0 & 0.8 & 0.2 \end{bmatrix}$$

Obtain the association of plants with the different symptoms of the disease using **max-min composition**.

Hint: Find $R \circ T$, and verify that

$$\begin{array}{cccccc} S_1 & S_2 & S_3 & S_4 \\ P_1 & \begin{bmatrix} 0.8 & 0.8 & 0.8 & 0.9 \\ P_2 & 0.8 & 0.8 & 0.8 & 0.9 \\ P_3 & 0.8 & 0.8 & 0.8 & 0.9 \\ P_4 & 0.8 & 0.8 & 0.7 & 0.9 \\ \end{bmatrix}$$

 $R \circ S =$

Fuzzy relation : Another example

- Let, R = x is relevant to y
- and S = y is relevant to z

be two fuzzy relations defined on $X \times Y$ and $Y \times Z$, respectively, where $X = \{1, 2, 3\}$, $Y = \{\alpha, \beta, \gamma, \delta\}$ and $Z = \{a, b\}$. Assume that *R* and *S* can be expressed with the following relation matrices :

$$R = \begin{bmatrix} \alpha & \beta & \gamma & \delta \\ 1 & 0.1 & 0.3 & 0.5 & 0.7 \\ 0.4 & 0.2 & 0.8 & 0.9 \\ 0.6 & 0.8 & 0.3 & 0.2 \end{bmatrix} \text{ and}$$
$$S = \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.3 \\ 0.5 & 0.6 \\ 0.7 & 0.2 \end{bmatrix}$$

 $\overline{\mathbf{a}}$

Debasis Samanta (IIT Kharagpur)

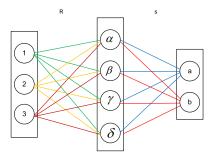
イロト イ押ト イヨト イヨト

Fuzzy relation : Another example

Now, we want to find $R \circ S$, which can be interpreted as a derived fuzzy relation *x* is relevant to *z*.

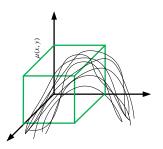
Suppose, we are only interested in the degree of relevance between $2 \in X$ and $a \in Z$. Then, using max-min composition,

 $\mu_{R\circ S}(2, a) = max\{(0.4 \land 0.9), (0.2 \land 0.2), (0.8 \land 0.5), (0.9 \land 0.7)\} \\ = max\{0.4, 0.2, 0.5, 0.7\} = 0.7$



2D Membership functions : Binary fuzzy relations

(Binary) fuzzy relations are fuzzy sets $A \times B$ which map each element in $A \times B$ to a membership grade between 0 and 1 (both inclusive). Note that a membership function of a binary fuzzy relation can be depicted with a 3D plot.



Important: Binary fuzzy relations are fuzzy sets with two dimensional MFs and so on.

Let, $X = R^+ = y$ (the positive real line) and $R = X \times Y =$ "y is much greater than x"

The membership function of $\mu_R(x, y)$ is defined as

$$\mu_{R}(x, y) = \begin{cases} \frac{(y-x)}{4} & \text{if } y > x\\ 0 & \text{if } y \le x \end{cases}$$

Suppose, $X = \{3, 4, 5\}$ and $Y = \{3, 4, 5, 6, 7\}$, then
$$R = \begin{array}{c} 3 & 4 & 5 & 6 & 7\\ 0 & 0.25 & 0.5 & 0.75 & 1.0\\ 0 & 0 & 0.25 & 0.5 & 0.75\\ 0 & 0 & 0 & 0.25 & 0.5 \end{array}$$

How you can derive the following?

If x is A <u>or</u> y is B then z is C;

Given that

- R_1 : If x is A then z is c $[R_1 \in A \times C]$
- 2 R_2 : If y is B then z is C $[R_2 \in B \times C]$

• Hint:

- You have given two relations R_1 and R_2 .
- Then, the required can be derived using the union operation of *R*₁ and *R*₂

Fuzzy Propositions

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

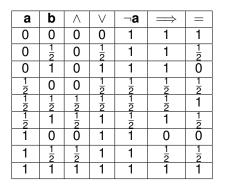
15.01.2016 20 / 64

• • • • • • • • • • • •

- The basic assumption upon which crisp logic is based that every proposition is either TRUE or FALSE.
- The classical two-valued logic can be extended to multi-valued logic.
- As an example, three valued logic to denote true(1), false(0) and indeterminacy (¹/₂).

Two-valued logic vs. Multi-valued logic

Different operations with three-valued logic can be extended as shown in the following truth table:



Fuzzy connectives used in the above table are:

AND (\land), OR (\lor), NOT (\neg), IMPLICATION (\Longrightarrow) and EQUAL (=).

Fuzzy connectives defined for such a three-valued logic better can be stated as follows:

Symbol	Connective	Usage	Definition
_	NOT	¬P	1 - T(P)
V	OR	$P \lor Q$	$max{T(P), T(Q)}$
Λ	AND	$P \wedge Q$	min{ T(P),T(Q) }
\Rightarrow	IMPLICATION	$(P \Longrightarrow Q)$ or	max{(1 - T(P)),
		$(\neg P \lor Q)$	T(Q) }
=	EQUALITY	(P = Q) or	1 - T(P) - T(Q)
		$ [(P \Longrightarrow Q) \land$	
		$(Q \Longrightarrow P)]$	

-∢ ∃ ▶

Fuzzy proposition

Example 1:

- P : Ram is honest
 - T(P) = 0.0 : Absolutely false
 - T(P) = 0.2 : Partially false
 - T(P) = 0.4 : May be false or not false
 - T(P) = 0.6 : May be true or not true
 - T(P) = 0.8 : Partially true
 - T(P) = 1.0 : Absolutely true.

- E 🕨

Example 2 : Fuzzy proposition

- P : Mary is efficient ; T(P) = 0.8;
- Q : Ram is efficient ; T(Q) = 0.6
 - Mary is not efficient. $T(\neg P) = 1 - T(P) = 0.2$
 - **2** Mary is efficient and so is Ram. $T(P \land Q) = min\{T(P), T(Q)\} = 0.6$
 - Sither Mary or Ram is efficient $T(P \lor Q) = maxT(P), T(Q) = 0.8$
 - If Mary is efficient then so is Ram $T(P \Longrightarrow Q) = max\{1 - T(P), T(Q)\} = 0.6$

A (10) A (10)

- The fundamental difference between crisp (classical) proposition and fuzzy propositions is in the range of their truth values.
- While each classical proposition is required to be either true or false, the truth or falsity of fuzzy proposition is a matter of degree.
- The degree of truth of each fuzzy proposition is expressed by a value in the interval [0,1] both inclusive.

Canonical representation of Fuzzy proposition

 Suppose, X is a universe of discourse of five persons. Intelligent of x ∈ X is a fuzzy set as defined below.

Intelligent: { $(x_1, 0.3), (x_2, 0.4), (x_3, 0.1), (x_4, 0.6), (x_5, 0.9)$ }

• We define a fuzzy proposition as follows:

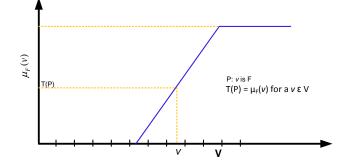
P:x is intelligent

- The canonical form of fuzzy proposition of this type, P is expressed by the sentence P : *v* is F.
- Predicate in terms of fuzzy set.

P : v is F ; where v is an element that takes values v from some universal set V and F is a fuzzy set on V that represents a fuzzy predicate.

 In other words, given, a particular element ν, this element belongs to F with membership grade μ_F(ν).

Graphical interpretation of fuzzy proposition



 For a given value v of variable V in proposition P, T(P) denotes the degree of truth of proposition P.

Fuzzy Implications

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

15.01.2016 29 / 64

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• A fuzzy implication (also known as fuzzy If-Then rule, fuzzy rule, or fuzzy conditional statement) assumes the form :

If x is A then y is B

where, A and B are two linguistic variables defined by fuzzy sets A and B on the universe of discourses X and Y, respectively.

• Often, *x* is *A* is called the antecedent or premise, while *y* is *B* is called the consequence or conclusion.

- If pressure is High then temperature is Low
- If mango is Yellow then mango is Sweet else mango is Sour
- If road is Good then driving is Smooth else traffic is High
- The fuzzy implication is denoted as $R: A \rightarrow B$
- In essence, it represents a binary fuzzy relation R on the (Cartesian) product of $A \times B$

• Suppose, *P* and *T* are two universes of discourses representing pressure and temperature, respectively as follows.

• $P = \{ 1, 2, 3, 4 \}$ and $T = \{ 10, 15, 20, 25, 30, 35, 40, 45, 50 \}$

- Let the linguistic variable High temperature and Low pressure are given as
- $T_{HIGH} = \{(20, 0.2), (25, 0.4), (30, 0.6), (35, 0.6), (40, 0.7), (45, 0.8), (50, 0.8)\}$

•
$$P_{LOW} = (1, 0.8), (2, 0.8), (3, 0.6), (4, 0.4)$$

Fuzzy implications : Example 2

 Then the fuzzy implication If temperature is High then pressure is Low can be defined as

 $R: T_{HIGH} \rightarrow P_{LOW}$

		1	2	3	4
	20	[0.2	0.2	0.2	0.2 0.4 0.4 0.4 0.4 0.4 0.4
	25	0.4	0.4	0.4	0.4
	30	0.6	0.6	0.6	0.4
where, R =	35	0.6	0.6	0.6	0.4
	40	0.7	0.7	0.6	0.4
	45	0.8	0.8	0.6	0.4
	50	0.8	0.8	0.6	0.4 🖌

Note : If temperature is 40 then what about low pressure?

In general, there are two ways to interpret the fuzzy rule $A \rightarrow B$ as

- A coupled with B
- A entails B

< 17 ▶

 $R : A \rightarrow B = A \times B = \int_{X \times Y} \mu_A(x) * \mu_B(y)|_{(x,y)}$; where * is called a T-norm operator.

T-norm operator

The most frequently used T-norm operators are:

Minimum : $T_{min}(a, b) = min(a, b) = a \wedge b$

Algebric product : $T_{ap}(a, b) = ab$

Bounded product : $T_{bp}(a, b) = 0 \lor (a + b - 1)$

Drastic product :
$$T_{dp} = \begin{cases} a & if \quad b = 1 \\ b & if \quad a = 1 \\ 0 & if \quad a, b < 1 \end{cases}$$

Here, $a = \mu_A(x)$ and $b = \mu_B(y)$. T_* is called the function of T-norm operator.

イロト 不得 トイヨト イヨト 二日

Based on the T-norm operator as defined above, we can automatically define the fuzzy rule $R : A \rightarrow B$ as a fuzzy set with two-dimensional MF:

 $\mu_B(x, y) = f(\mu_A(x), \mu_B(y)) = f(a, b)$ with $a = \mu_A(x)$, $b = \mu_B(y)$, and f is the fuzzy implication function.

In the following, few implications of $R: A \rightarrow B$

Min operator:

$$R_m = A \times B = \int_{X \times Y} \mu_A(x) \wedge \mu_B(y)|_{(x,y)}$$
 or $f_{min}(a,b) = a \wedge b$
[Mamdani rule]

Algebric product operator

$$R_{ap} = A \times B = \int_{X \times Y} \mu_A(x) \cdot \mu_B(y)|_{(x,y)}$$
 or $f_{ap}(a, b) = ab$
[Larsen rule]

Bounded product operator

$$\begin{aligned} R_{bp} &= A \times B = \int_{X \times Y} \mu_A(x) \odot \mu_B(y)|_{(x,y)} = \\ \int_{X \times Y} 0 \lor (\mu_A(x) + \mu_B(y) - 1)|_{(x,y)} \\ \text{or } f_{bp} &= 0 \lor (a + b - 1) \end{aligned}$$

Drastic product operator

$$R_{dp} = A \times B = \int_{X \times Y} \mu_A(x) \hat{\bullet} \mu_B(y)|_{(x,y)}$$

or $f_{dp}(a, b) = \begin{cases} a & if \quad b = 1 \\ b & if \quad a = 1 \\ 0 & if \quad otherwise \end{cases}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

There are three main ways to interpret such implication:

Material implication :

 $R: A \to B = \bar{A} \cup B$

Propositional calculus :

 $R: A \rightarrow B = \bar{A} \cup (A \cap B)$

Extended propositional calculus :

 $R: A
ightarrow B = (ar{A} \cap ar{B}) \cup B$

With the above mentioned implications, there are a number of fuzzy implication functions that are popularly followed in fuzzy rule-based system.

Zadeh's arithmetic rule :

$$\begin{aligned} R_{za} &= \bar{A} \cup B = \int_{X \times Y} 1 \wedge (1 - \mu_A(x) + \mu_B(y))|_{(x,y)} \\ \text{or} \\ f_{za}(a,b) &= 1 \wedge (1 - a + b) \end{aligned}$$

Zadeh's max-min rule :

$$\begin{aligned} R_{mm} &= \bar{A} \cup (A \cap B) = \int_{X \times Y} (1 - \mu_A(x)) \vee (\mu_A(x) \wedge \mu_B(y))|_{(x,y)} \\ \text{or} \\ f_{mm}(a,b) &= (1 - a) \vee (a \wedge b) \end{aligned}$$

Boolean fuzzy rule

$$egin{aligned} &R_{bf} = ar{A} \cup B = \int_{X imes Y} (1 - \mu_A(x)) ee \mu_B(x)|_{(x,y)} \ & ext{or} \ &f_{bf}(a,b) = (1 - a) ee b; \end{aligned}$$

Goguen's fuzzy rule:

$$R_{gf} = \int_{X \times Y} \mu_A(x) * \mu_B(y)|_{(x,y)}$$
 where $a * b = \begin{cases} 1 & \text{if } a \leq b \\ rac{b}{a} & \text{if } a > b \end{cases}$

If x is A then y is B with the implication of Zadeh's max-min rule can be written equivalently as :

$$R_{mm} = (A \times B) \cup (\bar{A} \times Y)$$

Here, *Y* is the universe of discourse with membership values for all $y \in Y$ is 1, that is , $\mu_Y(y) = 1 \forall y \in Y$.

Suppose $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3, 4\}$

and $A = \{(a, 0.0), (b, 0.8), (c, 0.6), (d, 1.0)\}$

 $B = \{(1, 0.2), (2, 1.0), (3, 0.8), (4, 0.0)\}$ are two fuzzy sets.

We are to determine $R_{mm} = (A \times B) \cup (\bar{A} \times Y)$

Example 3: Zadeh's min-max rule:

The computation of $R_{mm} = (A \times B) \cup (\bar{A} \times Y)$ is as follows:

$$A \times B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ b \\ c \\ d \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0.2 & 0.8 & 0.8 & 0 \\ 0.2 & 0.6 & 0.6 & 0 \\ 0.2 & 1.0 & 0.8 & 0 \end{bmatrix} \text{ and}$$
$$\bar{A} \times Y = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0.2 & 0.2 & 0.2 & 0.2 \\ 0.4 & 0.4 & 0.4 & 0.4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore,

$$R_{mm} = (A \times B) \cup (\bar{A} \times Y) =$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ a & 1 & 1 & 1 & 1 \\ 0.2 & 0.8 & 0.8 & 0.2 \\ c & 0.4 & 0.6 & 0.6 & 0.4 \\ d & 0.2 & 1.0 & 0.8 & 0 \end{bmatrix}$$

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

15.01.2016 44/64

Example 3 :

 $X = \{a, b, c, d\}$

$$Y = \{1, 2, 3, 4\}$$

Let, $A = \{(a, 0.0), (b, 0.8), (c, 0.6), (d, 1.0)\}$

$$B = \{(1, 0.2), (2, 1.0), (3, 0.8), (4, 0.0)\}$$

Determine the implication relation :

If x is A then y is B

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ a \\ b \\ c \\ d \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.2 & 0.8 & 0.8 & 0 \\ 0.2 & 0.6 & 0.6 & 0 \\ 0.2 & 1.0 & 0.8 & 0 \end{bmatrix}$$

Here, $A \times B =$

イロト イヨト イヨト イヨト

This *R* represents If *x* is A then *y* is B

A D > A B > A B > A

IF x is A THEN y is B ELSE y is C. The relation R is equivalent to

$$R = (A \times B) \cup (\bar{A} \times C)$$

The membership function of *R* is given by $\mu_R(x, y) = max[min\{\mu_A(x), \mu_B(y)\}, min\{\mu_{\bar{A}}(x), \mu_C(y)]$

4 A N

Example 4:

 $X = \{a, b, c, d\}$

$$Y = \{1, 2, 3, 4\}$$

 $\textit{A} = \{(\textit{a}, 0.0), (\textit{b}, 0.8), (\textit{c}, 0.6), (\textit{d}, 1.0)\}$

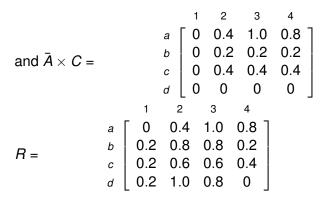
- $\textit{B} = \{(1, 0.2), (2, 1.0), (3, 0.8), (4, 0.0)\}$
- $\textit{C} = \{(1,0), (2,0.4), (3,1.0), (4,0.8)\}$

Determine the implication relation :

If x is A then y is B else y is C

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ a & 0 & 0 & 0 & 0 \\ b & 0.2 & 0.8 & 0.8 & 0 \\ c & 0.2 & 0.6 & 0.6 & 0 \\ d & 0.2 & 1.0 & 0.8 & 0 \end{bmatrix}$$

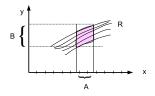
Here. $A \times B =$



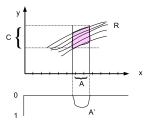
-

Interpretation of fuzzy implication

If x is A then y is B



If x is A then y is B else y is C



Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

15.01.2016 50 / 64

Fuzzy Inferences

15.01.2016 51 / 64

Let's start with propositional logic. We know the following in propositional logic.

$$\textcircled{0} Modus Ponens: P, P \Longrightarrow Q, \qquad \Leftrightarrow Q$$

3 Modus Tollens :
$$P \Longrightarrow Q, \neg Q \qquad \Leftrightarrow, \neg P$$

• • • • • • • • • • • •

Given

- $\bigcirc C \lor D$

- $(A \land \sim B) \Longrightarrow (R \lor S)$

From the above can we infer $R \lor S$?

Similar concept is also followed in fuzzy logic to infer a fuzzy rule from a set of given fuzzy rules (also called fuzzy rule base).

A (1) > A (1) > A

Inferring procedures in Fuzzy logic

Two important inferring procedures are used in fuzzy systems :

• Generalized Modus Ponens (GMP)

If x is A Then y is Bx is A'

y is *B*′

• Generalized Modus Tollens (GMT)

If x is A Then y is B y is B'

- Here, A, B, A' and B' are fuzzy sets.
- To compute the membership function A' and B' the max-min composition of fuzzy sets B' and A', respectively with R(x, y) (which is the known implication relation) is to be used.

Thus,

$$B' = A' \circ R(x, y) \qquad \mu_B(y) = max[min(\mu_{A'}(x), \mu_R(x, y))]$$

$$A' = B' \circ R(x, y) \qquad \mu_A(x) = max[min(\mu_{B'}(y), \mu_R(x, y))]$$

Generalized Modus Ponens (GMP)

P : If x is A then y is B

Let us consider two sets of variables x and y be

 $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$, respectively.

Also, let us consider the following.

$$A = \{(x_1, 0.5), (x_2, 1), (x_3, 0.6)\}$$

 $B = \{(y_1, 1), (y_2, 0.4)\}$

Then, given a fact expressed by the proposition x is A', where $A' = \{(x_1, 0.6), (x_2, 0.9), (x_3, 0.7)\}$ derive a conclusion in the form y is B' (using generalized modus ponens (GMP)).

If x is A Then y is B x is A'

y is *B*′

We are to find $B' = A' \circ R(x, y)$ where $R(x, y) = max\{A \times B, \overline{A} \times Y\}$

$$A \times B = \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \begin{bmatrix} \begin{array}{c} 0.5 & 0.4 \\ 1 & 0.4 \\ 0.6 & 0.4 \end{array} \end{bmatrix} \text{ and } \overline{A} \times Y = \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \begin{bmatrix} \begin{array}{c} 0.5 & 0.5 \\ 0 & 0 \\ 0.4 & 0.4 \end{array} \end{bmatrix}$$

Note: For $A \times B$, $\mu_{A \times B}(x, y) = min(\mu_A x, \mu_B(y))$

Example: Generalized Modus Ponens

$$R(x, y) = (A \times B) \cup (\overline{A} \times y) = \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0.4 \\ 0.6 & 0.4 \end{bmatrix}$$

Now, $A' = \{(x_1, 0.6), (x_2, 0.9), (x_3, 0.7)\}$

Therefore,
$$B' = A' \circ R(x, y) =$$

[0.6 0.9 0.7] $\circ \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0.4 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.5 \end{bmatrix}$

Thus we derive that *y* is B' where $B' = \{(y_1, 0.9), (y_2, 0.5)\}$

Generalized Modus Tollens (GMT)

- P: If x is A Then y is B
- Q: *y* is *B*'

x is *A*′

< 17 ▶

Example: Generalized Modus Tollens

- Let sets of variables x and y be $X = \{x_1, x_2, x_3\}$ and $y = \{y_1, y_2\}$, respectively.
- Assume that a proposition **If** *x* **is** *A* **Then** *y* **is** *B* given where $A = \{(x_1, 0.5), (x_2, 1.0), (x_3, 0.6)\}$ and $B = \{(y_1, 0.6), (y_2, 0.4)\}$
- Assume now that a fact expressed by a proposition y is B is given where $B' = \{(y_1, 0.9), (y_2, 0.7)\}.$
- From the above, we are to conclude that x is A'. That is, we are to determine A'

Example: Generalized Modus Tollens

• We first calculate $R(x, y) = (A \times B) \cup (\overline{A} \times y)$

$$R(x,y) = \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \begin{bmatrix} \begin{array}{c} y_1 \\ 0.5 \\ 1 \\ 0.6 \end{array} \\ 0.6 \end{bmatrix}$$

• Next, we calculate $A' = B' \circ R(x, y)$

$$A' = \begin{bmatrix} 0.9 & 0.7 \end{bmatrix} \circ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0.4 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.9 & 0.6 \end{bmatrix}$$

• Hence, we calculate that x is A' where $A' = [(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)]$

Apply the fuzzy GMP rule to deduce **Rotation is quite slow** Given that :

- If temperature is High then rotation is Slow.
- temperature is Very High

Let,

 $X = \{30, 40, 50, 60, 70, 80, 90, 100\}$ be the set of temperatures.

 $Y = \{10, 20, 30, 40, 50, 60\}$ be the set of rotations per minute.

A (10) F (10) F (10)

Practice

The fuzzy set High(H), Very High (VH), Slow(S) and Quite Slow (QS) are given below.

- $H = \{(70, 1), (80, 1), (90, 0.3)\}$
- $VH = \{(90, 0.9), (100, 1)\}$
- ${\boldsymbol{\mathcal{S}}} = \{(30, 0.8), (40, 1.0), (50, 0.6)\}$
- $QS = \{(10, 1), (20, 0.8)\}$
 - If temperature is High then the rotation is Slow.

$$\boldsymbol{R} = (\boldsymbol{H} \times \boldsymbol{S}) \cup (\overline{\boldsymbol{H}} \times \boldsymbol{Y})$$

2 temperature is Very High

Thus, to deduce "rotation is Quite Slow", we make use the composition rule $QS = VH \circ R(x, y)$

Any questions??

Debasis Samanta (IIT Kharagpur)

Soft Computing Applications

15.01.2016 64 / 64

• • • • • • • • • • • •