### **User Interface Evaluation**

**Cognitive Walkthrough** 

Lecture #16

# Agenda

- Evaluation through Expert Analysis
  - Cognitive walkthrough
  - Heuristic evaluation
  - Model-based evaluation
  - Cognitive dimension of notations

## **Evaluation through Expert Analysis**

- Usability experts inspect the interface
- Objective
  - To identify any areas that are likely to cause difficulties
- Application stage
  - Any stage in the development process: Design, Code, Test and Development
- Advantages
  - Relatively cheap and fast
  - Do not require the involvement of users
- Disadvantages
  - Not assess actual use of the system, assess only whether or not a system upholds accepted usability principles
  - Often abused by developers that consider themselves to be experts

## **Expert Analysis Approaches**

- Four important approaches are known
  - Cognitive walkthrough
    - Proposed by Polson et al. [1994]
  - Heuristic evaluation
    - Proposed by Nielsen et al. [1994]
  - Model-based approaches
    - Proposed by Card, Moran and Nielsen [1980]
  - Cognitive dimension of notation
    - Proposed by Thomas Green [1996]



# Cognitive Walkthrough

- Walkthrough is a term refers to the detailed review of a sequence of actions
- Walkthrough done by a group of experts (preferably, excluding the members who actually design/implement)

#### Example: Code walkthrough in Software Engineering

- To review a segment of program code by the expert other than programmer
- Sequence of actions
  - Selecting a set of program codes
  - Check certain characteristics, such as, coding style, spelling variables conventions, function declarations, system-wide invariants etc.

# Cognitive Walkthrough

- Like cognitive walkthrough (CW) in Software Engineering, we follow CW in HCI
- CW involves one or a group of evaluators inspecting a user interface by going through a set of tasks and evaluate its understandability and easy of learning
- Assess the usability of a system in situations where the user is not an expert, and may be attempting a task that s/he has never done before

# Cognitive Walkthrough

• Polson et al. introduced the concept of cognitive walkthrough [1994]

#### Reference

- The cognitive walkthrough method: A practitioner's guide by C. Wharton, J. Riemann, C. Lewis and P. Polson in Usability Inspection Methods edited by J. Nielsen and R. Mack, John Wiley, New York, 1994
- Polson's CW is based on the concept of Exploratory Learning

# **Exploratory Learning**

- Exploratory learning (EL) is learning through exploration
- Many users prefer to learn how to use system by explorations its functionality hands on and not after sufficient training or examination of user's manual
- Users carrying out tasks through EL involves four basic tasks
  - 1. User sets a **goal** to be accomplished with the system e.g. *Spelling check*
  - 2. User searches the interface for currently available **actions** e.g. Presence of menu items, buttons, availability of command-line inputs
  - 3. User **selects** the action that seems likely to make progress toward the goal
  - 4. The user **performs** the selected action and **evaluates** the system's feedback for evidence that progress is being made toward the current goal

### **CW:** Evaluation Procedure

- To do the CW, we need the following things
  - A specification or prototype of the system
    - It does not have to be complete, but it should be fairly detailed
  - A general description of the type of users who are expected to use the system and the relevant knowledge that these users would be expected to have
  - A description of one or more representative tasks to be used in the evaluation
  - For each of the tasks, a list of the correct actions that should be performed in order to complete the task

### **CW:** Evaluation Procedure

• The evaluators move through each of the tasks, considering the user interface at each step

• At each step, they examine the interface and critique the system and tell scenario

### CW: What to Evaluation?

- Three things are to be evaluated
  - Problems forming correct goals
  - Problems identifying the actions
  - Problems performing the actions

## **Problems Forming Correct Goals?**

#### Failure to add goals

• If the new design contains new goals, is there a clear indication to the user that these should be added?

Example: The user needs to add "load Hindi dictionary" to check a document. An interface may not contain prompt or other information in the interface indicating that this step is required to check a document in Hindi

#### Failure to drop goals

• If the design contains goal that must be dropped, is there a clear indication to the user that these should be dropped?

Example: While editing a file the older version is being saved as backup automatically. If the interface gives no indication of this activity, the user won't drop the goal of manually creating backup

## **Problems Forming Correct Goals?**

#### Addition of spurious goals

• Does the system suggests any extra or incorrect goals? Example: The user tries to save a modified file and the system presents a dialogue box asking 'Save as ...'. The user may add the goal of entering a file name, even though the next correct action is to click 'Ok', which saves the file under its current name

#### No-progress impasse

• Does the system's response indicate that progress has been made toward some higher goal?

Example: No significant response (while opening a large file from hard disk) or inappropriate response (Load the file and fix the cursor at the end of the file showing a blank screen giving a feedback that no file or improper file is opened)

## **Problems Identifying the Actions**

#### Correct action doesn't match goals

• Is there a problem matching a current goal to the correct action? Example: A user with his mobile cell has the goal "Send reply to a received message appended with the message". The action is to select reply message "Send" is a poor match to the user's goal

#### Incorrect actions match goals

• Are the incorrect actions available that match a user's goal? Example: A user working with MS Word wants to "Change the width of column of a table". To perform this goal user has to place the pointer in any cell in the column and stretch a boundary of the cell accordingly

## **Problems Performing the Actions**

#### Physical disabilities

• Are there any difficulties in performing an action, such as pressing multiple keys simultaneously or finding a hidden control? Example: The subscript command in MS Word is "Ctrl +=". On a keyboard with a single control key on the far left side, a user with

#### - Time-outs

• If the system has time-outs, how users might have difficulties deciding on the action and performing it before a time-out?

small hands may have difficulty touch typing "Ctrl +="

Example: User response time can vary greatly, and it is required to consider whether time-outs is useful or there is an obvious way to recover from a time-out if one does occur

### CW: Who Are the Evaluators?

- The evaluators may include
  - Human factors engineer
  - Software developer
  - People from marketing
  - People for documentation

etc.



### **Recommended Materials**

• See the course web page

http://www.iitkgp.ac.in/course/it60110/

(For the presentation slides of the current lecture and other materials)

Book

Human-Computer Interaction by Alan Dix et al. Pearson-Education,

#### **Chapter 9**







