Information System Design IT60105

Lecture 6

Object-Oriented Design Paradigms

08 August, 2007

Lecture #5

- Concepts of objects
- Object-Oriented Paradigms
 - Class
 - Encapsulation
 - Relation between classes
 - Association
 - Aggregation
 - Classifications
 - Inheritance
 - Delegation
 - Polymorphism
 - Dynamic Binding

08 August, 2007

Concepts of Objects

08 August, 2007

• Object = **State** + Behavior + Identity

Car

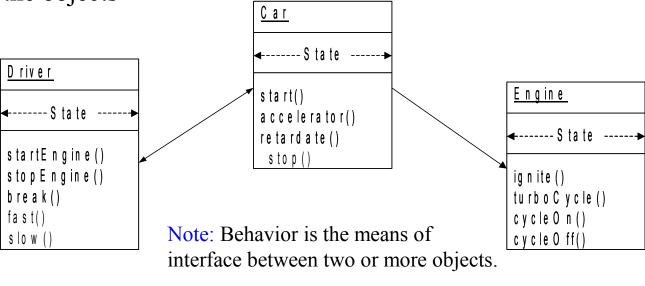
• State

The group of values of all attributes at a given point of time

e.g.	Car
------	-----

•modelNo •color
 engineNo
 controlPanel
 speedoMeter
 distanceTravelled
 fuelStatus

Note:


Some state attributes are constant Where as some are dynamically change e.g.distanceTravelled, fuelStatus

08 August, 2007

• Object = State + **Behavior** + Identity

Behavior

The group of all abilities of an object and describes the action and reaction among the objects

08 August, 2007

• Object = State + Behavior + **Identity**

• Identity

The characterization of its existence. The identity makes it possible to distinguish an object in an unambiguous way and independently form its group

e.g.

Car – carNo

Borrower – borrowerNo

Person – empId / voterId / rollNo

08 August, 2007

• Communication between two objects

- Type of objects
 - Active objects
 - Passive objects
 - Transient/ephemeral objects
 - Persistent objects
- Other objects categorization

08 August, 2007

Type of Objects

- Active objects
 - An object is an active object if it is capable to send a message to another object Example:
 - All clients are like active objects
- Passive objects
 - An object that is not capable of sending a message to any other objects Example:
 - All servers are like passive objects (however, they can reply to any message)
- Transient objects
 - When an object constantly changes its state Example:
 - Car is in motion
- Persistent objects
 - Storing the state of objects to a permanent storage
 - Stores attributes of an object into a permanent storage before leaving sessions

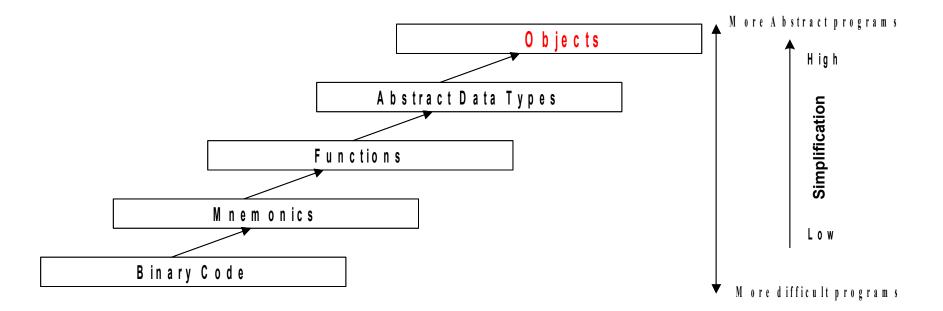
08 August, 2007

Other Type of Objects

- Entity objects
 - Objects which are related to some entities Example:
 - Customer, order, book, transaction etc.
- Controller Objects
 - Objects which control the communication of several objects Example:
 - Registration Controller, Scheduler, ATM System etc.
- Boundary objects
 - These are the objects interfaced with the system or sub-system Example:
 - Database wrapper, external system etc.
- Interface objects
 - Act as an interface between a customer and system Example:
 - Registration Screen, login screen etc.

08 August, 2007

Object-Oriented Paradigms


08 August, 2007

Aim of Object-Oriented Paradigms

- Real world is composed of very large number of interacting objects
- Objects are abstract things than the way computer process them
 - Easy to understand
 - Easy to manipulate
 - Processed at higher level
- Paradigm based on the concept of object reduces the gap between our way of reasoning (by abstraction) and the concept understood by computers

08 August, 2007

Aim of Object-Oriented Paradigms

08 August, 2007

Aim of Object-Oriented Paradigms

Challenges

- Real world objects are too complicated to manipulate

Solution

To reduce inherent complexity object oriented paradigm have been formulated

08 August, 2007

Object-Oriented Paradigms

- Encapsulation
- Relation
- Classification
- Polymorphism

08 August, 2007

O-O Paradigms: Encapsulation

•Encapsulations

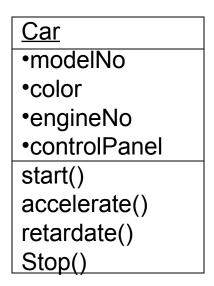
•Combined data and methods to manipulate data into one entity

•Class is the concept of encapsulation

•A varieties of objects are grouped together such as book, car, ...etc

•A set of similar objects grouped together with some distinguishing structure (at a high level of abstraction)

•Class is a process of abstraction


08 August, 2007

O-O Paradigms: Encapsulation

• Graphical representation of a class

Class nam e Attributes operations

Example: Car

08 August, 2007

O-O Paradigms: Encapsulation

Exercise: Give possible class structure to the following

- Set
- Complex number
- Rational number
- TV set
- Customer (of a Bank)
- Account (of a customer in a Bank)
- Stack/ Queue/Tree/Graph/Vector

Note: Visibility of attributes and operations

Private

Protect #

08 August, 2007

O-O Paradigms: Relations

- Several classes may be interrelated with each other
- A relationship expresses a kind of interrelation between two classes
- Two types of relationships between any two classes
 - Association
 - Aggregation

08 August, 2007

Relation: Association

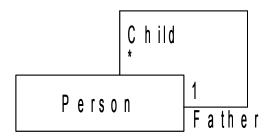
- The association relationship expresses a bi-directional, semantic connection between classes
- Bi-directional
 - Data may flow across the association (This is unlike data flow in DFD)
- Semantic connection
 - An association between classes means that there is a link between objects in the associated class
- If an association between two objects are there then one can navigate from an object to another object in the association

08 August, 2007

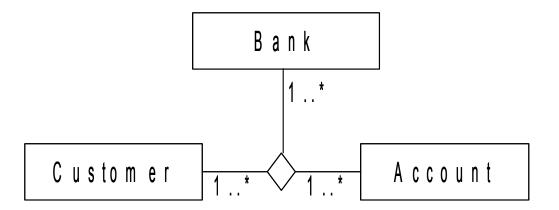
Relation: Association

• Example

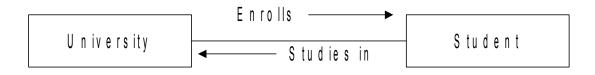
08 August, 2007



Exam ple:


08 August, 2007

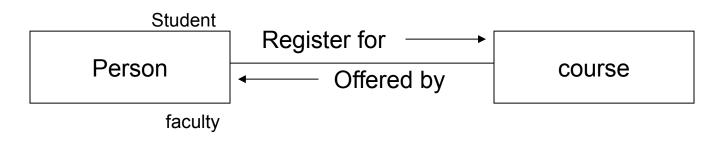
- Association between two classes, in general, is called binary association
 - It is also legal to have both ends of an association circle to back to the same class


08 August, 2007

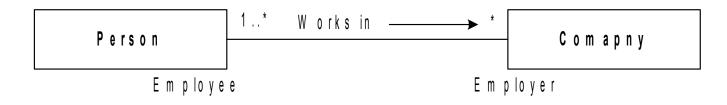
- *n-ary* association is also possible
 - An association having more than two classes also possible

08 August, 2007

• More than one association may be mentioned between two classes



• It is possible to specify the role of a class within an association



08 August, 2007

• A class can play more than one role at a time

• Role also carry multiplicity information that specifies the number of instances that participate in a relationship

08 August, 2007

Multiplicity Rules

Symbol	Meaning
1	One and only one
01	Zero or one
MN	From M to N (natural integers)
*	From zero to any positive integers
0*	From zero to any positive integers
1*	From one to any positive integers

08 August, 2007

Example: Multiplicity Rule

- Customer may have more than one account
- An account may be jointly hold by more than one customer
- There are may be three types of accounts
 - Saving (single customer only)
 - Recurring (single or joint)
 - Current (joint only, but allow at most 5 customers)

	<u> </u>	saving	*	
Customer	1*	recurring	*	Account
Cusiomei	25	current	*	

08 August, 2007

Relation: Aggregation

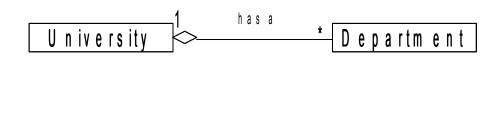
- Aggregation allows the representation of "whole/part" relationship
 - Whole-part relationship: one represents a large thing (the "whole"), which consists of smaller things (the "parts")

Example

Engine is a part of Car

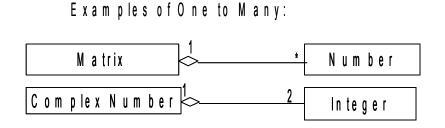
• Also, it expresses "has a" relationship

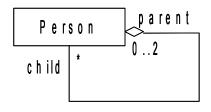
Example


University has a number of department

08 August, 2007

Aggregation: Notation

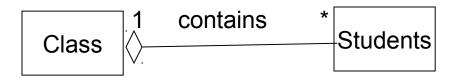

• Meaning: B is being aggregated into A


08 August, 2007

Aggregation: Notation

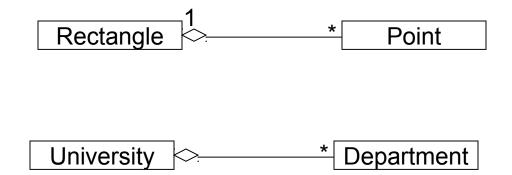
• Aggregation represents one-to-many as well as many-to-many relations

Example of Many to Many:

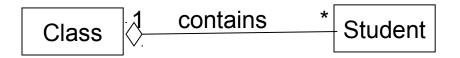


08 August, 2007

• Association represents structural relationships between peers, meaning that both classes are at same level



• Aggregation represents a "master and slave" relationship between two classes


08 August, 2007

- The following tests may be used to determine if a relation is an association or an aggregation
 - Is the phase "part" describe the relationship?

08 August, 2007

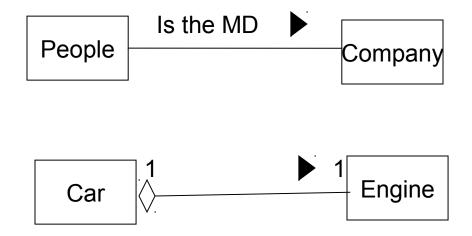
- The following tests may be used to determine if a relation is an association or an aggregation
 - Are some operations on the whole automatically applied to its parts?

If delete a class then all of its student also deleted

08 August, 2007

- The following tests may be used to determine if a relation is an association or an aggregation
 - Is there any intrinsic asymmetry to the relationship where one classis subordinate to the other?

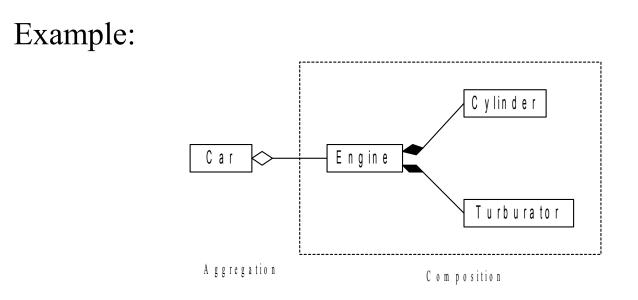
08 August, 2007


- Truly, Aggregation is a special kind of Association
 - Association: is-a relationship with weak coupling
 Aggregation: is-a relationship with strong coupling
 - Association: bi-directional and symmetric connection between classes

Aggregation: bi-directional and asymmetric connection between classes

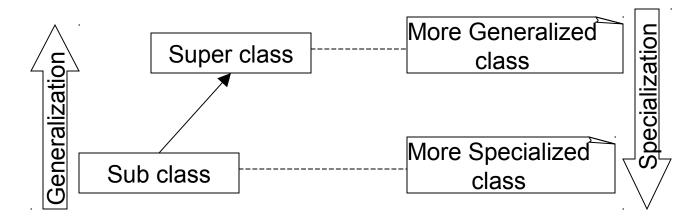
08 August, 2007

• A good heuristic test for whether a relationship is an aggregation is to ask


If the part moves, can one deduce that the whole moves with it?

08 August, 2007

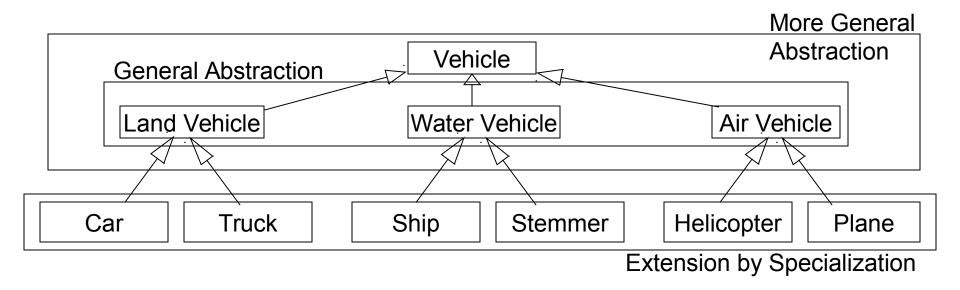
Composition


- Composition is a special case of aggregation
 - Attributes are particular case of aggregation
 - Attributes are physically contained in the aggregate

08 August, 2007

O-O Paradigms: Classification

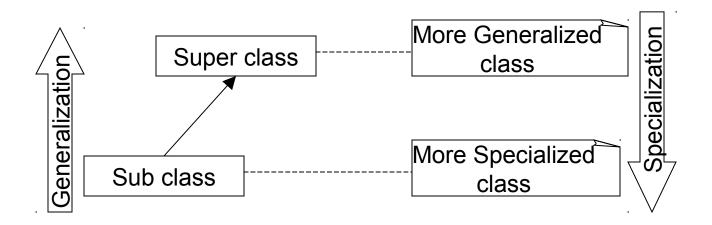
- Class hierarchies (or classification) makes it possible to manage complexity by ordering the objects within trees or classes, with increase level of abstraction
- Generalization and specialization are the two point of views that are based on class hierarchy


08 August, 2007

Classification: Generalization

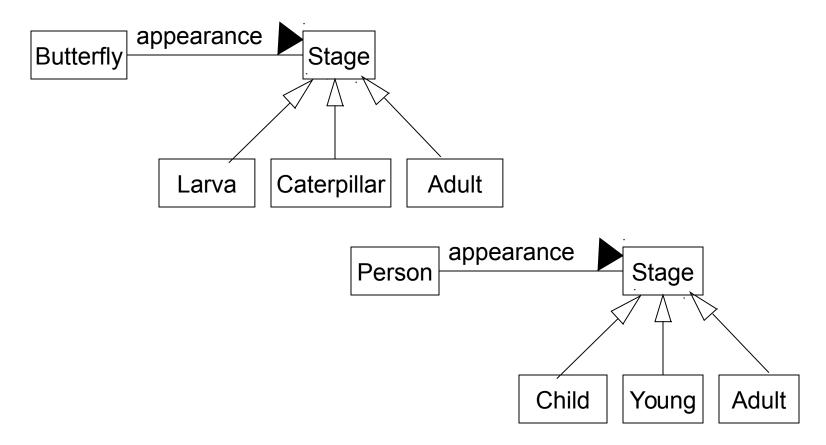
- Generalization consists of factoring common elements (attributes, operations) within the set of classes into more general class called super class
- A new class (sub class) can be derived from the super class with some additional features in addition to the features in the super class
- Super class is an abstraction of its sub classes. Alternately, sub class is a detailed version than that of super class

08 August, 2007


Generalization: An Example

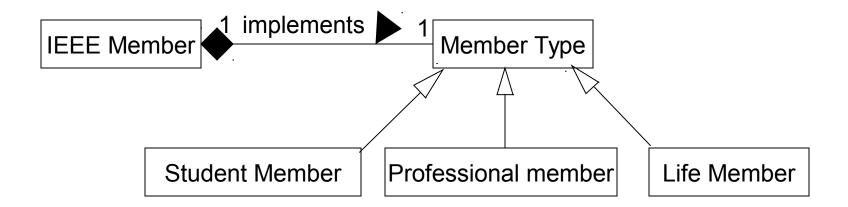
08 August, 2007

Classification: Specialization


- Specialization allows the capture of the specific features of a set of objects that have not been distinguished by the classes already identified
- The characteristics are represented by a new class , which is a subclass of the one of the existing classes

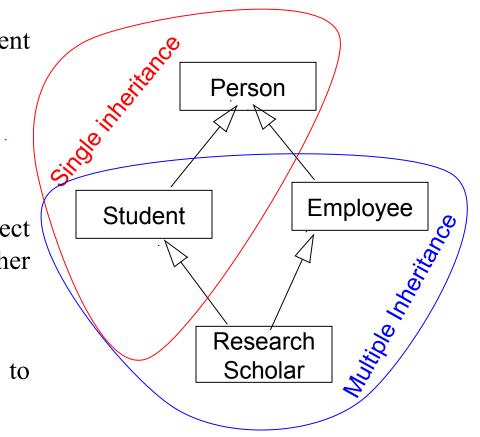
08 August, 2007

Classification with Relations

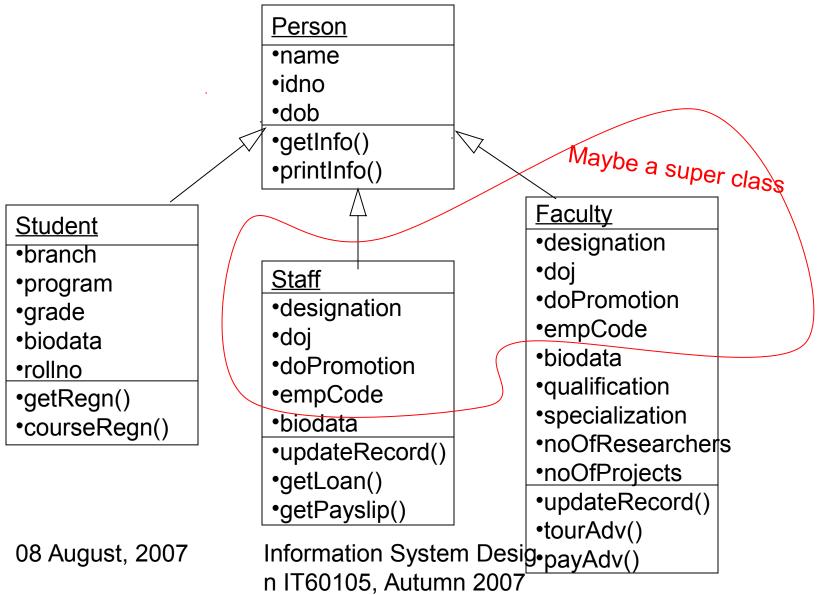

Examples: Classification with Association

08 August, 2007

Classification with Relations


Example: Classification with Aggregation

08 August, 2007

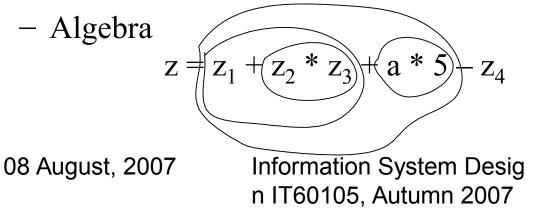

Inheritance & Delegation

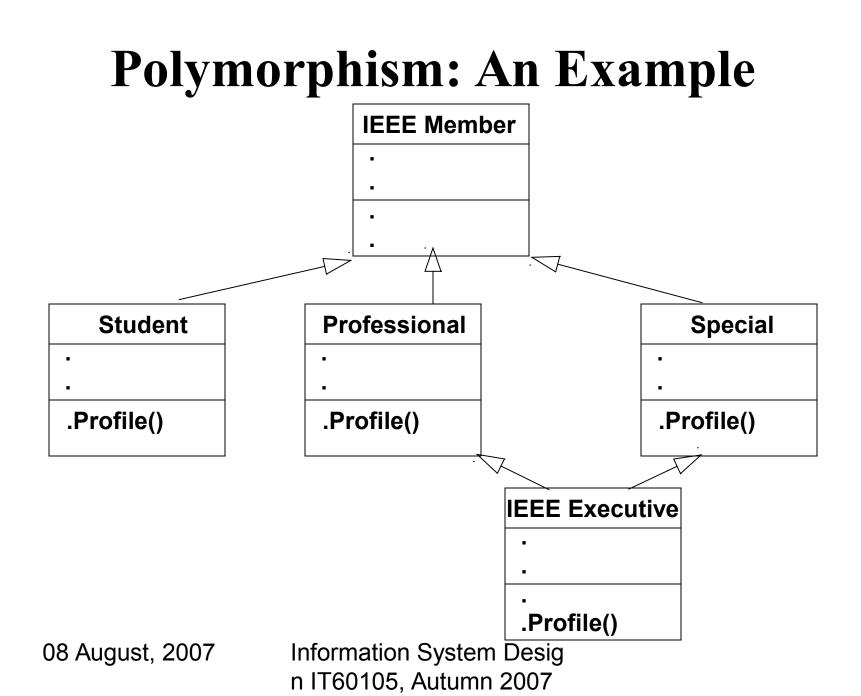
- Inheritance is the way to implement classification
 - Single inheritance
 - Multiple inheritance
- Delegation is the ability of an object to issue a message to another objects in response to a message
- Delegation is an alternative to inheritance

08 August, 2007

Inheritance: An Example

Polymorphism


Poly = many Morphism = form

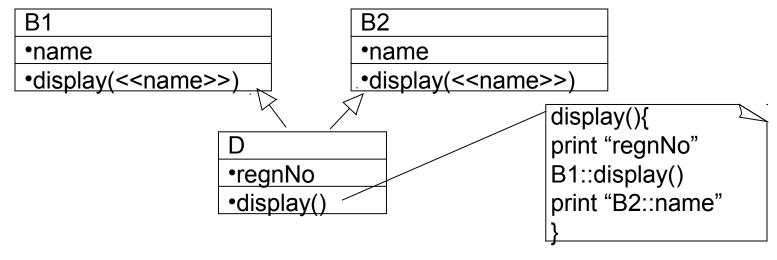

• An object (as well as attributes and operations) may be viewed with many forms

Example :

- Real world

Water has two forms: solid (ice) and liquid (water)

Binding

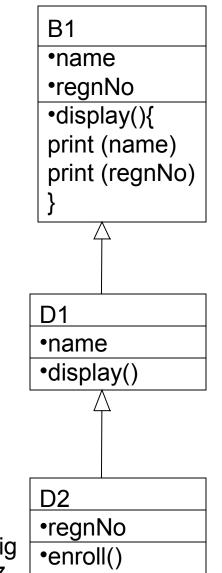

- Binding closely related to Polymorphism
 - Static binding (early binding)
 - Resolve during compile time
 - Dynamic binding (late binding)
 - Resolve during run time

08 August, 2007

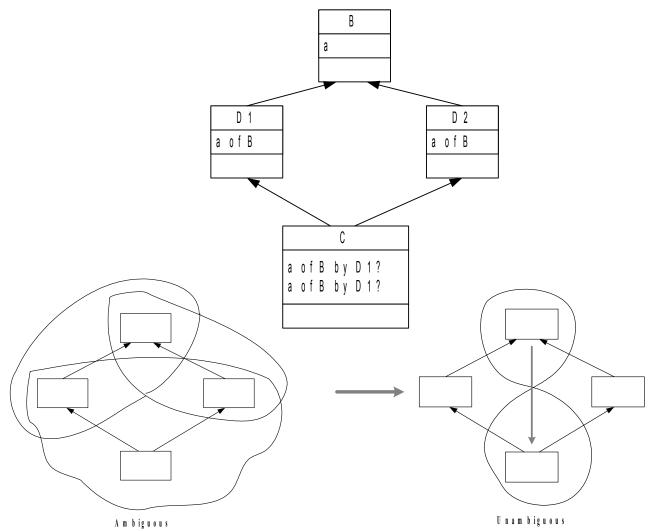
Static Binding

- In the case of static binding, the scope is required to be specified explicitly
- In C++, Java scope resolution operator(::) is used

Example:



08 August, 2007


Dynamic Binding

- It resolve during run time
- Example
 - In d1.display (): name from d1, regnNo from B
 - In d2.display (): name from D1, regnNo from D2
 - Note: here d1, d2 are object of D1, D2 classes respectively

08 August, 2007

Problem to Ponder

08 August, 2007