Information System Design IT60105

Lecture 19

Project Planning

Lecture #19

• ISD Project Planning

• SPMP Documentation

• System Design Models

24 October, 2007

Why Planning Information System Design?

- Program vs. Software
 - Size (small/big)
 - Effort (Individual/Team)
 - Application and user
 - Reliability (testing)
 - Documentation (manual)
- Technological growth
 - Hardware
 - Software
 - Communication

S iz e

• IT based society

24 October, 2007

ISD Engineering

24 October, 2007

Project Management

- Crucial things to the success of any project
 - Enables a team to work efficiently
 - Distribute work load
 - Pipelining the productivity
- Project planning
 - After the feasibility study (FS) and requirement analysis and specification (RAS)
- Responsibility of the Project Manager

24 October, 2007

Activities in Project Planning

- Estimating some basic attributes of project
 - Cost
 - Duration
 - Effort
- Scheduling manpower and other resources
- Staff organization and staffing plans
- Risk identification, analysis, and abatement planning
- Quality assurance plan, configuration management planning

24 October, 2007

Activities in Project Planning

24 October, 2007

Information System Desig n (IT60105), Autumn 2007 7

Software Project Management Plan

- SPMP documentation
- Items to be documented:
 - 1. Introduction
 - 2. Project Estimates
 - 3. Schedule
 - 4. Project Resources
 - 5. Staff organization
 - 6. Risk Management Plan
 - 7. Project Tracking and Control Plan
 - 8. Miscellaneous plan

24 October, 2007

1. Introduction

- (a) Objective
- (b) Major Functions
- (c) Performance Issues
- (d) Management and Technical Constraint

2. Project Estimates

- (a) Historical Data Used
- (b) Estimation Techniques Used
- (c) Effort, Resource Cost, and Duration Estimation

24 October, 2007

- 3. Schedule
 - (a) Work Breakdown Structure
 - (b) Task Network Representation
 - (c) Gantt Chart Representation
 - (d) PERT Chart Representation
- 4. Project Resources
 - (a) People
 - (b) Hardware
 - (c) Software
 - (d) Communication Support

24 October, 2007

- 5. Staff organization
 - (a) Team Structure
 - (b) Management Reporting
- 6. Risk Management Plan
 - (a) Risk Analysis
 - (b) Risk Identification
 - (c) Risk Estimation
 - (d) Risk Abatement Procedures
- 7. Project Tracking and Control Plan

24 October, 2007

- 8. Miscellaneous plan
 - (a) Process Tailoring
 - (b) Quality Assurance Plan
 - (c) Configuration Management Plan
 - (d) Validation and Verification
 - (e) System Testing Plan
 - (f) Delivery, Installation and Maintenance Plan

System Design Models

24 October, 2007

System Design Models

- System Design Life Cycles
 - Waterfall Models
 - Classical Waterfall Model
 - Iterative Waterfall Model
 - Prototyping Model
 - Evolutionary Model
 - Spiral Model
- Rapid Application Development
- Component-based Software Engineering

24 October, 2007

? System Design Life Cycle

- A system design life cycle is a **process** consists of set of **methodologies** (activities) beginning from system inception through delivery and retirement
- Basic activities in a system design life cycle are:
 - Feasibility study
 - Requirement analysis and specification
 - Design
 - Coding
 - Testing
 - Maintenance
- An *activity* is also alternatively termed as a *life cycle phase*

24 October, 2007

? System Design Life Cycle

- A system design life cycle can be modeled with descriptive and diagrammatic representation representing:
 - All activities required to make a software product transit through its life cycle phases
 - Order in which activities are to be undertaken
- Number of life cycle models are known to system designers
 - All models are **same** so far the **basic activities** are concerned
 - Models are **different** so far the **order of activities** are concerned

24 October, 2007

Why a Life Cycle Model?

- It encourages development of system in systematic and disciplined manner
- Provides better understanding and communication among team members
- Pipelining the activities to carried out number of dissimilar projects together
- Better utilization of resources (human + system)

24 October, 2007

Classical Waterfall Model

24 October, 2007

Classical Waterfall Model

- The classical waterfall model is elegant and intuitively the most obvious way to develop system
- The model is considered to be *theoretical way of developing* system
- Rather the model is *not practical*
- Other life cycle models are essentially derived from the classical waterfall model

24 October, 2007

Iterative Waterfall Model

24 October, 2007

Iterative Waterfall Model

- Advantages:
 - Iterative waterfall model is practical compared to the classical waterfall model since errors are taken into consideration in it
- Drawbacks
 - It unable to handle different risks that a real-life software project is subjected to
 - It follows rigid phase sequence, but for higher productivity and better efficiency it may not be desirable at all
 - The model is suitable for well-understood problem, not suitable for very large projects

24 October, 2007

Prototyping Model

22

Prototyping Model

- Expensive but deal with more complex and new system development (unlike waterfall model)
- Many customer requirements get properly defined
- Technical issues get resolved by experimenting with the prototype
- Minimizes the redesign costs

24 October, 2007

Evolutionary Model

24 October, 2007

Evolutionary Model

- This model is based on the incremental approach
- User gets a chance to experiment with a partially developed system much before the complete version
- Minimum redesign effort
- Obviate the need to commit large resources in one go
- Suitable for very large system development

24 October, 2007

Spiral Model

- Spiral model is also termed as meta model, since it subsumes all the previously discussed models
- Unlike other models, it provides good insight to the project risks
- Spiral model is much more flexible compared to other models

24 October, 2007

Spiral Model

24 October, 2007

Information System Desig n (IT60105), Autumn 2007 27

Spiral Model: Salient Features

- Models looks like a spiral with many loops
- The number of loops is not fixed rather decided by
 - Number of phases
 - Iteration of the phases
- Exact number of phases and order of phases is not fixed hence the model is more flexible
- There are four stages of each phase, which is depicted by four sectors in the model
- As a loop proceeds, a more complete version of the system gets build
 - Radius of spiral at any point represents the cost incurred in the project till then
 - Angular dimension represents the progress made in the current phase

24 October, 2007

Rapid Application Development

- It is an objective-oriented approach to system development
- RAD and Prototyping are conceptually very close
- Goal of RAD is to shortening the time typically needed in a traditional SDLC
- There are three phases in RAD
 - Requirement planning
 - Design
 - Implementation

24 October, 2007

Rapid Application Development

Rapid Application Development

- Advantages
 - Useful for inexperienced team
 - Pressing business for speeding up the system development
 - Working with novel system development
 - Developing system for sophisticated users
 - RAD can be merged with SDLC
- Disadvantages
 - Not a systematic approach
 - Hardly bother about system documentation
 - Time vs. Attention trade-off

24 October, 2007

Component-Based Software Engineering

- In majority of the software project there is some software reuse
 - Components which are readily available to a team can be modified them as needed and incorporated them into their system
 - Reuse is often essential for rapid system development
- CBSE is a reuse-oriented approach
 - It follows a large base of reusable software components and some integrating framework for these components
 - These components are called COTS (Commercial Off-The-Shelf)

24 October, 2007

Generic Process Model of CBSE

24 October, 2007

Component-Based Software Engineering

Advantages

- Reduces the amount of software to be developed
- Reduces the cost of development
- Reduces risk

Disadvantages

- Requirement compromises are inevitable
- May lead to a system that does not meet the real needs of users
- Control over the system evolution is lost as the new versions of the reusable components are not under the control of the project group

24 October, 2007

Problems to Ponder

- Which model is suitable for which system? List a few with justification.
- Arrange the life cycle models in order according to
 - Development time
 - Redesign time (customer satisfaction)
 - Problem size
 - Cost
- Why RAD is suitable for object-oriented system development?

24 October, 2007