Memory in Interface Design

Lecture #8

Lesson Learned

- Extended version of human information processing model
 - Model explain how the human cognition can be viewed

- Perceiving an information
- Attending information
- Storing information
 - In this model, memory plays a significant role

12 March, 2008

Agenda

• Multi-store model of memory

• Memory in HCI design

12 March, 2008

Human Memory

Memory game

12 March, 2008

Multi-store Memory Model

- Describes more explicitly the processes in human cognition
- The model explains the three layers in memory store

12 March, 2008

Multi-store Memory Model

- Three layers in memory store
 - Sensory store
 - Modality specific
 - Holds information for a very brief period of time (a few tenth of second
 - Short-term memory store
 - Hold limited information for a short-period of time (a few seconds)
 - Long-term memory store
 - Holds information indefinitely

12 March, 2008 Human Computer Interactio n Spring 2008, Lecture #8

Sensory Store

- There are three different modality specific sensory stores
 - Iconic memory for visual stimuli
 - As you all can see the display on the screen
 - Echoic memory for aural stimuli
 - As you can hear what I am telling
 - Haptic memory for tactile senses
 - As your friend pull your hair

12 March, 2008

Sensory Memory

- Information from the external world is initially registered by the specific sensory stores
 - Like input buffers holding a direct representation of sensory information
- Only a small fraction of all information entering the sensory store is attended for further processing
 - Moving a finger in front of the eyes
 - We cannot see the finger more than one place at once
 - Firework display
- The information is lost by <u>being written over by successive</u> <u>information</u> or <u>through the process of decay</u>
 - Information remains in sensory memory very briefly, in the order of 0.5 seconds
 - 12 March, 2008 Human Computer Interactio n Spring 2008, Lecture #8

Short-term Memory

- Information from sensory store is attended to and selected for further processing in the short-term store
- It is also called working memory
- Information reaching the short-term memory store is actively processed and may then be transferred into the long-term memory store

12 March, 2008

Capacity of Short-term Memory

- Capacity to hold information is limited in time
 - Information remains in short-term memory very briefly, in the order of 200 ms
- Capacity to hold information is limited in amount
 - There are two basic methods for measuring memory capacity
 - 1. Determining the length of a sequence which can be remembered in order
 - 2. Items to be freely recalled in any order (say, in memory game)

12 March,	2008
-----------	------

Concept of 7 ± 2

- An observation by George Miller (1956)
 - The magic number 7 ± 2
 - The number is the one most often known to user interface developers
 - People can recall somewhere between 5 and 9 things at one time

Examples

- Let's see the following sequence of digits and try to write down as much of the sequence as you can
 - 364207120948
 - The average can easily recall between 5 to 9 digits
- Now try the following sequence. Did you recall that more easily?
 - 03742 58 2376

12 March, 2008

Generalization of the 7 ± 2 Rule

- We can remember 7 ± 2 chunks of information
 - Chunking information can increase the short-term memory capacity
- This is very much relevant in user interface design **Example**
 - Command line interface in Unix
 - A command has a number of parameters of options, to be applied in a particular order, and it is going to be applied to several files that have long path names
 - The user then has to hold the command name, its parameters and the file path names in short-term memory while he types them in
 - For the user, task may cause problems if the number of items or chunks in the command is more than 7

12 March, 2008	Human Computer Interactio
	n Spring 2008, Lecture #8

Long-term Memory

- Information entering the long-term memory is assumed to be permanent
- Processed information are stored as knowledge, which can be retrieved any subsequent time

12 March, 2008

Short-term vs. Long-term Memory

- Long-term memory differs from short-term memory in a number of significant ways
 - Short-term memory has a limited capacity, whereas the long-term memory has a huge, if not unlimited, capacity
 - Short-term memory can be accessed rapidly, in the order of 70ms, whereas the long-term-memory has a relatively slow access time of approximately a tenth of a second
 - Short-term memory decays rapidly, that is, information can only be held there temporarily, in the order of 200ms. Unlike short-term memory there is little decay in long-term memory. Long-term memory recall after minutes is the same as that after hours or days

12 March, 2008	Human Computer Interactio
	n Spring 2008, Lecture #8

Example 1: Human Memory

- While riding a car and enjoying the roadside views
 - You see so many things: hoardings, building, statue etc. all these go to the eyes and hence to the sensory memory
 - You see a thing, say hoarding and then read it is that something written there; ultimately you can conceive what actually it is written. This is in short-term memory
 - Some building (such as the Assembly House) and you can recall those for a long time

12 March, 2008 Human Computer Interactio n Spring 2008, Lecture #8

Example 2: Human Memory

Memory Constraint in HCI

- Without memory human cannot perform any action
 - Dead means brain is ceased to exist (and hence memory)
- Human memory system is very versatile
 - Can remember many things
 - Can forget something very easily

12 March, 2008

Memory Constraint in HCI

- Memory plays important role while a human interacts with computer
 - Some operations are straightforward and take minimal effort to memorize
 - Other take forever to learn and often drop out after they have been used

Factors to Remember Stimuli

• Meaningfulness

- Depth
 - More level of processing means more remembrance
- Familiarity
 - Frequency with which it occurs in everyday life
 - Stop, Read vs. Compile, Debug, Scan
- Imagery
 - Ability with which the words can elicit images in one mind
 - Eat, Sleep vs. Evaluate, Redo,

12 March, 2008

Meaningful Interface

- Certain items are more meaningful than others
- More memorable has obvious implication for interface design
- From the interface design point of views
 - Command names and icons should be on the basis of their meaningfulness
 - Careful consideration is required so that user should not confuse with their day-today understanding to the computing domain

Example

- Cut (user) \rightarrow sever a part with some form of instrument
- Cut (MS-Word) → operation of removing a piece of text or graphics from the screen and placing it in a clipboard for further use Note: some user reconcile the Cut as to split a file into two parts

12 March, 2008	Human Computer Interactio
	n Spring 2008, Lecture #8

Designing Meaningful Command Names

× Abbreviation and control keys

- For 'novice' users it is very difficult to learn and subsequently remember the abbreviations or control key combinations
 - Ctrl + = | Ctrl + R | Ctrl + E

× Abstract and quite arbitrary command names

- cat, grep, lint, mv, pr, lpr
- Not at all support to infrequent users
- Who use several systems with different command names or abbreviations for the same functionality

12 March, 2008	Human Computer Interactio
	n Spring 2008, Lecture #8

Designing Meaningful Command Names

- Select command names to consider the contextual, cultural, and user characteristics
 - If a particular application is to be used in a specific design culture, then the selection of names that are already used in the design world may be appropriate
 - An editing tool developed for use by children should also try to select names that the children already understood

12 March, 2008

Designing Meaningful Icons

- As with command names, there are several factors that determine the meaningfulness of icons
 - Context
 - In which the icon is being used
 - Function
 - For which it is being used
 - Representational forms
 - The surface form of representation
 - Underlying concepts
 - The nature that is being represented
 - Animated icons
 - Showing the behavior with multimedia

12 March, 2008

Meaningful Icons: Context

- Men's shoe and Women's high-heeled shoe in a public toilets or in a restaurant vs. same information sign in a shopping mall
- Understanding the meaning of icons should be context independent as far as possible
- The meaning of icons when used in more general context should be unambiguous

Meaningful Icons: Function

• Increasingly, icons are being used for a range of functions

Function	Example
Labeling	Menu item
Indicating	System state
Warning	Error message
Identifying	File storage
Manipulating	Tools for zooming and shrinking
Container	Object placing discard items

- The type of tasks for which they are being used is an important factor in determining their meaningfulness
- Icons should provide useful cues to guide the search for information
 e.g. web page, painting tools etc.

12 March, 2008	Human Computer Interactio
	n Spring 2008, Lecture #8

Meaningful Icons: Representational Form

- The extent to which the meaning of an icon can be understood will depend a lot on how it is represented
- Essentially there are three forms
 - The use of concrete object
 - The use of abstract symbol (such as arrows, circles, dots, lines)
 - A combination of the two

12 March, 2008

Meaningful Icons: Underlying Concepts

- The extent to which any form will be meaningful also depends on the type of concept that is being represented
- The easiest types to represent the concrete objects such as files and folders, where icons can be drawn to have a physical resemblance to the actual objects
- Icons can be designed to represent the concept only through less direct means, such as by indirect analogy
 - E.g. icon with elephant to represent the concept heavy
- In some cases, the meaning of the icon will initially need to be learned and after that easy to recall

12 March, 2008

Meaningful Icons: Animated Icons

- By animating the underlying function of the icons it is possible that complex and abstract process can be more effectively portrayed
- Animated icons are more easier to recall and more meaningful
- Animated icons depict both the static view as well as dynamic view: a combination of the both of the world
- To be specific, have to be designed to focus on the key aspects of the function; otherwise the animation may prove to be counterproductive and result in a confusing set of moving elements being displayed

12 March, 2008

Recommended Materials

• My Home page

http://facweb.iitkgp.ernet.in/~dsamanta (For the presentation slides of the current lecture

• Book

Human-Computer Interaction by Jenny Preece and et al. Addison-Wesley, New York

Chapter 5

12 March, 2008

