
15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Information System Design
IT60105

Lecture 25

Information System Testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Lecture #25

• Software testing strategies

• Unit testing

• Integration testing

• System testing

• Regression testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Preliminaries on Testing
• Testing objectives

– The primary objective is to identify all defects existing in a software
product

– Testing requirements
• Sequence of testing that is necessary to follow to adequately test a system

– Test case design
• A test case is the triplet [I, S, O], where I is the data input to the system, S,

is the state of the system at which the data is input, and O is the expected
output of the system

• A good test case is one that has a high probability to uncover an error

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Software Testing Strategy
• Testing objectives

– Test oracle
• Is a source of expected results for a test case

– Test suit design
• A test suit is the set of all test cases with which a given system is to be

tested

• A good test suit is a test suit with minimum number of test cases and
successful to uncovered errors, if any

– Test driver
• Is a program which testing a system given a test suit as an input

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

• Testing strategies

– Unit testing
• Start testing at the individual component (unit level)

– Integration testing
• The pre-tested individual components are slowly integrated and

tested at each level of integration (integration level)

– System testing
• Final level testing to test the fully integrated system (system level)

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

• Unit testing
– Testing without execution

• Code walkthrough

• Code inspection

– Testing with execution
• Black-box testing

– Exhaustive testing

– Equivalence partition

– Boundary-value analysis

– Comparison testing

• White-box testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

• Unit testing (Contd..)

– Testing with execution
• Black-box testing

• White-box testing
– Control structure testing

» Statement coverage

» Condition coverage

» Branch coverage

» Data-flow testing

» Loop testing

– Basis path testing

– Mutation testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

– Unit testing

– Integration testing
• Big-bang testing

• Top-down testing

• Bottom-up testing

• Mixed integration testing

• Smoke testing

– System testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Taxonomy of Testing Strategies

– Unit testing

– Integration testing

– System testing
• Acceptance testing

– Alpha testing

– Beta testing

• Performance testing
– Stress, Volume, Compatibility, Recovery, Security etc.

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Software Testing Strategy

I n t e g r a t i o n l e v e l t e s t i n g

S y s t e m l e v e l t e s t i n g

U n i t l e v e l t e s t i n g

T
e

st
in

g
 in

 t
h

e
 s

m
a

ll

T e s t i n g i n t h e l a r g e

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Unit Testing Strategies

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Unit Testing Strategies
• Unit testing (or module testing) is the testing of different

components in isolation

• Testing without execution

– Code walk-through
• Code is given to the testing team. Each team members selects some test

cases and simulates execution of the code by hand
• Discover any algorithmic or logical error is there in the module
• Focuses on discovery of errors and not on how to fix the discovered errors
• Informal meeting for debugging

– Code inspection
• To discover or fix any common types of errors caused due to oversight and

improper programming
• Also identifies coding standard

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Unit Testing Strategies
• Testing with execution

– Black-box testing
• Test cases are designed from an examination of the input/output

values only

• Tests are based on requirements and functionality

• No knowledge of design or code is required

– White-box testing
• Based on knowledge of the internal logic of an application’s code

• Tests are based on coverage of code statements, branches, paths,
conditions etc.

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Requirement of Unit Testing

• Following are necessary to
accomplish the unit testing

– The procedures belonging to
other modules that the unit
under tests calls

– Non local data structures that
the module accesses

– A procedure to call the
functions of the module under
test with appropriate
parameters

C a l l e r
p r o c e d u r e

U n i t u n d e r
t e s t

c a l l e d
p r o c e d u r e

N o n l o c a l
d a t a

s t r u c t u r e s

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Requirement of Unit Testing

• Caller module or called module
may not be available during the test
of the unit under test

• Driver – dummy for caller
procedure

• Stub – dummy for called procedure

• Driver and stub are to simulate the
behavior of actual caller and called
procedures

D r i v e r

U n i t u n d e r
t e s t

S t u b

N o n l o c a l
d a t a

s t r u c t u r e s

S t u b

T e s t c a s e

T e s t r e s u l t

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Black-box Testing

• Black-box testing also called behavioral testing, focuses on
the functional requirements of the unit under test

• Black-box testing attempts to find errors in the following
categories

– Incorrect or missing functions

– Interface errors

– Errors in data structures or external data access

– Behavior or performance errors

– Initialization or termination errors

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Black-box Testing Strategies

• Following are few important black-box testing
techniques

– Exhaustive testing

– Equivalence partitioning

– Boundary value analysis

– Comparison testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Exhaustive Testing

• For a set of all possible input, test case is derived as a
permutation of all input

• Brain-less (or brute force) testing

• Suitable for units where number of input as well as
their domain is less

• As the number of input values grows and number of
discrete values for each data item increases, this
testing strategy is infeasible

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Equivalence Partitioning

• Equivalent partitioning method divides the input domain of a program into
classes of data from which test cases can be derived

• The partitioning is done in such a way that the behavior of the program is
similar to every input data belonging to the same equivalence classes

Example:
 Insertion of an element into an array of sorted elements

n 1 , n 2 , . , n l

n i < n 1 n l < n kn 1 < n j < n l

E q u i v a l e n t p a r t i t i o n : [n i , n j , n k]

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Boundary Value Analysis

• Because of human psychological factor a number of error tends to occur at
the boundaries of the input domain rather at the “center”

• BVA leads to a selection of test cases that exercise bounding values

• BVA is a test case design technique that complements equivalent
partitioning

• Rather than selecting an element of an equivalent partition, BVA leads to
the selection of test cases at the “edges” of the partition

• Rather than focusing solely on input conditions, BVA derives the test cases
from the output domain as well

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Boundary Value Analysis: Example

1. BinarySearch(low, high)
2. {
3. mid = (low + high) / 2;
4. if (A[mid] = key)
5. return (mid);
6. if (key < A[mid])
7. high = mid – 1;
8. else
9. low = mid + 1;
10. BinarySearch (low, high);
11. }

Output domain: Successful or Failure (lower / upper ends)

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Comparison Testing
• Several versions of same module (preferably by different team)

can be developed, even when only a single version will be used
in the delivered system

• Test cases designed using other black-box techniques are
provided as input to each version of the unit

• If the output from each version is the same, it is assumed that the
module under test is correct

• Expensive; Preferable for critical applications only

• Not a foolproof technique – If all the versions are erroneous to
the same input

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

White-box Testing

• Unit testing

– White-box testing

• Control structure testing
– Statement coverage

– Condition coverage

– Branch coverage

– Data flow testing

– Loop testing

• Basis path testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Why White-box Testing

• We have done Black-box testing and the testing
ensures that the program requirements have been met
or not

– Black-box testing discovers errors but not the sources of
the errors

– Black-box testing may not be exhaustive to uncover certain
errors (such as, incorrect assumption, logical errors,
typographical errors etc.)

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

White-box Testing

• Also called glass-box testing entirely based on the program
structure

• To derive the tests cases, so that

– Exercise all statements in the module

– Exercise all logical decisions on their true and false sides

– Execute all loops at their boundaries and within their operational
bounds

– All independent paths within a module have been exercised at least
once

– Exercise internal data structures to ensure their validity

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

White-box Testing Strategies

• White-box testing strategies

– Control structure testing

• Statement coverage

• Branch coverage

• Condition coverage

• Loop testing

– Basis path testing

– Data flow testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Statement Coverage

• The statement coverage strategy aims to design test
cases so that every statement in a program is executed
at least once

• Statement coverage debugs the failure due to some
illegal memory access (e.g. pointers), wrong result
computation etc.

• This technique derives test case so that all statements
in a program is executed at least once

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Statement Coverage: Example 1

int GCD(int x, int y)
{
1 while (x != y) {
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x;
}

Cover statement 1: [x = 5, y = 4]

Cover statement 3: [x = 5, y = 4]

Cover statement 4: [x = 4, y = 5]

So the test case: { [5,4], [4,5] }

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Statement Coverage: Example 2

Read(x,y)
{
If(x>y)
 Print(x)
Else
 Print (y)
}

Cover statement : [x = 5, y = 2]

Cover statement : [x = 2, y = 5] [x = 5, y = 5]

The test case: { ?…? }

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Branch Coverage Testing

int GCD(int x, int y)
{
1 while (x != y) {

2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x;
}

Branch 1: [x = 5, y = 3]

 [x = 3, y = 5]

 [x = 3, y = 3]

Branch 2: [x = 5, y = 3] (true)

 [x = 3, y = 5] (false)

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Condition Coverage Testing

1. if C then { S1 } else { S2 }

2. While C then { S }

3. do { S } while C

4. switch C
 case { S1 }
 case { S2 }
 ….
 ….

C = condition with boolean operators
and/or relational operator

Example 1: C = (x and y) or z

 True False

x y z x y z

1 1 1 0 0 0

0 0 1 0 1 0

1 0 1

0 1 1

1 1 0

Test case = 23

Example 2: C = (x and y) and z

True: 1 1 1 False: 0 1 0

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Loop Testing

• Test for

– Skip the lop entirely

– Only one pass

– Two passes

– m passes, m < n

– n-1, n, n+1 passes
S i m p l e l o o p

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Loop Testing

• Test for

– Innermost loop  simple loop

– Outermost loop  simple loop

N e s t e d l o o p

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Loop Testing

• Test for

– Loop 1  simple loop

– Loop 2  simple loop

C o n c a t e n a t e d l o o p

L o o p 1

L o o p 2

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Basis Path Testing

Cyclomatic complexity metric

(McCabe’s Number)

R = E – N + 2

 E = # edge

 N = # node

R = Number of independent paths

 = Number of predicate nodes + 1

Example: Number of basis paths = 4

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3: 1-2-3-6-8-8-10-1-11

Path 4: 1-2-3-6-7-9-10-1-11

R 1

2

1

3

4

87

5

6

9

1 0

1 1

R 2

R 3
R 4

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Mutation Testing

• It is a fault-based testing

• Faults are deliberately injected into a program, in order to determine
whether or not a set of test inputs can distinguish between the original
program and the programs with injected faults

• It is based on adequacy criteria: whether a test set is adequate to cover all
faults or not

• Mutation: is a simple change (error) into the code being tested; each
version is called a mutant

• Program neighborhood: The original program plus the mutant programs are
collectively known as the program neighborhood

• Mutant dead: if the execution of the mutated code against the test set
distinguishes the behavior or output from the original program

• Mutation adequacy score: To supply test set until all mutants are dead

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Mutation Testing

p r o g r a m t e s t
c o r r e c t ?

I n p u t t e s t
p r o g r a m

p r o g r a m
c r e a t e

m u t a n t s
I n p u t t e s t

c a s e s

R u n t e s t c a s e o n
p r o g r a m

F i x
p r o g r a m

F R u n t e s t c a s e o n
e a c h l i v e
p r o g r a m

a l l m u t a n t s d e a d ?

a n a l y s i s a n d
m a r k e q u i v a l e n t

m u t a n t s

F

T

T
q u i t

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Integration Testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Why Integration Testing?
• Integration testing

– Interfacing
• Data can be lost across an interface

• One module can have an inadvertent, adverse effect on another

• Sub functions, when combined, may not produce the desired
function

• Individually acceptable imprecision may be magnified to
unacceptable levels

• Global data structures can causes problems

and so on

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Integration Plan and Testing
• Integration plan

– A systematic integration plan should be adopted prior to
testing

– The integration plan specifies the steps and order in which
modules are to be combined to realize the full system

– An important factor to guide the integration plan is the
module dependency graph as obtained in the structured
design of the system

– After each integration step, the partially integrated system
is to be tested

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Integration Testing Strategies

• Following are the well known practices

– Big-bang integration testing

– Top down integration testing

– Bottom-up integration testing

– Mixed integration testing

– Smoke testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Big-bang Integration Testing
• The most simple integration testing (non incremental)

approach

• All modules making up a system are integrated at one
go

• The entire program is tested as a whole

– The chaos usually results!

– Errors debugging are very expensive to fix

• Suitable, only for very small system (or a part of a
lager subsystem)

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Top-down Integration Testing

• It is an incremental approach to build and test a system

• Starts with main module and add the modules
– Depth-first integration

– Breadth-first integration

M 1

M 7M 6M 5

M 2 M 4M 3

L a y e r 0

L a y e r 1

L a y e r 2

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Top-down Integration Testing
• This testing strategy requires the use of stubs

– Depending on integration approach (depth or breadth first),
stubs are replaced one at a time with actual components

– Retesting with actual modules usually recommended

• Logistical problem can arise

– Low-level stub replacement at top-level does not ensure the
data flow in upward direction as the integration continued

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Bottom-up Integration Testing
• Begins construction and testing at lowest level

1. Low-level modules are combined into clusters (also
called builds) to build the higher level modules

2. A driver is required to simulate the behavior of a cluster

3. The cluster is tested

4. Drivers are removed and clusters are combined moving
upward in the system structure

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Bottom-up Integration Testing
M 1

D 2D 1

M 3M 2

D 3

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Bottom-up Integration Testing
• Advantages

– The bottom-up integration conforms with the basic intuition
of the system building

– Several disjoint subsystem can be tested simultaneously

– No stubs are required; only the test drivers are required

• Disadvantage

– Complexity increases as the number of subsystem increases

– Extreme case corresponds to the big-bang approach

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Mixed Integration Testing
• Also called sandwiched integration testing approach

• It combines the top-down and bottom-up integration testing approaches

• Using top-down approach, testing can start only after the top-level module
have been coded and unit tested

• Using bottom-up approach, start the bottom-up testing as soon as bottom-
level modules are ready

• Then move up-ward as well as down-ward to perform tests with the
currently available modules

• Advantages
– The mixed approach overcomes the shortcoming of the top-down and bottom-

up approaches
– This is one of the most commonly adopted testing approach

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Smoke Testing
• Smoke testing - typically a testing effort to determine if a new

software version is performing well enough to accept it for a
major testing effort

Example:

If the new software is crashing systems every 5 minutes,
bogging down systems to a crawl, or corrupting databases, the
software may not be in a 'sane' enough condition to warrant
further testing in its current state

• Smoke testing is also alternatively termed as Sanity Testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Smoke Testing
• Important

– Smoke test should exercise the entire system from end to end and on a
regularly basis

– It does not have to be exhaustive, but it should be capable of exposing
major errors

• Advantages
– Minimize the integration risk

– The quality of the end-product is improved, as it is likely to uncover
both functional errors, architectural and component-level design
defects

– Error diagnosis and corrections are simplified, as the test is associated
with incremental (new build then smoke test and then rebuild etc.)

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• System tests are designed to validate a fully developed system

to assure that it meets all the requirements as specified in the
SRS document

• System testing can be considered as the black-box testing

• There are two main objectives of the System testing
– Acceptance testing

• To check whether the system satisfies the functional requirements as
documented in the SRS

• To judge the acceptability of the system by the user or customer

– Performance testing
• To check whether the system satisfies the non-functional requirements as

documented in the SRS

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• Acceptance testing

– Conducted by the end-user rather than software engineers

– Alpha testing
• The test is carried out by a customer but at the developer's site
• Developer looking over the shoulder of the user and recording errors and

usage problems

– Beta testing
• The test is conducted at one or more customer sites by the end-user of the

software
• Unlike the Alpha testing, the developer is generally not present
• Customers record all problems and report these to the developer at regular

interval
• As a result of test report, developer makes modifications and then release

next beta version

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• Performance testing

– The performance testing is carried out on a system depend
on the different nonfunctional requirement of the system
documented in the SRS document

– There are several types of performance testing

• Stress testing

• Volume testing

• Compatibility testing

• Recovery testing

• Security testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• Stress testing

– To test the behavior of the system against a range of
abnormal and invalid input condition

– Input data volume, input data rate, utilization of memory
etc. are tested beyond the designed capacity

Example
• A system in a concurrent environment with 60 users with 20

transaction per second can be tested beyond this threshold

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• Volume testing

– The test is to ensure the validity of the data structures
(arrays, stacks, queues etc.) under some extraordinary
situation

Example
• A compiler might be tested to check whether the symbol table

overflows when a very large recursive program is compiled

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• Compatibility testing

– To test whether the system is compatible with other types
of system

– Basically to check whether the interface functions are able
to communicate satisfactorily or not

Example
• A Browser is compatible with Unix, Windows etc.

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

System Testing
• Security testing

– To test that security mechanism built into a system will, in
fact, protect it from unauthorized access or not

– The tester try to challenge the security measures in the
system

Example
• Attempt to acquire password, write some routine to breakdown the

defenses, may overwhelm the system to deny the services to others
etc.

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Regression Testing
• It is the practice of running an old test suite after each

change to the system or after each bug fix to ensure
that no new bug has been introduced as a result of the
change made or bug fixed

• It does belong to all categories of the testing

15 November, 200
7

Information System Desig
n, IT60105, Autumn 2007

Problems to Ponder
• What are 5 common problems in the software development process?

• What are 5 common solutions to software development problems?

• What is software 'quality'?

• What is 'good code'?

• What is 'good design'?

• Will automated testing tools make testing easier?

• What makes a good Software Test engineer?

• What makes a good Software QA engineer?

• What makes a good QA or Test manager?

