Information System Design IT60105

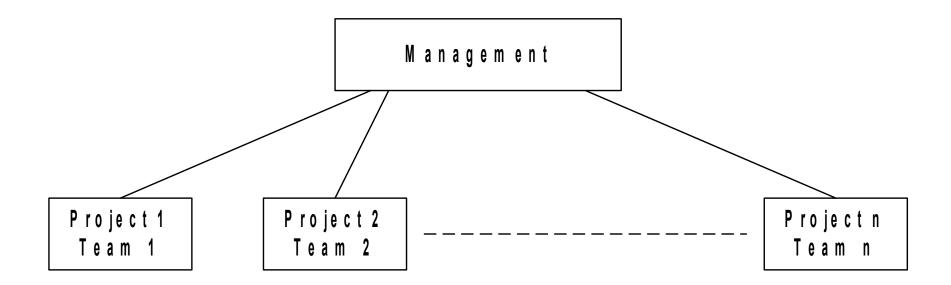
Lecture 21

Staff Organization, Risk Management and Software Configuration Management

Lecture #21

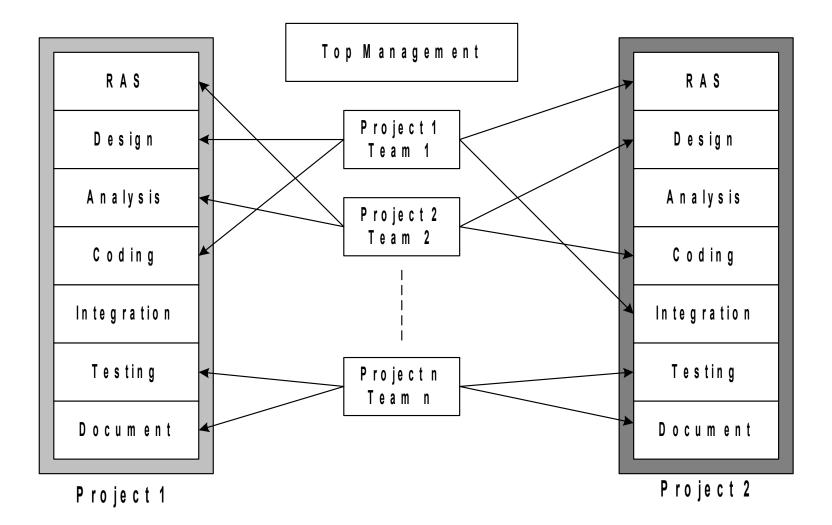
- Items in SPMP Documentation
 - Staff organization
 - Risk management and planning
 - Software configuration management
 - Scheduling

Staff Organization


7 November, 2007

Staff Organization

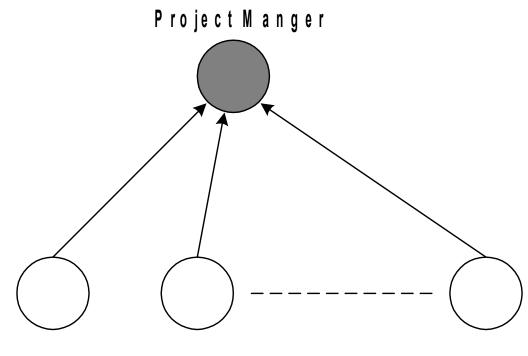
- Addresses the problem: Who will be assigned for what?
- Two ways:
 - Project form
 - A team is assigned a project and they remain with the project until the completion of the project
 - Requires less communication among the team members
 - Functional form
 - Several teams are there, a team is responsible for one or more task (usually the task with which a team is specialized)


7 November, 2007

Staff Organization (Project Form)

7 November, 2007

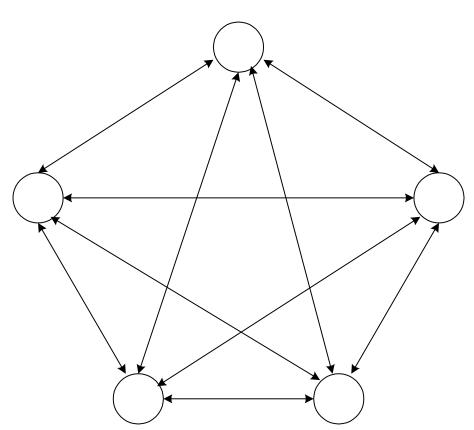
Staff Organization (Functional Form)



7 November, 2007

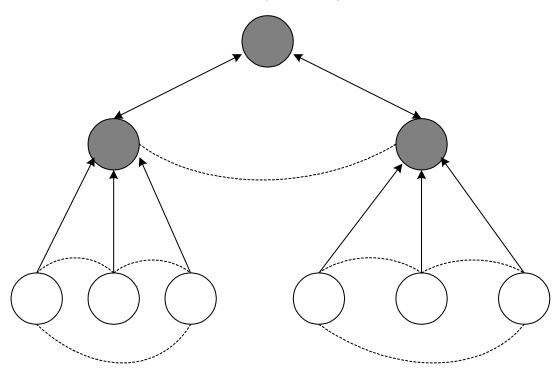
• Addresses the issue of organization of the individual project teams

- Three types of team structures are known:
 - Centralized team structure
 - Democratic team structure
 - Mixed team structure


7 November, 2007

Team Members

Centalized Team Structure


7 November, 2007

Democratic Team Structure

7 November, 2007

Project Manger

Mixed Team Structure

7 November, 2007

Risk Management

7 November, 2007

Risk Planning

- Objective:
 - Anticipate and identify different risk that a project may be susceptible to
 - Contingency plans can be adopted to contain the effects of each risk
 - Reducing the impact of all kinds of risks
- Three activities for Risk Management
 - Risk identification
 - Risk assessment
 - Risk containment

7 November, 2007

Risk Identification

- Project risks
 - Budgetary
 - budget may abruptly exceed the estimated amount
 - Schedule
 - schedule slippage, deadlock, dependent on other organization
 - Personnel
 - sickness, resignation, promotion, retirement etc.
 - Resources
 - increased cost, big/top priority project incumbent
 - Customer related problems
 - termination of agreement, delay in payment, change in requirement

7 November, 2007

Risk Identification

- Technical risks
 - Potential design
 - Design at par or state-of-the-art design, building excellent product
 - Implementation
 - Ambiguous specification
 - Interfacing
 - Heterogeneous specifications and subsystems incompatibility
 - Testing
 - To achieve adequate test coverage
 - Maintenance
 - Expensive cost in maintenance

7 November, 2007

Risk Assessment

- Rank a risk in terms of its damage causing potential
- A risk may be rated in two ways:
 - The likelihood of a risk coming true (α)
 - The consequence of the problems associated with that risk (β)
- Rank (priority) of a risk then $p = \alpha * \beta$
- High priority risks are to be handled first

7 November, 2007

Risk Containment

- Avoid the risk
 - Frequent discussion with customers
 - Good incentives to engineers
- Transfer the risk
 - Risk component development to a third party
 - Insurance cover
- Risk reduction
 - Reserve personnel, resources, new recruitment
- Different risks have their own containment policies and it is the prudence of Project Manager to tackle the risks

7 November, 2007

RMMM Plan

• **RMMM Plan** stands for Risk Mitigation, Monitoring and Management Plan

Example

R isk	Probability, P (0-1)			Im pact, I (1-10)			Risk Factor = P*I			Contingency plan
	M in	Likely	M a x	M in	Likely	M a x	M in	Likely	M a x	
Virus Infection	0.1	0.3	0.5	5	8	10	0.5	2.4	5.0	Network backup
System crash	0.0	0.1	0.3	6	8	10	0.0	0.8	3.0	System backup

7 November, 2007

Software Configuration Management

7 November, 2007

Software Configuration Management

- What is Software Configuration?
 - The items that comprise all information produced as a part of the software process are collectively called *software configuration*

Example: Software process information

- Programs (source code + executables)
- Work product (for developer + user)
- Data (contained within the program or external to programs)

7 November, 2007

Software Configuration Management

- Results (deliverables) of a system development efforts consists of
 - SRS document, design document, source code, test suit, user's manual etc.
- Configuration of a system product
 - The state of a deliverable during the development life cycle
- Software configuration management
 - Deals with efficiently tracking and controlling the configuration of a system product during its life cycle

7 November, 2007

Configuration Management Activities

Configuration identification

- Requirement specification document
- Design documents
- Tools used to build the system
- Source code for each subsystem
- Test suit
- Status report
- Configuration control
 - Process of managing changes to controlled objects
 - Day-to-day operations of team members
 - Authorized changes to any controllable objects

7 November, 2007

Problems to Ponder

- In which phase of the stages of software process the SCM is done
- Why and how SCM is useful for
 - Overall productivity
 - Better quality
 - Reduced risk in the development process