
Information System Design
(IT60105)

Lecture 26

Object-Oriented System Testing

Overview of Testing OO P
rograms

2

Lecture #23

• Procedural vs OO paradigms

• Why not Traditional Testing?

• Issues

• Methodology

Overview of Testing OO P
rograms

3

Procedural Vs OO programs
Procedural Vs OO Software development

Overview of Testing OO P
rograms

4

Example: Procedural Program

int x, y, radious, length, sh_type;
float angle;
enum { CIRCLE=0, SQUARE=1 }
void draw (sh_type){

case CIRCLE:
/* code to draw circle */ break;
case SQUARE:
/* code to draw square*/ break;
case default: break; }

void rotate (int sh_type, int dgree)
{
case CIRCLE:
/*code to rotate circle */ break;
case SQUARE:
/*codeto rotate square*/ break;
case default: break; }

void move (int x_off,y_off){
x= x+x_off; y= y+y_off; }

This is a procedural
program for graphical
tool. Two shapes are
there: circle, square.
Each have functions
draw(), rotate(), move()

main()

rotate() move()draw()

Overview of Testing OO P
rograms

5

Example: OO Program
public class Shape(){

public int x, y; float angle;
 public abstract void draw ();
 public void rotate(int degree);
 public void move(int x_off,
y_off){
x= x+x_off; y= y+y_off; }}

public class Circle extends Shape{
private int radious;
public void draw(){/* code*/ }
public void rotate(int dgree){
draw(); }}

public class Square extends
Shapes{
private int length;
public void draw(){/* code*/ }
public void rotate(int degree){
/* code*/ }}

This is an Object-oriented
program for graphical
tool. Two shapes are
there: circle, square.
Each have functions
draw(), rotate(), move()

Shape

Circle Square

Note:
1. Methods in oo programs are shorter in oo programs
2. Arbitrary sequence of class methods can call because of

reuse

Overview of Testing OO P
rograms

6

Procedural vs OO programs

Consists of functions and
global data

Consists of classes and objects

Communication through
function calls and global data

Communication through
message passing and inheritance

Control flow Both data & control flow

Functional decomposition Recursion and inheritance

Reuse is incidental Reuse is central

Overview of Testing OO P
rograms

7

Procedural vs OO Software
Development

Primarily waterfall model Incremental iterative and recursive
model

Units=functions Units=classes

Data & call coupling Inheritance & message coupling

ER diagrams Semantic nets

Data flow diagrams Control flow diagrams

Structured charts Interaction diagrams

Primarily top-down
development

Top-down & bottom-up development

White box testing emphasized Block box testing emphasized

Analyze a little ,Design a little, Code a little, Test a little

Overview of Testing OO P
rograms

8

Overview of Testing OO P
rograms

9

Why not Traditional Testing?

• Traditional testing considers only static binding. so
execution order is to be predefined but this not
happen in oo programs

• Traditional white box testing not adequate:
– Traditional testing Consider only on intra-procedural logic

and control flow

– Traditional testing do not Consider interactions among
method calls in a class

Overview of Testing OO P
rograms

10

Why not Traditional Testing? cont

• Traditional block box testing not adequate:
– Basic OO program code structure is different

– In oo testing, exhaustive testing is impossible. Because
infinite number of method sequences can be possible.

– E.g.: Observationally equivalent objects may contain
variables with different values. Because

• Object may contain variables that are not important in the
given state

• Object May contain variable invariants

Overview of Testing OO P
rograms

11

Why not Traditional Testing? cont

• Traditional dataflow testing not adequate:
– Can be applied both to individual methods in a class and to

methods in a class that interact through messages

– But do not consider dataflow interactions that arise when
users of a class invoke sequences of methods in an
arbitrary order.

Overview of Testing OO P
rograms

12

OO Paradigms
Language-Specific features

Overview of Testing OO P
rograms

13

OO Paradigms

• State Dependent Behavior
– The behavior of objects depends on their state. so stateless

behavioral testing in not sufficient for oo programs.
• Encapsulation

– This giving observability problem (private attributes access
is not allowed for outside of class). but test oracles
required access of all attributes of class

Overview of Testing OO P
rograms

14

OO Paradigms cont

• Inheritance
– Subclass can invoke constructors of super class, so

constructors should consider in testing
– Testing of subclass from scratch is expansive. So reuse of

superclass tests should consider in testing.
• Polymorphism and Dynamic binding

– Tests should exercise all possible method bindings of
polymorphic method call.

– Undesidability problem because of dynamic binding

Overview of Testing OO P
rograms

15

OO Paradigms cont

• Abstract Classes
– Non-instantiation problem: abstract classes are incomplete. So

they can’t be instantiate directly.
– These can be part of interface elements of libraries or

components, so these classes should be test.
• Exception Handling

– Textual distance between the point where an exception is thrown
and the point where it is handle and Dynamic determination of
binding should be consider.

• Concurrency
– Deadlock and race conditions should be consider.

Overview of Testing OO P
rograms

16

Language-Specific features

• Different languages in using different OO paradigms

• Language specific hazards:
– C++

• Naming pollution, friend function, no type safe (dynamic
array, pointer, casting), this and new problem and etc.

• Implicit type coercion with overloaded operators

– Java
• Incompatible on different Java Virtual Machines or an

executing user's environment.

• No thread scheduling policy

Overview of Testing OO P
rograms

17

Overview of Testing OO P
rograms

18

Phases of Testing

• Intra Class or Class Testing (Unit)
– It deals with classes in isolation
– It includes

• Method testing by Traditional testing methods

• Message testing

• Inheritance testing

• Exception testing (local)

• Polymorphism testing (local)
• Abstract classes testing

Overview of Testing OO P
rograms

19

Phases of Testing cont

• Inter Class Testing (Integration)
– In this phase, class interactions are considered
– It includes

• Exception testing
• Polymorphism testing

– Integration is not hierarchical in OO
• Coupling is not via subroutine
• ‘Top-down’ , ‘Bottom-up’ have little meaning

– Integration Testing can be done in 2 ways
• Thread-based
• Use-based (dependent & independent classes)

Overview of Testing OO P
rograms

20

Phases of Testing cont

• Integration Testing
– Thread-based testing

• Integrates the set of classes required to respond to one input or
event

• Integrate one thread at a time

– Use-based testing
• Integrate/test independent classes

• Then, test next layer of (dependent) classes that use the
independent classes (layer by layer, or cluster-based)

• Repeat adding/testing next layer of dependent classes until entire
system is constructed

• Driver classes or methods required to test lower layers

Overview of Testing OO P
rograms

21

Phases of Testing cont

• System Testing
– It considers the software as a whole independently from its

internal structure

– Traditional system and acceptance testing techniques can
be applied.

Overview of Testing OO P
rograms

22

UML diagrams in OO Testing

• UML diagrams plays vital role in each OO testing
phase.

• Class testing
– Statechart diagram, class diagram

• Interclass testing
– Class diagram, activity diagram, interaction diagram

• System testing
– Use case diagram

