

Designing an Interactive System for the Disabled Users

Samit Bhattacharya

Research Scholar

Dept. of Computer Science & Engineering

IIT Kharagpur

Assistive Technology (AT)

- Technology to assist individuals with disabilities to carry out various activities
- □ Who needs such technology
 - Visually impaired
 - Hearing impaired
 - Speech and motor impaired
 - Mentally retarded

How AT can help?

- Education
- Interpersonal communication
- Daily activities
- Entertainment
- □ Creativity
- □ Knowledge aquisition

HCI challenge

- Traditional I/O techniques may not be suitable
 - Sensory/motor requirements may not be present in the disabled user
- New interaction methods and techniques are required

Examples

- □ Text to speech synthesis-screen reader
- □ Speech recognition
- □ Braille printer
- □ Haptic and Tactile devices for input/output
- □ Voice output communication aids

AAC: Augmentative and Alternative Communication

- Communication aids for the speech and motor impaired
 - Cerebral Palsy
 - Muscular Dystrophy
 - Friedrich's Ataxia
 - Quadriplegia
- □ Alternate input methods
 - Alternate method of direct input (eye tracker, head tracker, head pointing)
 - Scanning or sequential input

AAC systems

- □ Icon based
- □ Text based
 - Character level text composition
 - * 0.5-5 wpm
 - ➢ Word level
 - Compansion (10-15 wpm)
 - Storage and recall of pharses, sentences, paragraphs)
 - Conversational modeling (storage of scripts, schemata, frames)
 - ✤ >60 wpm

Character level systems

- □ Characterized by
 - Slow entry rate
 - Tedious
- But required for natural communication
 - Creation of novel and spontaneous statements during conversation
 - Off-line writing tasks, i.e. essays, stories, letters and messages

Soft or on-screen keyboards

- □ Keys are arranged in rows and columns
- □ Operated by
 - eye tracking
 - scanning input methods
- □ Text entry rate
 - ≻ 0.5-5 wpm
 - 6-8 wpm with rate enhancement techniques (prediction, ambiguity, abbreviation expansion)

Gesture driven systems

□Continuous gesture used for text composition ≻Trackball EdgeWrite: 6-8 wpm

≻Dasher: 25 wpm (with eye tracker)

Input Devices

Scanning types

Design Challenge

- □ Large design space
 - ➢ With 27 keys, 27! Possible layouts
 - Each can be operated with either of the scanning methods
- How to choose a design that optimizes user performance?

Standard Design Method

- Reduce size of the design space based on experience and intuition
- Implement prototypes of the remaining designs
- Test prototypes with disabled users to determine the best

Problems

- Difficult to get disabled users for testing prototypes
 - Social pressure
 - Lack of exposure to computers
- □ Difficult to collect data large enough for analysis
 - Testing is physically demanding
 - Disabled users can not continue for long at a stretch
 - Data collection is slow

Model Based Design

- Evaluation of designs with user/performance models
 - ≻ Fast
 - Can be automated
 - Does not require user testing
 - Design space can be searched using the models
 - Removes dependency on designer's expertise to reduce design space

Performance Models

- The RG model by Rosen and Goodenough-Trepagnier (1981)
- □ Based on three components
 - L -- average no of language units per word
 - A -- average no of motor acts required to input each language unit
 - \succ T average time required to carry out each motor act
- \Box T_w = average time to compose an word = L*A*T

- □ Levine and Goodenough-Trepagnier (1990)
- Three performance models based on the RG model
 - Unambiguous keyboards
 - Soft keyboard with character encoding
 - Ambiguous keyboards

- RG model considered only direct input, not scanning
- Damper (1984) extended the RG model for scanning keyboards
- □ According to Damper

$$T_W = \frac{L}{R} \sum_{i=1}^{K} p_i(s_i + 1)$$

- L = as before
- R = scan rate
- Pi = unigram char probability
- Si = no of scan steps from a home position

- GOMS model by Horstmann and Levine
 (1990)
- KLM model by Koester and Levine (1994, 1997, 1998)
- Only interactions with direct input methods were modeled

- The FD Model Model for able-bodied users of soft keyboards (MacKenzie & Soukoreff, 1995; Soukoreff & MacKenzie, 2002; Zhai et al. 2002)
- □ Three components
 - Visual search time -- Hick-Hyman law
 - Movement time -- Fitts' law
 - Digraph probability -- from corpus

□ Movement time

 $MT_{ij} = a + b \log_2(d_{ij} / w_j + 1)$

□ Visual search time

 $RT = a' + b' \log_2 N$

Digraph probability

$$P_{ij} = f_{ij} / \sum_{i=1}^{N} \sum_{j=1}^{N} f_{ij}$$

□ Average movement time

$$MT_{MEAN} = \sum_{i=1}^{N} \sum_{j=1}^{N} MT_{ij} \times P_{ij}$$

□ Performance (CPS) $Novice = 1/(RT + MT_{MEAN})$

 $Expert = 1 / MT_{MEAN}$

□ Performance (WPM)

 $WPM = CPS \times (60 / W_{AVG})$

Comparison

- KLM/GOMS models require task description inputting a string of characters
 - Tedious
 - Desirable that the models do not take task description as input--RG and FD model are more suitable
- Damper's extended RG model
 - Considers only a particular scanning type
- FD model, appropriately modified, could alleviate these problems

Automatic Design Space Search

- □ Getschow et al. (1986) greedy algorithm
 - Not very efficient
- Adaptive evolutionary search Levine & Goodenough-Trepagnier (1990)
 - RG model for selection from a generation
- Dynamic Simulation, Metropolis algorithm (Zhai et al. 2002), Genetic algorithm (Raynal & Vigouroux, 2005)
 - FD model for selection

FD Model-Limitations

- Highlighter movement time instead of manual movement
- □ Switch input
- User errors

□ We have addressed these issues in our work

Modeling Scanning Interaction

- Replace Fitts' law with focus movement and selection time (FT)
- □ Assumptions
 - Each key holds single character
 - No prediction
 - Focus returns to the current block/row/item after each selection
 - ▹ No errors
- □ Let there are two keys: K=<b,r,c>, k'=<b',r',c'>
- Events between selection of k' after k

Auto Scanning Events

Event	Notation	Time
b is highlighted again	FOC()	System dependent
Focus moves from <i>b</i> to <i>b</i> '	MOV(b,b')	[B+(b'-b)]T: b' <b< td=""></b<>
		(b'-b)T: b'≤b
User activates switch to select <i>b</i> '	SEL(b')	T/2
Row level scanning in b' starts	FOC()	System dependent
Focus moves from the first row to r'	MOV(r1,r')	(r'-1)T
User activates switch to select <i>r</i> '	SEL(r')	T/2
Item level scanning in r' starts	FOC()	System dependent
Focus moves from the first item to <i>c</i> '	MOV(c1,c')	(c'-1)T
User selects c' once c' is focused	SEL(c')	T/2

FT for Auto Scanning

□ Sum of the individual event times

 $FT(k,k') = Tso + (X+C) \times T$

Tso	Total time for three FOC() events
Χ	(b'+r'+c')-b
С	-0.5 b'≥b; (B-0.5) b' <b;< th=""></b;<>

Guided Scanning Events

Event	Notation	Time
<i>b</i> is highlighted again	FOC()	System dependent
User shifts focus from <i>b</i> to <i>b</i> '	SFT(b,b')	[B+(b'-b)][T _{GS} +FOC()]: b' <b< td=""></b<>
		(b'-b) [T _{GS} +FOC()]: b'≤b
User activates switch to select b'	SEL(b')	Tgs
Row level scanning in b' starts	FOC()	System dependent
User shifts focus from the first row to r'	SFT(r1,r')	(r'-1) [T _{GS} +FOC()]
User activates switch to select r'	SEL(r')	TGS
Item level scanning in r' starts	FOC()	System dependent
User shifts focus from the first item to c'	SFT(c1,c')	$(c'-1) [T_{GS} + FOC()]$
User selects c' once c' is focused	SEL(c')	Tgs

FT for Guided Scanning

□ Sum of the individual event times

$$FT(k,k') = (X+C) \times (T_{GS}+FOC())$$

X	(b'+r'+c')-b
С	1 b'≥b; (B+1) b' <b;< th=""></b;<>

Calculation of TGS

- □ Keates et al. (2000) proposed five steps for switch activation
 - Perceive focusing (perception) (100 ms, Card et al., 1983)
 - Decide to activate switch (cognition) (84 ms, Keates et al., 2000)
 - Activate switch (motor act) (105 ms, Keates et al., 2000)
 - Decide to deactivate switch (cognition) (84 ms, Keates et al., 2000)
 - Deactivate switch (motor act) (105 ms, Keates et al., 2000)
- \Box T_{GS} = 100+2(105+84) = 478 ms

User Study

- Eight interfaces
- □ Two layouts
- □ Four types of scanning on each layout
 - 3-level auto and guided scanning
 - 2-level auto and guided scanning
- Eight subjects
 - Six with disabilities
 - Two without disabilities

Interfaces

I1,I3,I5,I7

অ	আ	দ দ	ৰ উ	<u>ال</u>		rআপনার লেখা
*	এ	উ	હ	Ś	Х	
ক	খ	গ	ঘ	C		
চ	ঙ	জ	ঝ	ସଃ	Х	
បី	ठ	ড	য	ণ	Х	
ত	প	দ	ধ	ন	Х	
প	ফ	ব	ভ	ম	Х	
×	ষ	2	1	হ	Х	
য	র	ল	য়	ড়	Х	
য়	٩	ৎ	8	ÿ	Х	
1	۲ J	d	<u>a</u> <			
6	5	(† (٦ J	1	X	
2	২	৩	8	¢	0	
৬	٩	b	\$	0	Х	
,		2	' ?	!		clear 🟠 🕂
space	bksp	jk <i>i</i>			X	

12,14,16,18

Resources

- Digraph prob. table for Bengali (size = 104*104 including non-alphabetic pairs like "Enter-Space")
- Average word length in Bengali (6 chars including space)
- □ Text *chunk* for data collection (630 chars)
- □ All the above from "Anandabazar" corpus
 - ▶ 96,012,779 characters

Results (Auto scanning)

Tso = 3*T for I1,I3 = 2*T for I2,I4

Results (Guided scanning)

$T_{GS} = 478 \text{ ms}$

Discussion

- Difference between model and observations
 - ➢ Auto scanning 5-10%
 - ➢ Guided scanning 2-8%
- □ Reason??
 - > SEL() = T/2
 - \succ T_{GS} = 478 ms
 - Five step switch activation model
 - Visual search

Error Study and Modeling: Background

- □ Trewin and Pine (1998)
 - Direct input methods
- Performance models do not take into account the effect of errors
- □ Reason: lack of data
- Result: limited practical usefulness of resulting designs

User Study

□ Two layouts

- Alphabetic organization
- Single character each keys
- No prediction
- □ 3-level, 2-level and 1-level auto scanning on each
- □ Six subjects with disabilities
- □ Printed texts of about 1000 characters for entry

Layouts

6		
А	В	C
D	E	F
G	Н	I
J	К	L
М	N	0
Р	Q	R
S	Т	U
V	W	X
Y	Z	BkSpc

অ	আ		ঈ	ঈ		ট	<u>ال</u>	
*		ୟ		ঐ			હે	
ক		খ		t	ঘ		T	
ব		ছ	জ		ঝ		ଏନ	
র্য		5	ড		চ		ণ	
ত		ধ	7	ī	ধ		ন	
প		ফ	<	1	ভ		ম	
¥		ষ		3	দ		হ	
য		র	G	1	च्		ড়	
য়		٩	9	(8		U	
1	ſ	٦	a					
6	5		(1	ไว	ব	2	1	
2		૨		>	8		¢	
৬		٩	b	r 🛛	8		0	
,		1	,	6	?		!	
sp	ace	bk	sp	jkA	sr	0	nt	

Experimental Method

- □ Two groups of experiments
- First group (English layout with three scanning types)
 - for data collection and model development
- Second group (Bengali layout with three scanning types)
 - validating results of first group

Observation

- □ Three types of errors
 - Timing errors (TE)
 - Selection errors (SE)
 - Transcription errors
- Transcription errors very rare and its effect can be ignored

Effect of TE and SE

- □ Analyzed usage logs of the six subjects
- □ Increase in text entry time due to TE
 - ➢ 65% (approx) for 3-level
 - ▶ 45% (approx) for 2-level
 - ➢ 35% (approx) for 1-level
- □ Increase in text entry time due to SE
 - ➤ 35% (approx) for 3-level
 - ➤ 25% (approx) for 2-level
 - ▶ 15% (approx) for 1-level

Temporal Model of User Behavior

Finite State Model

Model Prediction

- Number of highlighter shifts + switch activations
- Each scanning keyboard has
 - A minimum focus distance, fmin
 - A maximum focus distance, fmax
- □ User model predicts that
 - At fmin, high TE probability
 - > TE prob. decreases till a critical focus distance, fe
 - Then, it increases again till fmax
- □ No such pattern for SE, random in nature

Observation: 3-level TE Dist.

Observation: 2-level TE Dist.

Observation: 1-level TE Dist.

Observation: 3-level SE Dist.

Observation: 2-level SE Dist.

Observation: 1-level SE Dist.

Model Implication: Design Principles

- To reduce error, frequently selected char pairs should be placed apart by
 - \rightarrow fmin+Rf/2 for 3-level
 - \rightarrow fmin+Rf/3 for 1-level
 - fmax for 2-level

□ Effect on text entry rate?

- Interviewed subjects
- They preferred high text entry rate if error prob is low (1 and 2level), reduced error if error prob is high (3-level)
- Principle important for 3-level, apply with care for 1 and 2-levels

Model Implication: Computational Model

Distribution function for TE

$$P_{TE}(f)$$

= $P_{0.}e^{-\lambda_{0}(f-f\min)} f\min \leq f \leq f_{c}$
= $P_{1.}e^{\lambda_{1}(f-f_{c})} f_{c} < f \leq f\max$

□ SE modeled with sample mean since no pattern

Computational Model

- □ Four parameters for TE
 - ➢ Po, TE prob at fmin
 - ➢ fc, the critical focus distance
 - ➢ P1, TE prob at fc
 - ➢ P2, TE prob at fmax
- □ One parameter for SE, sample mean or Pm
- We have estimated their values from empirical data

Parameter Values

Scanning type	Parameter values
3-level	$P0 \approx 0.95, P1 \approx 0.5, P2 \approx 0.95$
	$fc \approx fmin + Rf/2$
	$\lambda_0 = (1/(R_f/2))\ln 2, \lambda_1 = (1/(R_f-1)-R_f/2))\ln 2$
	$Pm \approx 0.25$
2-level	$P0 \approx 0.5, P1 = 0, P2 \approx 0.5$
	$fc \approx fmax$
	$\lambda_0 = (1/(Rf-1))\ln 2$
	$Pm \approx 0.15$
1-level	$P_0 \approx 0.75, P_1 \approx 0.05, P_2 \approx 0.25$
	$fc \approx fmin + Rf/3$
	$\lambda_0 = (1/(Rf/3))\ln 15, \lambda_1 = (1/((Rf-1)-Rf/3))\ln 5$
	$Pm \approx 0.05$

Observation: TE Dist.

Observation: SE Dist.

The ErrorProneness (EP) Measure

- A numerical measure of the effect of errors for scanning keyboards
- Developed from the distribution functions
- □ EP of a scanning keyboards
 - ➢ Joint prob. of TE and SE
 - The higher the EP, the less the keyboards ability to prevent errors

EP Calculation

□ Calculate average focus distance, fmean

$$f_{mean} = \sum_{i=1}^{K} \sum_{j=1}^{K} DP_{ij} \times f_{ij}$$

Calculate joint error prob for fmean, assuming mutual independence

$$EP = P_m \times P_{TE}(f_{mean})$$

Comparing Interfaces

- □ Let we have a set of interfaces
- □ Compute the following for each interface
 - Error free text entry rate (t)
 - ≻ EP (e)
- Compare the interfaces based on these two measures

Relationship between two interfaces (s1, s2)

Notation	Relation
r1	t1 <t2, e1<e2<="" th=""></t2,>
r2	t1 <t2, e1="e2</th"></t2,>
r3	t1 <t2, e1="">e2</t2,>
r4	t1=t2, e1 <e2< th=""></e2<>
r5	t1=t2, e1=e2
r6	t1=t2, e1>e2
r7	t1>t2, e1 <e2< th=""></e2<>
r8	t1>t2, e1=e2
r9	t1>t2, e1>e2

Choosing the Better

- □ s1 better than s2 for r4, r7, r8
- □ s2 better than s1 for r2, r3, r6
- □ They are equal for r5
- For 3-level scanning, s1 better than s2 for r1 and vice-versa for r9
- For 1-level and 2-level, s1 better than s2 for r9 and vice-versa for r1

Design Space Search

- Previous method requires designer's expertise
- □ Solution: search design space with algorithm
- □ We want an algorithm that
 - Maximizes error free text entry rate
 - Minimizes error probability
- Associated problem optimal grouping of keys for multi-level scanning

Optimal Key Grouping

- □ Extended the work of Foulds et al. (1987)
- □ Uses a modified definition of focus distance as
 - Total shifts and switch activations starting from first block (3-level) or first row (2-level)
- □ Focus distance of a key
 - ≻ 3-level, k (b,r,c) = b+r+c
 - ≻ 2-level, k (r,c) = r+c
- □ Minimizes total focus distance of a layout

Algorithm

```
Set B_{MIN} = R_{MIN} = C_{MIN} = 2, B_{MAX} = R_{MAX} = C_{MAX} = \lceil K/4 \rceil, i = 1
for b = B_{MIN} to B_{MAX} do
     for \mathbf{r} = \mathbf{R}_{MIN} to \mathbf{R}_{MAX} do
             for c = C_{MIN} to C_{MAX} do
                          if b \times r \times c K then
                           generate layout L[i] with b, r and c numbers of blocks, rows and items
                           respectively
                          end if
                         i = i + 1
             end for
     end for
end for
i = 1
while i < length(L) do
     Calculate focus distance for each key in L[i]
     Sort keys in non-decreasing order of their focus distance
     Choose first K keys from this sorted list as the position of the characters in L[i]
     Calculate cost of the layout L[i]
    i = i + 1
end while
Select the layout with minimum cost from L
```


The Search Algorithm

- For simplicity, (1/text entry rate) was taken as one of the optimization criteria
 - Transformed to minimization problem
- Starts with a random layout; grouping algorithm used for multi-level scanning
- \Box Initial temperature, T₀=- $\Delta E/\ln P_0$
- T is decreased by a factor α (the cooling rate) till some minimum value

Acceptance Probabilities

□ Both the measures are worse

 $P_1 = 1/(1 + e^{((\Delta_1/(1/R') + \Delta_2/E')/T_i)})$

□ Text entry rate better $P_2 = 1/(1 + e^{(\Delta_1/(1/R'))/T_i})$

 \square EP is better

$$P_3 = 1/(1 + e^{(\Delta_2/E')/T_i})$$

Algorithm

Generate a layout at random. Calculate text entry rate and EP of the layout. Initialize temperature. Set minimum temperature, maximum iterations and α Initialize iteration count.

repeat

repeat

Choose two keys randomly from current layout 1 and swap characters to generate 1' if $\Delta 1, \Delta 2 \le 0$ then set 1 = 1' else if $\Delta 1, \Delta 2 > 0$ then calculate P1, if P1 \ge rand(), set 1 = 1'

else if $\Delta 1 > 0$ and $\Delta 2 \le 0$ then

```
calculate P2, if P2 \ge rand(), set l = l'
```

else

```
calculate P3, if P3 \geq rand(), set l = l' end if
```

update iteration count by one **until** maximum number of iterations update T; T = T × α **until** T > TMIN

Select the current layout

User Study

- □ 27 keys keyboards (26 letters + space)
- □ 3-level and 2-level scanning
- Developed optimized layouts
- Compared with alphabetic and randomly perturbed layouts
- □ Eight subjects (six with disabilities, two without)

Optimum Grouping (3-level)

	К1	K2	K5	K11	
Block 1	КЗ	K6	K12	K19	
	K7	K13	K20	K27	
6	K4	K8	K14	K21	
Block 2	K9	K15	K22		
	K16	K23			
	K10	K17	K24		
Block 3	K18	K25			
	K26				

Optimum Grouping (2-level)

К1	К2	К4	К7	K11	K16	K22
КЗ	К5	К8	K12	K17	K23	
K6	K9	K13	K18	K24		
K10	K14	K19	K25			
K15	K20	K26				
K21	K27					

Optimum layouts

- \Box T = 1 sec, T_{MIN} = 0.01
- \square P₀ = 0.8
- $\Box \alpha = 0.99$
- \Box Number of iteration for each temp = 1000
- $\Box \Delta E$ = average text entry rate diff for twenty random layouts

Some Statistics

- □ Each run considered 90,90,000 layouts
- □ Output of each run—a near optimum solution
- □ 1000 solution points generated for each
- □ These formed the Pareto fronts

Pareto Front for 3-level

Pareto Front for 2-level

Final Designs

Design with least EP for 3-level

822 ·																						
Space	Р		(Ĵ	В																	
Y	Μ			М		М		M		М		М		M		D		N		N		×
E	ZX		X		0			×														
V	C		V	V		Η		•														
Т		I			Q			×														
U		S				×																
J	J			L				•														
R		F				×																
A			Bk	Spc		×																

Final Designs

Design with highest text entry rate for 2-level

Т	М	к	х	Ι	В	S	×		
G	Z	C	A	A	F	D	×		
N		2	Y	w	ļ	Space	×		
L		0		J	Р		×		
F	Ľ	R V			V	×			
E	E U			В	kSpc		×		

Other Layouts: Alphabetic

&				1			8	\$		1	1		1	1	1		ľ
A	В		C		D			A	В		2	D	E	2	F	G	×
E	F		G		Н	×						1	<u> </u>				
Ι	J		K		L	×		Н	I		J]	ĸ	L		М	×
М	N		0		Р			N		0		Р	C	2	R	2	×
Q		R		S		×									8		
Т			U			×		S		Т		ι	U		V		×
V		W		Х		•		w	τ		х			Y			x
Y			Ζ			×											
Spac	e		BkS	рс		×		Z	27		Space	e		3kSpc			×

Other Layouts: Perturbed

S	Р	G	r l	В			<u>8</u>		ii ii	1		ſ				1																		
Y	M	E)	K	×		Т	Μ	1	N	Х	I		в	Space	>																		
E	Z	X		0	×		G		Z	R		A	F		D	,																		
V	R	W	7	Н	•																													
Т		I	Q		×		К		Q		Y	V	V	S		×																		
U		Spa	nce		x		L			0	2	J		Р		x																		
J]	L	N		•				ц						C		V			~														
С		F			×												11																	^
А		BkS	Spc		×		Е		Е		E			τ	J		BkSpc			x														

Predicted Performance

Interface	Text entry rate	EP
OPT_3SK	5.33	0.125
ALPH_3SK	5.11	0.135
PERT_3SK	5.27	0.127
OPT_2SK	7.06	0.054
ALPH_2SK	6.56	0.052
PERT_2SK	5.81	0.049

Expected

- OPT_3SK should have less probability of error (i.e. lower EP) than the other two
- OPT_2SK should have higher text entry rates than the other two

Observations

- For 3-level, all the subjects had higher text entry rate and lower EP with OPT_3SK than the other two
- For 2-level, all the subjects had higher text entry rate with OPT_2SK. However, in a few cases, subjects had more errors with the optimum design

Further Work

- □ More data for refinement and further validation
- □ Visual search incorporation
- Other multi-objective algorithms for design space search
- □ Predictive and ambiguous keyboards
- □ Extension to other scanning aids
- □ Scan step determination
- □ Automatic usability evaluation framework

Thank You