Information System Design
IT60105

Lecture 25

Information System Testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Lecture #25

* Software testing strategies

* Unit testing
* Integration testing
* System testing

* Regression testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Preliminaries on Testing

* Testing objectives

— The primary objective is to 1dentify all defects existing in a software
product

— Testing requirements

* Sequence of testing that is necessary to follow to adequately test a system

— Test case design

* A test case is the triplet [/, S, O], where [is the data input to the system, S,

1s the state of the system at which the data 1s input, and O is the expected
output of the system

* A good test case is one that has a high probability to uncover an error

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Software Testing Strategy

* Testing objectives

— Test oracle

* Is a source of expected results for a test case

— Test suit design

* A test suit is the set of all test cases with which a given system is to be
tested

* A good test suit is a test suit with minimum number of test cases and
successful to uncovered errors, if any

— Test driver

* Is a program which testing a system given a test suit as an input

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

* Testing strategies

— Unit testing

* Start testing at the individual component (unit level)

— Integration testing

* The pre-tested individual components are slowly integrated and
tested at each level of integration (integration level)

— System testing
* Final level testing to test the fully integrated system (system level)

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

* Unit testing

— Testing without execution
* Code walkthrough

* Code inspection

— Testing with execution

* Black-box testing
— Exhaustive testing
— Equivalence partition
— Boundary-value analysis

— Comparison testing
* White-box testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

* Unit testing (contd.)

— Testing with execution
* Black-box testing
* White-box testing

— Control structure testing
» Statement coverage
» Condition coverage
» Branch coverage
» Data-flow testing

» Loop testing
— Basis path testing
— Mutation testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

— Unit testing

— Integration testing
* Big-bang testing
* Top-down testing
* Bottom-up testing
* Mixed integration testing

* Smoke testing

— System testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

— Unit testing

— Integration testing

— System testing

* Acceptance testing
— Alpha testing
— Beta testing

* Performance testing

— Stress, Volume, Compatibility, Recovery, Security etc.

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Software Testing Strategy

Testing inthe small ——»

Unitleveltesting

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Unit Testing Strategies

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Unit Testing Strategies

* Unit testing (or module testing) 1s the testing of different
components 1n isolation

* Testing without execution

— Code walk-through

* Code is given to the testing team. Each team members selects some test
cases and simulates execution of the code by hand

* Discover any algorithmic or logical error is there in the module
* Focuses on discovery of errors and not on how to fix the discovered errors
* Informal meeting for debugging

— Code inspection
* To discover or fix any common types of errors caused due to oversight and
Improper programming
* Also identifies coding standard

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Unit Testing Strategies
* Testing with execution

— Black-box testing

* Test cases are designed from an examination of the input/output
values only

* Tests are based on requirements and functionality
* No knowledge of design or code is required

— White-box testing

* Based on knowledge of the internal logic of an application’s code

* Tests are based on coverage of code statements, branches, paths,
conditions etc.

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Requirement of Unit Testing

* Following are necessary to

accomplish the unit testing Caller

{ Nonlocal | procedure
data '

— The procedures belonging to s tructures
other modules that the unit
under tests calls

— Non local data structures that
the module accesses

called
procedure

— A procedure to call the
functions of the module under
test with appropriate
parameters

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Requirement of Unit Testing

Caller module or called module
may not be available during the test

{Nonlocal j

of the unit under test e

tstructures |
e

A

Driver

Driver — dummy for caller
procedure

Testcase

Stub Stub

Stub — dummy for called procedure

\i

Driver and stub are to simulate the Testrosul
behavior of actual caller and called
procedures

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Black-box Testing

Black-box testing also called behavioral testing, focuses on
the functional requirements of the unit under test

Black-box testing attempts to find errors in the following
categories

— Incorrect or missing functions
— Interface errors

— Errors 1n data structures or external data access
— Behavior or performance errors

— Initialization or termination errors

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

Black-box Testing Strategies

* Following are few important black-box testing
techniques

— Exhaustive testing
— Equivalence partitioning
— Boundary value analysis

— Comparison testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Exhaustive Testing

* For a set of all possible input, test case 1s derived as a
permutation of all input

* Brain-less (or brute force) testing

* Suitable for units where number of 1mnput as well as
their domain 1s less

* As the number of mput values grows and number of
discrete values for each data item increases, this
testing strategy 1s infeasible

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Equivalence Partitioning

* Equivalent partitioning method divides the input domain of a program into
classes of data from which test cases can be derived

* The partitioning is done in such a way that the behavior of the program is
similar to every input data belonging to the same equivalence classes

Example:
Insertion of an element into an array of sorted elements

Equivalentpartition:[ni,nj,nk]

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Boundary Value Analysis

* Because of human psychological factor a number of error tends to occur at
the boundaries of the input domain rather at the “center”

* BVAleads to a selection of test cases that exercise bounding values

* BVAis a test case design technique that complements equivalent
partitioning

* Rather than selecting an element of an equivalent partition, BVA leads to
the selection of test cases at the “edges™ of the partition

* Rather than focusing solely on input conditions, BVA derives the test cases
from the output domain as well

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Boundary Value Analysis: Example

BinarySearch(low, high)
{
mid = (low + high) / 2;
if (A[mid] = key)
return (mid);
if (key < A[mid])
high = mid — 1;
else
low = mid + 1;
BinarySearch (low, high);
}

TN~

— O -

Output domain: Successful or Failure (lower / upper ends)

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Comparison Testing

Several versions of same module (preferably by different team)
can be developed, even when only a single version will be used
in the delivered system

Test cases designed using other black-box techniques are
provided as input to each version of the unit

If the output from each version is the same, it 1s assumed that the
module under test 1s correct

Expensive; Preferable for critical applications only

Not a foolproof technique — If all the versions are erroneous to
the same 1nput

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

White-box Testing

* Unit testing

— White-box testing

* Control structure testing
— Statement coverage
— Condition coverage
— Branch coverage
— Data flow testing
— Loop testing

* Basis path testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Why White-box Testing

* We have done Black-box testing and the testing
ensures that the program requirements have been met
or not

— Black-box testing discovers errors but not the sources of
the errors

— Black-box testing may not be exhaustive to uncover certain
errors (such as, incorrect assumption, logical errors,
typographical errors etc.)

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

White-box Testing

* Also called glass-box testing entirely based on the program
structure

* To der1ve the tests cases, so that

Exercise all statements in the module

Exercise all logical decisions on their true and false sides

Execute all loops at their boundaries and within their operational
bounds

All independent paths within a module have been exercised at least
once

Exercise internal data structures to ensure their validity

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

White-box Testing Strategies

* White-box testing strategies

— Control structure testing

* Statement coverage
* Branch coverage
* Condition coverage

* Loop testing
— Basis path testing

— Data flow testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Statement Coverage

The statement coverage strategy aims to design test
cases so that every statement 1n a program 1s executed
at least once

Statement coverage debugs the failure due to some
illegal memory access (e.g. pointers), wrong result
computation etc.

This technique derives test case so that all statements
in a program 1s executed at least once

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

Statement Coverage: Example 1

Euelid's GCD Algorithm

int GCD(1int x, 1nt y)

{
I while (x I=1y) { Cover statement 1: [x =5, y = 4]
2 1f (x>y) then
3 X=X-V; Cover statement 3: [x =5, y = 4]
4 else Y=y-X; Cover statement 4: [x =4,y = 5]
S } So the test case: {[5,4], [4,5] }
6 return Xx;
h

15 November, 200 Information System Desig

7 n, IT60105, Autumn 2007

Statement Coverage: Example 2

Read(x,y)
If(x>y)
Print(x) Cover statement: [x =5,y = 2]
Else
Print (y) Cover statement: [x=2,y=5][x=5,y = 5]
) The test case: { ?...7)
15 November, 200 Information System Desig

14 n, IT60105, Autumn 2007

Branch Coverage Testing

int GCD(int x, int y)

d
1 while (x !=y) {

2 if (x>y) then

3 X=X-Y;
4 else y=y-x;
55

6 returnx;
;

15 November, 200
7

Branch 1: [x =5,y = 3]

[x=3,y=9]
[x=3,y=3]

Branch 2: [x =95,y = 3]

Information System Desig
n, IT60105, Autumn 2007

[x=3,y=9]

(true)
(false)

15 November, 200

Condition Coverage Testing

if C then { S1 } else { S2 }
While C then { S }
do { S } while C

switch C
case { S1 }
case { S2 }

C = condition with boolean operators

and/or relational operator

Example 1: C = (xand y) or z

True False
Xy z Xy z
11 1 000
0 01 010
10 1
01 1
11 0

Test case = 23

Example 2: C = (xand y) and z
True:1 1 1 False: 010

Information System Desig

n, IT60105, Autumn 2007

Loop Testing

* Test for

— Skip the lop entirely

— Only one pass

— Two passes

. — 11 PaASSCSs, m<n
Simyple looyp

— n-1, n, n+1 passes

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Loop Testing

* Test for

— Innermost loop = simple loop

— Outermost loop =2 simple loop

Nested loop

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Loop Testing

* Test for

Loop I

— Loop 1 = simple loop

<> 1 — Loop 2 = simple loop

Loop !

Concatenated loop

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Basis Path Testing

Cyclomatic complexity metric
X (McCabe’s Number)
R=E-N+2
R4 : E = # edge
N = # node
0 R = Number of independent paths
0 4 = Number of predicate nodes + 1

; Example: Number of basis paths = 4

L 5 ¢ e Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11
Path 3: 1-2-3-6-8-8-10-1-11
Path 4: 1-2-3-6-7-9-10-1-11

1 |e—

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Mutation Testing

It 1s a fault-based testing

Faults are deliberately injected into a program, in order to determine
whether or not a set of test inputs can distinguish between the original
program and the programs with injected faults

It 1s based on adequacy criteria: whether a test set 1s adequate to cover all
faults or not

Mutation: is a simple change (error) into the code being tested; each
version 1s called a mutant

Program neighborhood: The original program plus the mutant programs are
collectively known as the program neighborhood

Mutant dead: if the execution of the mutated code against the test set
distinguishes the behavior or output from the original program

Mutation adequacy score: To supply test set until all mutants are dead

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

Volnputtest ! create Volnputtest |
progen ——— i 1Ly pi 1 g
]

Mutation Testing

mutants 1oocases

' I
booanalysisand
tomarkequivalent i
i mutants !
! '

Runtestcase on
program

Y

PRIk

~

[Tt ' ey oS Runtestcase on

i Fix ! F ofrogram tesT™~ T .
— € < P each live

'oprogram Sse_correct? et

bode el S .- program

~ -
~ -
~.~

;’l\~

. -
L4 ~
T -~ ~ F

it <€ 1’g\|mutantsdead’?;:

~

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Integration Testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Why Integration Testing?

* Integration testing

— Interfacing

* Data can be lost across an interface

One module can have an inadvertent, adverse effect on another

Sub functions, when combined, may not produce the desired
function

Individually acceptable imprecision may be magnified to
unacceptable levels

Global data structures can causes problems

andsoon..........

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Integration Plan and Testing

* Integration plan

— A systematic integration plan should be adopted prior to
testing

— The integration plan specifies the steps and order in which
modules are to be combined to realize the full system

— An important factor to guide the integration plan is the
module dependency graph as obtained in the structured
design of the system

— After each integration step, the partially integrated system
1s to be tested

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Integration Testing Strategies

* Following are the well known practices
— Big-bang integration testing
— Top down integration testing

— Bottom-up 1ntegration testing

— Mixed integration testing

— Smoke testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Big-bang Integration Testing

* The most simple integration testing (non incremental)
approach

* All modules making up a system are integrated at one
go

* The entire program 1s tested as a whole

— The chaos usually results!

— Errors debugging are very expensive to fix

Suitable, only for very small system (or a part of a
lager subsystem)

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Top-down Integration Testing

* It is an incremental approach to build and test a system

* Starts with main module and add the modules
— Depth-first integration
— Breadth-first integration

0 Layer 0

y
N2 M3 M4 Layert

NN

NS M6 N7

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Top-down Integration Testing

* This testing strategy requires the use of stubs

— Depending on integration approach (depth or breadth first),
stubs are replaced one at a time with actual components

— Retesting with actual modules usually recommended

* Logistical problem can arise

— Low-level stub replacement at top-level does not ensure the
data flow in upward direction as the integration continued

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Bottom-up Integration Testing

* Begins construction and testing at lowest level

1. Low-level modules are combined into clusters (also
called builds) to build the higher level modules

2. Adriver is required to simulate the behavior of a cluster
3. The cluster 1s tested

4. Drivers are removed and clusters are combined moving
upward in the system structure

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Bottom-up Integration Testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Bottom-up Integration Testing

* Advantages

— The bottom-up integration conforms with the basic intuition
of the system building

— Several disjoint subsystem can be tested simultaneously

— No stubs are required; only the test drivers are required

* Disadvantage

— Complexity increases as the number of subsystem increases

— Extreme case corresponds to the big-bang approach

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Mixed Integration Testing

* Also called sandwiched integration testing approach
* It combines the top-down and bottom-up integration testing approaches

* Using top-down approach, testing can start only after the top-level module
have been coded and unit tested

* Using bottom-up approach, start the bottom-up testing as soon as bottom-
level modules are ready

* Then move up-ward as well as down-ward to perform tests with the
currently available modules

* Advantages

— The mixed approach overcomes the shortcoming of the top-down and bottom-
up approaches

— This 1s one of the most commonly adopted testing approach

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Smoke Testing

Smoke testing - typically a testing effort to determine if a new
software version 1s performing well enough to accept it for a
major testing effort

Example:

If the new software is crashing systems every 5 minutes,
bogging down systems to a crawl, or corrupting databases, the
software may not be 1n a 'sane' enough condition to warrant
further testing in its current state

Smoke testing 1s also alternatively termed as Sanity Testing

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

Smoke Testing

* Important

— Smoke test should exercise the entire system from end to end and on a
regularly basis

— It does not have to be exhaustive, but it should be capable of exposing
major errors

* Advantages
— Minimize the integration risk

— The quality of the end-product is improved, as it is likely to uncover
both functional errors, architectural and component-level design
defects

— Error diagnosis and corrections are simplified, as the test is associated
with incremental (new build then smoke test and then rebuild etc.)

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* System tests are designed to validate a fully developed system
to assure that it meets all the requirements as specified in the
SRS document

* System testing can be considered as the black-box testing

* There are two main objectives of the System testing

— Acceptance testing

* To check whether the system satisfies the functional requirements as
documented in the SRS

* To judge the acceptability of the system by the user or customer

— Performance testing

* To check whether the system satisfies the non-functional requirements as
documented in the SRS

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* Acceptance testing
— Conducted by the end-user rather than software engineers

— Alpha testing
* The test is carried out by a customer but at the developer's site

* Developer looking over the shoulder of the user and recording errors and
usage problems

— Beta testing

* The test is conducted at one or more customer sites by the end-user of the
software

* Unlike the Alpha testing, the developer is generally not present

* Customers record all problems and report these to the developer at regular
interval

* As aresult of test report, developer makes modifications and then release
next beta version

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* Performance testing

— The performance testing 1s carried out on a system depend
on the different nonfunctional requirement of the system
documented in the SRS document

— There are several types of performance testing

* Stress testing

Volume testing

Compatibility testing

Recovery testing

Security testing

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* Stress testing

— To test the behavior of the system against a range of
abnormal and invalid input condition

— Input data volume, input data rate, utilization of memory
etc. are tested beyond the designed capacity

Example

* A system in a concurrent environment with 60 users with 20
transaction per second can be tested beyond this threshold

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* Volume testing

— The test 1s to ensure the validity of the data structures
(arrays, stacks, queues etc.) under some extraordinary
situation

Example

* A compiler might be tested to check whether the symbol table
overflows when a very large recursive program is compiled

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* Compatibility testing
— To test whether the system 1s compatible with other types
of system

— Basically to check whether the interface functions are able
to communicate satisfactorily or not

Example

* A Browser is compatible with Unix, Windows etc.

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

System Testing

* Security testing

— To test that security mechanism built into a system will, in
fact, protect 1t from unauthorized access or not

— The tester try to challenge the security measures in the
system

Example

* Attempt to acquire password, write some routine to breakdown the
defenses, may overwhelm the system to deny the services to others
etc.

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

Regression Testing

It 1s the practice of running an old test suite after each
change to the system or after each bug fix to ensure
that no new bug has been introduced as a result of the
change made or bug fixed

It does belong to all categories of the testing

15 November, 200 Information System Desig

14

n, IT60105, Autumn 2007

Problems to Ponder

* What are 5 common problems in the software development process?
* What are 5 common solutions to software development problems?

* What is software 'quality'?

* What is 'good code'?

* Whatis 'good design'?

* Will automated testing tools make testing easier?

* What makes a good Software Test engineer?

* What makes a good Software QA engineer?

* What makes a good QA or Test manager?

15 November, 200 Information System Desig
7 n, IT60105, Autumn 2007

