

HUMAN COMPUTER INTERACTION

Direct Manipulation Principles

Dr. Debasis Samanta

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

 2

1.0 Introduction

The term direct manipulation was coined by Shneiderman (1974, 1982,
1983) to refer to systems having the following properties:

1. Continuous representation of the object of interest.

2. Physical actions or labeled button presses instead of complex syntax.

3. Rapid incremental reversible operations whose impact on the object of interest
is immediately visible. (Shneiderman, 1982, p. 251)

1.2 Virtues of Direct Manipulation Systems

Direct manipulation interfaces seem remarkably powerful. Shneiderman
(1982) has suggested that direct manipulation systems have the following
virtues:

1. Novices can learn basic functionality quickly, usually through a
demonstration by a more experienced user.

2. Experts can work extremely rapidly to carry out a wide range of tasks, even
defining new functions and features.

3. Knowledgeable intermittent users can retain operational concepts.

4. Error messages are rarely needed.

5. Users can see immediately if their actions are furthering their goals, and if
not, they can simply change the direction of their activity.

6. Users have reduced anxiety because the system is comprehensible and
because actions are so easily reversible. (Shneiderman, 1982, p. 251)

Certainly there must be problems as well as benefits. It turns out that the
concept of direct manipulation is complex. Moreover, although there are
important benefits there are also costs. Like everything else, direct manipulation
systems trade off one set of virtues and vices against another. It is important
that we understand these trade-offs. A checklist of surface features is unlikely to
capture the real sources of power in direct manipulation interfaces.

2. History of Direct Manipulation

Hints of direct manipulation programming environments have been
around for quite some time. The first major landmark is Sutherland’s Sketchpad,

 3

a graphical design program (Sutherland, 1963). Sutherland’s goal was to devise a
program that would make it possible for a person and a computer “to converse
rapidly through the medium of line drawings.” Sutherland’s work is a landmark
not only because of historical priority but because of the ideas that he helped
develop: He was one of the first to discuss the power of graphical interfaces, the
conception of a display as “sheets of paper,” the use of pointing devices, the
virtues of constraint representations, and the importance of depicting
abstractions graphically.

 Sutherland’s ideas took 20 years to have widespread impact. The lag is
perhaps due more to hardware limitations than anything else. Highly interactive,
graphical programming requires the ready availability of considerable
computational power, and it is only recently that machines capable of
supporting this type of computational environment have become inexpensive
enough to be generally available. Now we see these ideas in many of the
computer-aided design and manufacturing systems, many of which can trace
their heritage directly to Sutherland’s work. Borning‘s ThingLab program (1979)
explored a general programming environment, building upon many of
Sutherland’s ideas within the Smalltalk programming environment. More
recently direct manipulation systems have been appearing with reasonable
frequency. For example, Bill Budge’s Pinball Construction Set (Budge, 1983)
permits a user to construct an infinite variety of electronic pinball games by
directly manipulating graphical objects that represent the components of the
game surface. Other examples exist in the area of intelligent training systems
(e.g., the Steamer system of Hollan, Hutchins, & Weitzman, 1984; Hollan,
Stevens, & Williams, 1980). Steamer makes use of similar techniques and also
provides tools for the construction of interactive graphical interfaces. Finally,
spreadsheet programs incorporate many of the essential features of direct
manipulation. In the lead article of Scientific American’s special issue on
computer software, Kay (1984) claims that the development of dynamic
spreadsheet systems gives strong hints that programming styles are in the offing
that will make programming as it has been done for the past 40 years - that is,
by composing text that represents instructions - obsolete.

3. Two Aspects of Directness: Distance and Engagement

There are two distinct aspects of the feeling of directness. One involves
a notion of the distance between one’s thoughts and the physical requirements
of the system under use. A short distance means that the translation is simple
and straightforward, that thoughts are readily translated into the physical
actions required by the system and that the system output is in a form readily
interpreted in terms of the goals of interest to the user. We will use the term
directness to refer to the feeling that results from interaction with an interface.
The term distance will be used to describe factors which underlie the generation
of the feeling of directness.

 4

The second aspect of directness concerns the qualitative feeling of

engagement, the feeling that one is directly manipulating the objects of interest.
There are two major metaphors for the nature of human-computer interaction, a
conversation metaphor and a model-world metaphor. In a system built on the
conversation metaphor, the interface is a language medium in which the user
and system have a conversation about an assumed, but not explicitly
represented world. In this case, the interface is an implied intermediary between
the user and the world about which things are said. In a system built on the
model-world metaphor, the interface is itself a world where the user can act, and
which changes state in response to user actions. The world of interest is
explicitly represented and there is no intermediary between user and world.
Appropriate use of the model-world metaphor can create the sensation in the
user of acting upon the objects of the task domain themselves. We call this
aspect of directness direct engagement.

3.1 Distance

We call one underlying aspect of directness distance to emphasize the
fact that directness is never a property of the interface alone, but involves a
relationship between the task the user has in mind and the way that task can be
accomplished via the interface. Here the critical issues involve minimizing the
effort required to bridge the gulf between the user’s goals and the way they must
be specified to the system.

An interface introduces distance to the extent there are gulfs between a

person’s goals and knowledge and the level of description provided by the
systems with which the person must deal. These are referred to as the gulf of
execution and the gulf of evaluation shown in the figure below. The gulf of
execution is bridged by making the commands and mechanisms of the system
match the thoughts and goals of the user. The gulf of evaluation is bridged by
making the output displays present a good conceptual model of the system that
is readily perceived, interpreted, and evaluated. The goal in both cases is to
minimize cognitive effort.

We suggest that the feeling of directness is inversely proportional to the

amount of cognitive effort it takes to manipulate and evaluate a system and,
moreover, that cognitive effort is a direct result of the gulfs of execution and
evaluation. The better the interface to a system helps bridge the gulfs, the less
cognitive effort needed and the more direct the resulting feeling of interaction.

 5

Fig. The gulfs of execution and evaluation. Each gulf is unidirectional: The
gulf of execution goes from goals to system state; the gulf of evaluation
goes from system state to goals.

3.2 Direct Engagement

The description of the nature of interaction to this point begins to
suggest how to make a system less difficult to use, but it misses an important
point, a point that is the essence of direct manipulation. The analysis of the
execution and evaluation process explains why there is difficulty in using a
system, and it says something about what must be done to minimize the mental
effort required to use a system. But there is more to it than that. The systems
that best exemplify direct manipulation all give the qualitative feeling that one is
directly engaged with control of the objects- not with the programs, not with the
computer, but with the semantic objects of our goals and intentions. This is the
feeling that Laurel (1986) discusses: a feeling of first-personness, of direct
engagement with the objects that concern us. Are we analyzing data? Then we
should be manipulating the data themselves; or if we are designing an analysis
of data, we should be manipulating the analytic structures themselves. Are we
playing a game? Then we should be manipulating directly the game world,
touching and controlling the objects in that world, with the output of the system
responding directly to our actions, and in a form compatible with them.

 6

Historically, most interfaces have been built on the conversation
metaphor. There is power in the abstractions that language provides (we discuss
some of this later), but the implicit role of interface as an intermediary to a
hidden world denies the user direct engagement with the objects of interest.
Instead, the user is in direct contact with linguistic structures, structures that
can be interpreted as referring to the objects of interest, but that are not those
objects themselves. Making the central metaphor of the interface that of the
model world supports the feeling of directness. Instead of describing the actions
of interest, the user performs those actions. In a conventional interface, the
system describes the results of the actions. In a model world the system directly
presents the actions taken upon the objects. This change in central metaphor is
made possible by relatively recent advances in technology. One of the exciting
prospects for the study of direct manipulation is the exploration of the properties
of systems that provide for direct engagement.

Building interfaces based on the model-world metaphor requires a

special sort of relationship between the input interface language and the output
interface language. In particular, the output language must represent its subject
of discourse in a way that natural language does not normally do. The
expressions of a direct manipulation output language must behave in such a
way that the user can assume that they, in some sense, are the things they refer
to. DiSessa (1985) calls this “naive realism.” Furthermore, the nature of the
relationship between input and output language must be such that an output
expression can serve as a component of an input expression. Draper (1986) has
coined the term inter-referential 1/0 to refer to relationships between input and
output in which an expression in one can refer to an expression in the other.
When these conditions are met, it is as if we are directly manipulating the things
that the system represents.

Thus, if we consider a system in which a file is represented by an image

on the screen and actions are done by pointing to and manipulating the image.
In this case, if we can specify a file by pointing at the screen representation, we
have met the goal that an expression in the output language (in this case, an
image) is allowed as a component of the input expression (in this case, by
pointing at the screen representation). If we ask for a listing of files, we would
want the result to be a representation that can, in turn, be used directly to
specify the further operations to be done. Notice that this is not how a
conversation works. In conversation, one may refer to what has been said
previously, but one cannot operate upon what has been said. This requirement
does not necessarily imply an interface of pictures, diagrams, or icons. It can be
done with words and descriptions. The key properties are that the objects,
whatever their form, have behaviors and can be referred to by other objects, and
that referring to an object causes it to behave. In the file-listing example, we
must be able to use the output expression that represents the file in question as
a part of the input expression calling for whatever operation we desire upon that
file, and the output expression that represents the file must change as a result of

 7

being referred to in this way. The goal is to permit the user to act as if the
representation is the thing itself.

These conditions are met in many screen editors when the task is the

arrangement of strings of characters. The characters appear as they are typed.
They are then available for further operations. We treat them as though they are
the things we are manipulating. These conditions are also met in the statistics
example with which we opened this article (Figure l), and in Steamer. The special
conditions are not met in file-listing commands on most systems, the commands
that allow one to display the names and attributes of file structure.

The issue is that the outputs of these commands are simply “names” of

the objects, and operating on the names does nothing to the objects to which the
names refer. In a direct manipulation situation, we would feel that we had the
files in front of us, that the program that “listed” the files actually placed the files
before us. Any further operation on the files would take place upon the very
objects delivered by the directory-listing command. This would provide the
feeling of directly manipulating the objects that were returned.

The point is that when an interface presents a world of behaving objects

rather than a language of description, manipulating a representation can have
the same effects and the same feel as manipulating the thing being represented.
The members of the audience of a well-staged play willfully suspend their beliefs
that the players are actors and become directly engaged in the content of the
drama. In a similar way, the user of a well-designed model-world interface can
willfully suspend belief that the objects depicted are artifacts of some program
and can thereby directly engage the world of the objects. This is the essence of
the “first-personness” feeling of direct engagement. Let us now return to the
issue of distance and explore the ways that an interface can be direct or indirect
with respect to a particular task.

3.3 Two forms of Distance: Semantic and Articulatory

Whenever we interact with a device, we are using an interface language.
That is, we must use a language to describe to the device the nature of the
actions we wish to have performed. This is true regardless of whether we are
dealing with an interface based on the conversation metaphor or on the model
world metaphor, although the properties of the language in the two cases are
different. A description of desired actions is an expression in the interface
language.

The notion of an interface language is not confined to the everyday
meaning of language. Setting a switch or turning a steering wheel can be
expressions in an interface language if switch setting or wheels turning are how
one specifies the operations that are to be done. After an action has been
performed, evaluation of the outcome requires that the device make available

 8

some indication of what has happened: that output is an expression in the
output interface language. Output interface languages are often impoverished.
Frequently the output interface language does not share vocabulary with the
input interface language. Two forms of interface language- two dialects exist to
span the gulfs between user and device: the input interface language and the
output interface language.

Both the languages people speak and computer programming
languages are almost entirely symbolic in the sense that there is an arbitrary
relationship between the form of a vocabulary item and its meaning. The
reference relationship is established by convention and must be learned. There is
no way to infer meaning from form for most vocabulary items. Because of the
relative independence of meaning and form we describe separately two properties
of interface languages: semantic distance and articulatory distance. The figure
below summarizes the relationship between semantic and articulatory distance.
In the following sections we treat each of these distances separately and discuss
them in relation to the gulfs of execution and evaluation.

Fig. Every expression in the interface language has a meaning and a form.
Semantic distance reflects the relationship between the user intentions
and the meaning of expressions in the interface languages both for input
and output. Articulatory distance reflects the relationship between the
physical form of an expression in the interaction language and its meaning,
again, both for input and output. The easier it is to go from the form or

 9

appearance of the input or output to meaning, the smaller the articulatory
distance.

3.4 Semantic Distance

Semantic distance concerns the relation of the meaning of an expression
in the interface language to what the user wants to say. Two important questions
about semantic distance are :

1. Is it possible to say what one wants to say in this language? That is, does
the language support the user’s conception of the task domain? Does it encode
the concepts and distinctions in the domain in the same way that the user
thinks about them?
2. Can the thing1 of interest be said concisely? Can the user say what is
wanted in a straightforward fashion, or must the user construct a complicated
expression to do what appears in the user’s thoughts as a conceptually simple
piece of work?

Semantic distance is an issue with all languages. Natural languages

generally evolve such that they have rich vocabularies for domains that are of
importance to their speakers. When a person learns a new language- especially
when the language is from a different culture - the new language may seem
indirect, requiring complicated constructs to describe things the learner thinks
should be easy to say. But the differences in apparent directness reflect
differences in what things are thought important in the two cultures. Natural
languages can and do change as the need arises. This occurs through the
introduction of new vocabulary or by changing the meaning of existing terms.
The result is to make the language semantically more direct with respect to the
topic of interest.

3.5 Semantic Distance in the Gulfs of Execution and Evaluation

The Gulf of Execution

At the highest level of description, a task may be described by the
user’s intention: “compose this piece” or “format this paper.” At the lowest level
of description, the performance of the task consists of the shuffling of bits inside
the machine. Between the interface and the low-level operations of the machine
is the system-provided task-support structure that implements the expressions
in the interface language. The situation that Perlis (1982) called the “Turing
tarpit” is one in which the interface language lies near or at the level of bit
shuffling of a very simple abstract machine. In this case, the entire burden of
spanning the gulf from user intention to bit manipulation is carried by the user.
The relationship between the user’s intention and the organization of the
instructions given to the machine is distant, complicated, and hard to follow.

 10

Where the machine is of minimal complexity, as is the case with the Turing
machine example, the wide gulf between user intention and machine
instructions must be filled by the user’s extensive planning and translation
activities. These activities are difficult and rife with opportunities for error.

Semantic directness requires matching the level of description required
by the interface language to the level at which the person thinks of the task. It is
always the case that the user must generate some information-processing
structure to span the gulf. Semantic distance in the gulf of execution reflects
how much of the required structure is provided by the system and how much by
the user. The more that the user must provide, the greater the distance to be
bridged.

The Gulf of Evaluation

On the evaluation side, semantic distance refers to the amount of

processing structure that is required for the user to determine whether the goal
has been achieved. If the terms of the output are not those of the user’s
intention, the user will be required to translate the output into terms that are
compatible with the intention in order to make the evaluation. For example,
suppose a user’s intent is to control how fast the water level in a tank rises. The
user does some controlling action and observes the output. But if the output
only shows the current value, the user has to observe the value over time and
mentally compare the values at different times to see what the rate of change is.
The information needed for the evaluation is in the output, but it is not there in
a form that directly fits the terms of the evaluation. The burden is on the user to
perform the required transformations, and that requires effort. Suppose the rate
of change were directly displayed. This indication reduces the mental workload,
making the semantic distance between intentions and output language much
shorter.

3.6 Reducing the Semantic Distance That Must Be Spanned

Higher-Level Languages

One way to bridge the gulf between the intentions of the user and the
specifications required by the computer is well known: Provide the user with a
higher-level language, one that directly expresses frequently encountered
structures of problem decomposition. Instead of requiring the complete
decomposition of the task to low-level operations, let the task be described in the
same language used within the task domain itself. Although the computer still
requires low-level specification, the job of translating from the domain language
to the programming language can be taken over by the machine itself. This
implies that designers of higher-level languages should consider how to develop
interface languages for which it will be easy for the user to create the mediating

 11

structure between intentions and expressions in the language. One way to
facilitate this process is to provide consistency across the interface surface. That
is, if the user builds a structure to make contact with some part of the interface
surface, a savings in effort can be realized if it is possible to use all or part of
that same structure to make contact with other areas.

The result of matching a language to the task domain brings both good

news and bad news. The good news is that tasks are easier to specify. Even if
considerable planning is still required to express a task in a high-level language,
the amount of planning and translation that can be avoided by the user and
passed off to the machine can be enormous. The bad news is that the language
has lost generality. Tasks that do not easily decompose into the terms of the
language may be difficult or impossible to represent. In the extreme case, what
can be done is easy to do, but outside that specialized domain, nothing can be
done. The power of a specialized language system derives from carefully specified
primitive operations, selected to match the predicted needs of the user, thus
capturing frequently occurring structures of problem decomposition. The trouble
is that there is a conflict between generality and matching to any specific
problem domain. Some high-level languages and operating systems have
attempted to close the gap between user intention and the interaction language
while preserving freedom and ease of general expression by allowing for
extensibility of the language or operating system. Such systems allow the users
to move the interface closer to their conception of the task.

The Lisp language and the UNIX operating system serve as examples of

this phenomenon. Lisp is a general-purpose language, but one that has extended
itself to match a number of special high-level domains. As a result, Lisp can be
thought of as having numerous levels on top of the underlying language kernel.
There is a cost to this method. As more and more specialized domain levels get
added, the language system gets larger and larger, becoming more clumsy to
use, more expensive to support, and more difficult to learn. Just look at any of
the manuals for the large Lisp systems (Interlisp, Zetalisp) to get a feel for the
complexity involved. The same is true for the UNIX operating system, which
started out with a number of low-level, general primitive operations. Users were
allowed (and encouraged) to add their own, more specialized operations, or to
package the primitives into higher-level operations. The results in all these cases
are massive systems that are hard to learn and that require a large amount of
support facilities. The documentation becomes huge, and not even system
experts know all that is present. Moreover, the difficulty of maintaining such a
large system increases the burden on everyone, and the possibility of having
standard interfaces to each specialized function has long been given up.

 The point is that as the interface approaches the user’s intention end of
the gulf, functions become more complicated and more specialized in purpose.
Because of the incredible variety of human intentions, the lexicon of a language
that aspires to both generality of coverage and domain-specific functions can

 12

grow very large. In any of the modern dialects of Lisp one sees a microcosm of
the argument about high-level languages in general. The fundamentals of the
language are simple, but a great deal of effort is required to do anything useful
at the low level of the language itself. Higher-level functions written in terms of
lower-level ones make the system easier to use when the functions match
intentions, but in doing so they may restrict possibilities, proliferate vocabulary,
and require that a user know an increasing amount about the language of
interaction rather than the domain of action.

Make the Output Show Semantic Concepts Directly

An example of reducing semantic distance on the output side is
provided by the scenario of controlling the rate of filling a water tank, described
above. In that situation, the output display was modified to show rate of flow
directly, something normally not displayed but instead left to the user to
compute mentally. In similar fashion, the change from line-oriented text editors
to screen oriented text editors, where the effects of editing commands can be
seen instantly, is another example of matching the display to the user’s
semantics. In general, the development of WYSIWYG (“What You See Is What
You Get”) systems provides other examples. And finally, spreadsheet programs
have been valuable, in part because their output format continually shows the
state of the system as values are changed. The attempt to develop good semantic
matches with the system output confronts the same conflict between generality
and power faced in the design of input languages. If the system is too specific
and specialized, the output displays lack generality. If the system is too rich, the
user has trouble learning and selecting among the possibilities. One solution for
both the output and input problem is to abandon hope of maintaining general
computing and output ability and to develop special-purpose systems for
particular domains or tasks. In such a world, the location of the interface in
semantic space is pushed closer to the domain language description. Here,
things of interest are made simple because the lexicon of the interface language
maps well into the lexicon of domain description. Considerable planning may
still go on in the conception of the domain itself, but little or no planning or
translation is required to get from the language of domain description to the
language of the interface. The price paid for these advantages is a loss of
generality: Many things are unnatural or even impossible.

Automated Behavior Does Not Reduce Semantic Distance

Cognitive effort is required to plan a sequence of actions to satisfy some
intent. Generally, the more structure required of the user, the more effort use of
the system will entail. However, this gap can be overcome if the users become
familiar enough with the system. Structures that are used frequently need not be
rebuilt every time they are needed if they have been remembered. Thus, a user
may remember how to do something rather than having to re-derive how to do it.
It is well known that when tasks are practiced sufficiently often, they become

 13

automated, requiring little or no conscious attention. As a result, over time the
use of an interface to solve a particular set of problems will feel less difficult and
more direct. Experienced users will sometimes argue that the interface they use
directly satisfies their intentions, even when less skilled users complain of the
complexity of the structures. To skilled users, the interface feels direct because
the invocation of mediating structure has been automated. They have learned
how to transform frequently arising intentions into action specifications. The
result is a feeling of directness as compelling as that which results from
semantic directness. As far as such users are concerned, the intention comes to
mind and the action gets executed. There are no conscious intervening stages.
(For example, a user of the vi text editor expressed this as follows: “I am an
expert user of vi, and when I wish to delete a word, all I do is think ‘delete that
word,’ my fingers automatically type ‘dw,’ and the word disappears from the
screen. How could anything be more direct?” The frequent use of even a poorly
designed interface can sometimes result in a feeling of directness like that
produced by a semantically direct interface. A user can compensate for the
deficiencies of the interface through continual use and practice so that the
ability to use it becomes automatic, requiring little conscious activity. While
automatism is one factor which can contribute to a feeling of directness, it is
essential for an interface designer to distinguish it from semantic distance.
Automatization does not reduce the semantic distance that must be spanned;
the gulfs between a user’s intentions and the interface must still be bridged by
the user. Although practice and the resulting expertise can make the crossing
less difficult, it does not reduce the magnitude of the gulfs. Planning activity may
be replaced by single memory retrieval so that instead of figuring out what to do,
the user remembers what to do. Automatization may feel like direct control, but
it comes about for completely different reasons than semantic directness.
Automatization is useful, for it improves the interaction of the user with the
system, but the feeling of directness it produces depends only on how much
practice a particular user has with the system and thus gives the system credit
for the work the user has done. Although we need to remember that this
happens, that users may adjust themselves to the interface and, with sufficient
practice, may view it as directly supporting their intentions, we need to
distinguish between the cases in which the feeling of directness originates from a
close semantic coupling between intentions and the interface language and that
which originates from practice. The resultant feeling of directness might be the
same in the two cases, but there are crucial differences between how the feeling
is acquired and what one needs to do as an interface designer to generate it.

The User Can Adapt to the System Representation

Another way to span the gulf is for the users to change their own

conceptualization of the problem so that they come to think of it in the same
terms as the system. In some sense, this means that the gulf is bridged by
moving the user closer to the system. Because of their experience with the
system, the users change both their understanding of the task and the language

 14

with which they think about issues. This is related to the notion of linguistic
determinism. If it is true that the way we think about something is shaped by
the vocabulary we have for talking about it, then it is important for the designer
of a system to provide the user with a good representation of the task domain in
question. The interface language should provide a powerful, productive way of
thinking about the domain.

This form of the users adapting to the system representation takes

place at a more fundamental level than the other ways of reducing semantic
distance. While moving the interface closer to the users’ intentions may make it
difficult to realize some intentions, changing the users’ conception of the domain
may prevent some intentions from arising at all. So while a well-designed special
purpose language may give the users a powerful way of thinking about the
domain, it may also restrict the users’ flexibility to think about the domain in
different ways. The assumption that a user may change conceptual structure to
match the interface language follows from the notion that every interface
language implies a representation of the tasks it is applied to. The representation
implied by an interface is not always a coherent one. Some interfaces provide a
collection of partially overlapping views of a task domain. If a user is to move
toward the model implied by the interface, and thus reduce the semantic
distance, that model should be coherent and consistent over some conception of
the domain. There is, of course, a trade-off here between the costs to the user of
learning a new way to think about a domain and the potential added power of
thinking about it in the new way.

Virtuosity and Semantic Distance

Sometimes users have a conception of a task and of a system that is

broader and more powerful than that provided by an interface. The structures
they build to make contact with the interface go beyond it. This is how we
characterize virtuoso performances in which the user may “misuse” limited
interface tools to satisfy intentions that even the system designer never
anticipated. In such cases of virtuosity the notion of semantic distance becomes
more complicated and we need to look very carefully at the task that is being
accomplished. Semantic directness always involves the relationship between the
task one wishes to accomplish and the ways the interface provides for
accomplishing it. If the task changes, then the semantic directness of the
interface may also change. Consider a musical example: Take the task of
producing a middle-C note on two musical instruments, a piano and a violin. For
this simple task, the piano provides the more direct interface because all one
need do is find the key for middle-C and depress it, whereas on the violin, one
must place the bow on the G string, place a choice of fingers in precisely the
right location on that string, and draw the bow. A piano’s keyboard is more
semantically direct than the violin’s strings and bow for the simple task of
producing notes. The piano has a single well-defined vocabulary item for each of
the notes within its range, while the violin has an infinity of vocabulary items,

 15

many of which do not produce proper notes at all. However, when the task is
playing a musical piece well rather than simply producing notes, the directness
of the interfaces can change. In this case, one might complain that a piano has a
very indirect interface because it is a machine with which the performer “throws
hammers at strings.” The performer has no direct contact with the components
that actually produce the sound, and so the production of desired nuances in
sound is more difficult. Here, as musical virtuosity develops, the task that is to
be accomplished also changes from just the production of notes to concern for
how to control more subtle characteristics of the sounds like vibrato, the slight
changes in pitch used to add expressiveness. For this task the violin provides a
semantically more direct interface than the piano. Thus, as we have argued
earlier, an analysis of the nature of the task being performed is essential in
determining the semantic directness of an interface.

3.7 Articulatory Distance

In addition to its meaning, every vocabulary item in every language has
a physical form and that form has an internal structure. Words in natural
languages, for example, have phonetic structure when spoken and typographic
structure when printed. Similarly, the vocabulary items that constitute an
interface language have a physical structure. Where semantic distance has to do
with the relationship between user’s intentions and meanings of expressions,
articulatory distance has to do with the relationship between the meanings of
expressions and their physical form. On the input side, the form may be a
sequence of character-selecting key presses for a command language interface,
the movement of a mouse and the associated “mouse clicks” in a pointing device
interface, or a phonetic string in a speech interface. On the output side, the form
might be a string of characters, a change in an iconic representation, or
variation in an auditory signal. There are ways to design languages such that the
relationships between the forms of the vocabulary items and their meanings are
not arbitrary. One technique is to make the physical form of the vocabulary
items structurally similar to their meanings. In spoken language this
relationship is called onomatopoeia. Onomatopoetic words in spoken language
refer to their meanings by imitating the sound they refer to. Thus we talk about
the “boom” of explosions or the “cock-a-doodle-doo” of roosters. There is an
economy here in that the user’s knowledge of the structure of the surface
acoustical form has a non arbitrary relation to meaning. There is a directness of
reference in this imitation; an intervening level of arbitrary symbolic relations is
eliminated. Other uses of language exploit this effect partially. Thus, although
the word “long is arbitrarily associated with its meaning, sentences like “She
stayed a looooooooooong time” exploit a structural similarity between the surface
form of “long” (whether written or spoken) and the intended meaning. The same
sorts of things can be done in the design of interface languages.

 16

In many ways, the interface languages should have an easier time of
exploiting articulatory similarity than do natural languages because of the rich
technological base available to them. Thus, if the intent is to draw a diagram, the
interface might accept as input drawing motions. In turn, it could present as
output diagrams, graphs, and images. If one is talking about sound patterns in
the input interface language, the output could be the sounds themselves. The
computer has the potential to exploit articulatory similarities through
technological innovation in the varieties of dimensions upon which it can
operate. This potential has not been exploited, in part because of economic
constraints. The restriction to simple keyboard input limits the form and
structure of the input languages and the restriction to simple, alphanumeric
terminals with small, low-resolution screens, limits the form and structure of the
output languages.

3.8 Articulatory Distance in the Gulfs of Execution and Evaluation

The relationships among semantic distance, articulatory distance, and
the gulfs of execution and evaluation are illustrated in the figure below. Take the
simple, commonplace activity of moving a cursor on the screen. If we do this by
moving a mouse, pointing with a finger or a light pen at the screen, or otherwise
mimicking the desired motion, then at the level of action execution, these
interactions all exhibit articulatory directness. The meaning of the intention is
cursor movement and the action is specified by means of a similar movement.
One way to achieve articulatory directness at the input side is to provide an
interface that permits specification of an action by mimicking it, thus supporting
an articulatory similarity between the vocabulary item and its meaning. Any
nonarbitrary relationship between the form of an item and its meaning can be a
basis for articulatory directness. While structural relationships of form to
meaning may be desirable, it is sometimes necessary to resort to an arbitrary
relationship of form to meaning. Still, some arbitrary relationships are easier to
learn than others. It may be possible to exploit previous user knowledge in
creating this relationship. Much of the work on command names in command
language interfaces is an instance of trying to develop memorable and
discriminable relationships between the forms and the meanings of command
names.

Articulatory directness on the output side is similar. If the user is

following the changes in some variable, a moving graphical display can provide
articulatory directness. A table of numbers, although containing the same
semantic information, does not provide articulatory directness. Thus, the
graphical display and the table of numbers might be equal in semantic
directness, but unequal in articulatory directness. The goal of designing for
articulatory directness is to couple the perceived form of action and meaning so
naturally that the relationships between intentions and actions and between
actions and output seem straight forward and obvious. In general, articulatory
directness is highly dependent upon I/O technology. Increasing the articulatory

 17

directness of actions and displays requires a much richer set of input/output
devices than most systems currently have. In addition to keyboards and bit-
mapped screens, we see the need for various forms of pointing devices. Such
pointing devices have important spatio-mimetic properties and thus support the
articulatory directness of input for tasks that can be represented spatially. The
mouse is useful for a wide variety of tasks not because of any properties inherent
in itself, but because we map so many kinds of relationships (even ones that are
not intrinsically spatial) on to spatial metaphors. In addition, there are often
needs for sound and speech, certainly as outputs, and possibly as inputs.
Precise control of timing will be necessary for those applications where the
domain of interest is time sensitive.

Forming an intention is the activity that spans semantic distance in the
gulf of execution. The intention specifies the meaning of the input
expression that is to satisfy the user’s goal. Forming an action specification
is the activity that spans articulatory distance in the gulf of execution. The
action specification prescribes the form of an input expression having the
desired meaning. The form of the input expression is executed by the user
on the machine interface and the form of the output expression appears on
the machine interface, to be perceived by the user. When some part of the
form of a previous output expression is incorporated in the form of a new
input expression, the input and output are said to be inter-referential.
Interpretation is the activity that spans aritculatory distance in the gulf of
evaluation. Interpretation determines the meaning of the output
expression from the form of the output expression. Evaluation is the
activity that spans semantic distance in the gulf of evaluation. Evaluation

 18

assesses the relationship between the meaning of the output expression
and the user’s goal.

Perhaps it is stretching the imagination beyond its willing limits, but
Galton (1894) suggested and carried out a set of experiments on doing arithmetic
by sense of smell. Less fancifully conceived, input might be sensitive not only to
touch, place, and timing, but also to pressure or to torque (see Buxton, 1986;
Minsky, 1984).

Direct engagement occurs when a user experiences direct interaction
with the objects in a domain. Here there is a feeling of involvement directly with
a world of objects rather than of communication with an intermediary. The
interactions are much like interacting with objects in the physical world. Actions
apply to the objects, observations are made directly upon those objects, and the
interface and the computer become invisible. Although we believe this feeling of
direct engagement to be of critical importance, in fact, we know little about the
actual requirements for producing it. Laurel (1986) discusses some of the
requirements. At a minimum, to allow a feeling of direct engagement the system
requires the following:

1. Execution and evaluation should exhibit both semantic and articulatory
directness.

2. Input and output languages of the interface should be inter-referential,
allowing an input expression to incorporate or make use of a previous output
expression. This is crucial for creating the illusion that one is directly
manipulating the objects of concern.

3. The system should be responsive with no delays between execution and the
results, except where those delays are appropriate for the knowledge domain
itself.

4. The interface should be unobtrusive, not interfering or intruding. If the
interface itself is noticed, then it stands in a third-person relationship to the
objects of interest, and detracts from the directness of the engagement.

5. In order to have a feeling of direct engagement, the interface must provide the
user with a world in which to interact. The objects of that world must feel like
they are the objects of interest that one is doing things with them and watching
how they react. For this to be the case, the output language must present
representations of objects in forms that behave in the way that the user thinks of
the objects behaving. Whatever changes are caused in the objects by the set of
operations must be depicted in the representation of the objects. This use of the
same object as both an input and output entity is essential to providing objects
that behave as if they are the real thing. It is because an input expression can

 19

contain a previous output expression that the user feels the output expression is
the thing itself and that the operation is applied directly to the thing itself.

6. In addition, all of the discussions of semantic and articulatory directness
apply here too because the designer of the interface must be concerned with
what is to be done and how one articulates that in the languages of interaction.
But the designer must also be concerned with creating and supporting an
illusion. The specification of what needs to be done and evidence that it has been
done must not violate the illusion, else the feeling of direct engagement will be
lost.

7. One factor that seems especially relevant to maintaining this illusion is the
form and speed of feedback. Rapid feedback in terms of changes in the behavior
of objects not only allows for the modification of actions even as they are being
executed, but also supports the feeling of acting directly on the objects
themselves. It removes the perception of the computer as an intermediary by
providing continual representation of system state. In addition, rapidity of
feedback and continual representation of state allows one to make use of
perceptual faculties in evaluating the outcome of actions. We can watch the
actions take place, monitoring them much like we monitor our interactions with
the physical world. The reduction in the cognitive load of mentally maintaining
relevant information and the form of the interaction contribute to the feeling of
engagement.

3.9 A space of Interfaces

Distance and engagement are depicted in the figure below as two major
dimensions in a space of interface designs. The dimension of engagement has
two landmark values: One is the metaphor of interface as conversation; the other
is the metaphor of interface as model world. The dimension of distance actually
contains two distances to be spanned: semantic and articulatory distances, the
two kinds of gulfs that lie between the user’s conception of the task and the
interface language. The least direct interface is often one that provides a low-
level language interface, for this is apt to provide the weakest semantic match
between intentions and the language of the interface. In this case, the interface
is an intermediary between the user and the task. Even worse, it is an
intermediary that does not understand actions at the level of description in
which the user likes to think of them. Here the user must translate intentions
into complex or lengthy expressions in the language that the interface
intermediary can understand.

A more direct situation arises when the central metaphor of the

interface is a world. Then the user can be directly engaged with the objects in a
world; but still, if the actions in that world do not match those that the user
wishes to perform within the task domain, getting the task done may be a

 20

difficult process. The user may believe that things are getting done and may even
experience a sense of engagement with the world, yet still be doing things at too
low a level. This is the state of some of the recently introduced direct
manipulation systems: They produce an immediate sense of engagement, but as
the user develops experience with the system, the interface appears clumsy, to
interfere too much, and to demand too many actions and decisions at the wrong
level of specification. These interfaces appear on the surface to be direct
manipulation interfaces, but they fail to produce the proper feelings of direct
engagement with the task world. Closing the distance between the user’s
intentions and the level of specification of the interface language allows the user
to make efficient specifications of intentions. Where this is done with a high-level
language, quite efficient interfaces can be designed. This is the situation in most
modern integrated programming environments. For some classes of tasks, such
interfaces may be superior to direct manipulation interfaces.

A space of interfaces. The dimensions of distance from user goals and
degree of engagement form a space of interfaces within which we can locate
some familiar types of interfaces. Direct manipulation interfaces are those
that minimize the distances and maximize engagement. As always, the
distance between user intentions and the interface language depends on
the nature of the task the user is performing.

 21

Finally, the most direct of the interfaces will lie where engagement is
maximized, where just the right semantic and articulatory matches are provided,
and where all distances are minimized.

3.10 Adaptive agents and user models versus control Panels

Some designers promote the notion of adaptive and/or
anthropomorphic agents that would carry out the users’ intents and anticipate
needs. Their scenarios often show a responsive, butler-like human being to
represent the agent (a bow-tied, helpful young man in Apple Computer’s 1987
video on the Knowledge Navigator), or refer to the agent on a first-name basis
(such as Sue or Bill in Hewlett-Packard’s 1990 video on future computing).
Microsoft’s unsuccessful BOB program used cartoon characters to create
onscreen partners. Others have described “knowbots,” agents that traverse the
World Wide Web in search of interesting information or a low price on a trip to
Hawaii.

 Many people are attracted to the idea of a powerful functionary
carrying out their tasks and watching out for their needs. The wish to create an
autonomous agent that knows people’s likes and dislikes, makes proper
inferences, re-spends to novel situations, and performs competently with little
guidance is strong for some designers. They believe that human–human
interaction is a good model for human–computer interaction and seek to create
computerized partners, assistants, or agents. They promote their designs as
intelligent and adaptive, and often, they pursue anthropomorphic
representations of the computer to the point of having artificial faces talking to
users. Anthropomorphic representations of computers have been unsuccessful
in bank terminals, computer assisted instruction, talking cars, or postal service
stations, but some designers believe that they can find a way to attract users. A
variant of the agent scenario, which does not include an anthropomorphic
realization, is that the computer employs a “user model” to guide an adaptive
system. The system keeps track of user performance and adapts its behavior to
suit the users’ needs. For example, several proposals suggest that, as users
make menu selections more rapidly, indicating proficiency, advanced menu
items or a command-line interface appears. Automatic adaptations have been
proposed for response time, length of messages, density of feedback, content of
menus, order of menu items, type of feedback (graphic or tabular), and content
of help screens. Advocates point to video games that increase the speed or
number of dangers as user’s progress though stages of the game. However,
games are quite different from most work situations, where users have external
goals and motivations to accomplish their tasks. There is much discussion of
user models, but little empirical evidence of their efficacy. There are some
opportunities for adaptive user models to tailor system responses, but even
occasional unexpected behavior has serious negative side effects that
discourage use. If adaptive systems make surprising changes, users must

 22

pause to see what has happened. Then, users may become anxious because
they may not be able to predict the next change, interpret what has happened,
or restore the system to the previous state. Suggestions that users could be
consulted before a change is made are helpful, but such intrusions may still
disrupt problem-solving processes and annoy users.

The agent metaphor is based on the design philosophy that assumes
users would be attracted to “autonomous, adaptive, intelligent” systems.
Designers believe that they are creating something lifelike and smart, however
users may feel anxious and unable to control these systems. Success stories
for advocates of adaptive systems include a few training and help systems that
have been extensively studied and carefully refined to give users appropriate
feedback for the errors that they make. Generalizing from these systems has
proven to be more difficult than advocates hoped. The philosophical contrast is
with “user-control, responsibility, and accomplishment” Designers who
emphasize a direct manipulation style believe that users have a strong desire to
be in control and to gain mastery over the system. Then users can accept
responsibility for their actions and derive feelings of accomplishment. Historical
evidence suggests that users seek comprehensible and predictable systems and
shy away from complex unpredictable behavior, such as the pilots who
disengage automatic piloting devices or VCR users who don’t believe that they
can properly program it to record a future show.

Comprehensible and predictable user interfaces should mask the
underlying computational complexity, in the same way that turning on an
automobile ignition is comprehensible to the user but invokes complex
algorithms in the engine- control computer. These algorithms may adapt to
varying engine temperatures or air pressures, but the action at the user-
interface level remains unchanged. A critical issue for designers is the clear
placement of responsibility for failures. Agent advocates usually avoid
discussing responsibility. Their designs rarely allow for monitoring the agent’s
performance, and feedback to users about the current user model is often given
little attention. However, most human operators recognize and accept their
responsibility for the operation of the computer, and therefore designers of
financial, medical, or military systems ensure that detailed feedback is
provided. An alternative to agents and user models may be to expand the
control-panel metaphor. Current control panels are used to set physical
parameters, such as the speed of cursor blinking, rate of mouse tracking, or
loudness of a speaker, and to establish personal preferences such as time, date
formats, placement and format of menus, or color schemes. Some software
packages allow users to set parameters such as the speed in games or the
usage level as in HyperCard (from browsing to editing buttons to writing scripts
and creating graphics). Users start at level 1, and can then choose when to
progress to higher levels. Often, users are content remaining experts at level 1
of a complex system, rather than dealing with the uncertainties of higher
levels. More elaborate control panels exist in style sheets of word processors,

 23

specification boxes of query facilities, and scheduling software that carries out
processes at regular intervals or when triggered by other processes. Computer
control panels, like cruise-control in automobiles and remote controllers for
televisions, are designed to convey the sense of control that users seem to
expect. Increasingly, complex processes are specified by direct-manipulation
programming or by graphical specifications of scheduled procedures, style
sheets, and templates.

4. A Specification Language for Direct-Manipulation User
Interfaces

A direct-manipulation user interface presents its user with a set of
visual representations of objects on a display and a repertoire of generic
manipulations that can be performed on any of them. Some of these techniques
were first seen in interactive graphics systems; they are now proving effective in
user interfaces for applications that are not inherently graphical. With a direct
manipulation interface, the user seems to operate directly on the objects in the
computer instead of carrying on a dialogue about them. Instead of using a
command language to describe operations on objects that are frequently
invisible, the user “manipulates” objects visible on a graphic display. This
ability to manipulate displayed objects has been identified as direct
engagement. The displayed objects are active in the sense that they are affected
by each command issued; they are not the fixed outputs of one execution of a
command, frozen in time. They are also usable as inputs to subsequent
commands. The ultimate success of a direct-manipulation interface also
requires directness in the form of low cognitive distance, the mental effort
needed to translate from the input actions and output representations to the
operations and objects of the problem domain itself. The visual metaphor
chosen to depict the problem domain should thus be easy for the user to
translate to and from that domain, and the actions required to effect a
command should be closely related to the meaning of the command in the
problem domain.

4.1 Specifying a Direct Manipulation User Interface

It is useful to be able to write a specification of the user interface of a
computer system before building it, because the interface designer can thereby
describe and study a variety of possible user interfaces without having to code
them. Such a specification should describe precisely the user-visible behavior
of the interface, but should not constrain its implementation. Specification
techniques for describing the user-visible behavior of conventional user
interfaces without reference to implementation details are gaining currency;

 24

most have been based on state transition diagrams or BNF (and a few on other
models listed below); there are some reasons to prefer the state diagrams. If the
specification language itself can be executed or compiled, it can also serve as
the basis for a user-interface management system (UIMS). To be useful, a UIMS
needs a convenient and understandable way for the user-interface designer to
describe the desired interface. The choice of specification language is thus at
the heart of the design of a UIMS. UIMSs have been built using BNF or other
grammar-based specifications, state- transition-diagram-based specifications,
programming-language-based specifications, frames, flow diagrams, and other
models. More recently, several investigators have used an object-oriented
approach. Research is also under way in describing user interfaces by example,
where the interface designer is not concerned with a programming or
specification language.

Although direct manipulation can make systems easy to learn and

use, such user interfaces have proved more difficult to construct and specify.
Direct manipulation interfaces have some important differences from other
styles of interfaces and these must be understood in order to develop an
appropriate specification technique for them. Although state-transition-
diagram-based notations have proved effective and powerful for specifying
conventional user interfaces, they must be modified to handle direct-
manipulation interfaces. State diagrams tend to emphasize the modes or states
of a system and the sequence of transitions from one state to another.
Although direct-manipulation user interfaces initially appear to be modeless
and thus unsuited to this approach, they will be shown below to have a
particular, highly regular moded structure, which can be exploited in devising
a specification technique for them.

4.2 Structure of a Direct Manipulation dialogue

In order to develop an appropriate specification language for direct-
manipulation interfaces, it is necessary to identify the basic structure of such
an interface as the user sees it. The goal of this specification method is not
strictly compactness or ease of programming, but rather capturing the way the
end user sees the dialogue. Many existing specification techniques could be
extended in various ways to describe the unusual aspects of direct-
manipulation dialogues. However, the real problem is not just to find some way
to describe the user interface (since, after all, assembly language can do that
job), but to find a language that captures the user’s view of a direct-
manipulation interface as perspicuously as possible and with as few ad hoc
features and extensions to the specification technique as possible. The object is
to describe the interface or dialogue between the system and its end user, as
seen by that user, rather than to describe the structure of the system or its
components at some other level.

 25

 First, consider what a dialogue specification should describe. Trying
to capture the layout and precise appearance of the display of a direct-
manipulation interface at every turn would make the top level of the dialogue
specification excessively detailed and complex. Instead, the initial specification
should be centered around the sequence of abstract input and output events
that comprise the dialogue. The syntax of an interactive user interface-whether
conventional or direct manipulation is effectively described by such a sequence
of input and output events, with the specification of the meanings of the events
in terms of specific input actions or display images deferred. The abstract input
or output events themselves are called tokens and are then described
individually in separate specifications. Information about display
representation and layout is isolated there, rather than as part of the
description of the syntax of the dialogue. This decomposition of direct-
manipulation dialogues follows the model of general user-computer dialogues
introduced by Foley and Wallace. The sequence of input and output tokens
comprises the syntactic level, while the individual token descriptions comprise
the lexical level. The semantic level is defined by a collection of procedures that
implement the functional requirements of the system; they are invoked from
the syntactic-level specification. This three level separation has been used to
good effect in user-interface management systems. Separating the abstract
dialogue sequence and overall display organization (syntactic) description from
the precise input and output format (lexical) description is of particular
importance for direct-manipulation interfaces, because such interfaces
typically provide rapid and rich graphical feedback and may vary the
appearance of the display considerably during a dialogue. Users may also be
permitted to rearrange windows and other images arbitrarily to suit their
preference.

Despite such variations, there are some more fundamental

characterization of the dialogue than moment-to-moment display appearance
should thus be identified and used as the foundation for a clear specification;
the sequence of abstract events or tokens is proposed to provide this
foundation. The issue did not arise with early user interfaces based on tele-
printers or scrolling display terminals. The sequence of specific input and
output events precisely determined the appearance of the display in a simple
and straightforward way. Later display terminals added some special
commands, such as clear screen, vertical tab, or cursor motions, which
disrupted the relationship between sequence of inputs and outputs and display
appearance. These have required some extensions to conventional specification
techniques. With a full graphic display, however, much more complex user
interfaces have been built. It is still true in principle that the sequence of input
and output events completely determines the final appearance of the display,
but in a far less straightforward way-a way that the user-interface specifier
should not have to understand. The specification writer needs to be able to
speak about the display appearance at a higher level: the sequence of input
and output events. Details about graphical representations, sizes, windows,

 26

particular input/output devices, and the like can then be abstracted out of the
dialogue specification. Even the choice of particular modes of user-computer
communication can be isolated, since an output token can be any discrete,
meaningful event in the dialogue, including, for example, an audible or tactile
output. Note that building the syntax specification around the sequences of
tokens does not preclude semantic-level feedback. For example, as a file icon is
dragged over various directory icons, those directories (and only those) into
which the user is currently permitted to move that file might be highlighted.
The specification technique permits such an operation, but it divides the
description of the feedback into its three appropriate aspects. The decision as
to which directories should be highlighted is given in the semantic-level
specification; the specification of when in the dialogue such highlighting will
occur is given in the syntactic-level specification (as transitions that test the
condition and call a highlight token); and the description of the highlighting
operation itself is given in the lexical level specification (as the definition of the
highlight token).

Consider next the basic sequence of events in a direct-manipulation

dialogue. A direct-manipulation user interface resembles an interacting
collection of active and/or responsive objects more than it does a single
command language dialogue with the user. The display typically presents a
variety of graphical objects. Users can select any of them (most often by moving
a cursor). Once selected, the user can begin a dialogue about that object-
adjusting a parameter, deleting or moving an object, etc. Each object thus has
its own particular dialogue, which the user may activate or deactivate at any
time. Further, some object dialogues remember their state between activations.
For example, if the user moves the cursor to a type-in field and types a few
characters, moves it somewhere else and performs other operations, and then
returns to the type-in field, the dialogue within that field would be resumed
with the previously entered characters and insertion point intact. As a better
example, if the user had begun an operation that prompted for and required
him or her to enter some additional arguments, the user could move to another
screen area and do something else before returning to the first area and
resuming entry of the arguments where he or she had left them. Given this
structure, it is unnatural, though possible, to describe the user interface of a
direct-manipulation system as a conventional dialogue by means of a syntax
diagram or other such notation. Instead the user sees a multitude of small
dialogues, each of which may be interrupted or resumed under the control of a
simple master dialogue. Each of the individual objects on the screen thus has a
particular syntax or dialogue associated with it. Each such dialogue can be
suspended (typically if the user moves the cursor away) and later resumed at
the point from which it was suspended. The relationship between the
individual dialogues or branches of the top-level diagram is that of co-routines.
So, the basic structure of a direct-manipulation interface is seen to be a
collection of individual dialogues connected by an executive that activates and
suspends them as co-routines. The specification technique for direct-

 27

manipulation interfaces will thus allow the individual dialogues to be specified
individually and to exchange control with each other through a co-routine call
mechanism.

4.3 Modes in the user interface

Many traditional user interfaces are highly moded, and this has made
it convenient to specify them using state transition diagrams. Modes or states
refer to the varying interpretation of a user’s input. In each different mode, a
user interface may give different meanings to the same input operations. Some
use of modes is necessary in most user interfaces, since there are generally not
enough distinct brief input operations (e.g., single keystrokes) to map into all
the commands of a system. A moded user interface requires that users
remember (or the system remind them) of which mode it is in at any time and
which different commands or syntax rules apply to each mode. Modeless
systems do not require this; the system is always in the same mode, and
inputs always have the same interpretation. Direct-manipulation user
interfaces appear to be modeless. Many objects are visible on the screen; and
at any time the user can apply any of a standard set of commands to any
object. The system is thus nearly always in the same “universal” or “top-level”
mode. This is approximately true of some screen editors, but for most other
direct-manipulation systems, where the visual representation contains more
than one type of component, this is a misleading view. It ignores the input
operation of moving the cursor to the object of interest. A clearer view suggests
that such a system has many distinct modes. Moving the cursor to point to a
different object is the command to cause a mode change, because once it is
moved, the range of acceptable inputs i.e. reduced and the meaning of each of
those inputs is determined.

This is precisely the definition of a mode change. For example, moving

the cursor to a screen button, such as the “Display” buttons in the message
system, should be viewed as putting the system into a mode where the
meaning of the next mouse button click is determined (it displays that
message) and the set of permissible inputs is circumscribed (e.g., keyboard
input could be illegal or ignored). Moving the cursor somewhere else would
change that mode. As shown in following 1, the top level of a typical direct-
manipulation interface such as the message-system example could thus be
described by a large state diagram with one top-level state and a branch
(containing a cursor motion input) leading from it to each mode (marked with a
“+“). Each such branch continues through one or more additional states before
returning to the top-level state. There is typically no crossover between these
branches. If direct-manipulation user interfaces are not really modeless, why
do they appear to have the psychological advantages over moded interfaces
that are usually ascribed to modeless ones? The reason is that they make the
mode so apparent and easy to change that it ceases to be a stumbling block.

 28

The mode is always clearly visible (as the location of a cursor), and it has an
obvious representation (simply the echo of the same cursor location just used
to enter the mode change command), in contrast to some special flag or
prompt. Thus the input mode is always visible to the user. The direct-
manipulation approach makes the output display (cursor location to indicate
mode) and the related input command (move cursor to change mode) operate
through the same visual representation (cursor location). At all times the user
knows exactly how to change modes; he or she can never get stuck. It appears,
then, that direct-manipulation user interfaces are highly moded, but they are
much easier to use than traditional moded interfaces because of the direct way
in which the modes are displayed and manipulated.

Fig. State-diagram specification of the top level of a simple direct-manipulation
user interface.

4.4 A SPECIFICATION LANGUAGE

Figure above shows a typical direct-manipulation user interface
represented as a state transition diagram. Although a simple direct-
manipulation interface could be specified in this fashion, it has some
shortcomings. The top-level state diagram for each new direct-manipulation
interface will be a large, regular, and relatively uninformative diagram with one
start state and a self-contained (i.e., no crossover) path to each mode and
thence back to start state. It is essentially the same for any direct-

 29

manipulation system and need not be specified anew for each system.
Moreover, since the individual paths are usually self-contained and interact
with each other in very limited ways, it would be clearer to separate their
specifications. A more serious problem with this approach is that there is often
a remembered state within some of the paths (partial type-in on a field, an item
awaiting confirmation, etc.), which are suspended when the cursor leaves the
field and resumed when it reenters. This requires that the paths of the diagram
be handled separately. Each path will thus now be specified separately (as a
co-routine), and an executive will be given for the outer dialogue loop. A
specification language based on the characteristics found in the foregoing
examination of direct-manipulation interfaces can now be described:-A direct-
manipulation interface was found to comprise a collection of many relatively
simple individual dialogues. Thus the specification will be centered around a
collection of individual objects, called interaction objects, each of which will
have a separate specification. Each of the dialogues of the direct-manipulation
interface will be specified as a separate interaction object with an independent
dialogue description. The individual dialogues of a direct-manipulation
interface were found to be related to each other as a set of co-routines. Thus
the specification language will permit the dialogue associated with each
interaction object to be suspended and resumed, with retained state, like a co-
routine. A simple executive will be defined to manage the overall flow of control.
It specifies the interconnection of the interaction object dialogues, allocates
input events, and suspends the individual dialogues to relinquish control to
others as needed. Because of the complexity and variability in the layout of the
display of a direct-manipulation interface, it was found that the dialogue
should be specified as a sequence of abstract input and output events, with
layout and graphic details given separately. Thus the dialogue specification for
each interaction object will be written using input and output tokens, which
represent input or output events. The dialogue specification will define the
possible sequences of input and output tokens. The internals of the tokens
themselves will then be specified separately from the dialogue. These token
definitions will contain details of layout, graphical representation, and device
handling.

Direct-manipulation interfaces were seen to have definite modes or

states, despite their surface appearance. This applied both to the overall
structure and to the retained state within each co-routine. Thus state
transition diagrams are a suitable notation for describing the individual
interaction-object dialogues. The state diagrams will assume co-routine calling
between them. Given this structure, a direct-manipulation user interface will
be specified as a collection of individual, possibly mutually interacting
interaction objects, organized around the manipulable objects and the loci of
remembered state in the dialogue. These objects will often coincide with screen
regions or windows, but need not. A typical object might be a screen button,
individual type-in field, scroll bar, or the like. ach such object will be specified
separately, and then a standard executive will be defined for the outer dialogue

 30

loop. Thus, to describe a direct-manipulation user interface, it will be
necessary to

 (1) Define a collection of interaction objects,
 (2) Specify their internal behaviors, and
 (3) Provide a mechanism for combining them into a coordinated user interface.

As noted, a goal of this notation is to capture the way the end user sees the
interface. The underlying claim is thus that the user indeed sees the direct
manipulation dialogue as a collection of small, individual objects or dialogues,
each suspendable and resumable like a co-routine, joined by a straightforward
executive. The specification language is defined by devising a mechanism for
each of the three tasks in the preceding paragraph:

1. How should the user interface be divided into individual objects? An
interaction object will be the smallest unit with which the user conducts a
meaningful, step-by-step dialogue, that is, one that has continuity or syntax. It
can be viewed as the smallest unit in the user interface that has a state that is
remembered when the dialogue associated with it is interrupted and resumed.
In that respect, it is like a window, but in a direct-manipulation user interface,
it is generally smaller-a screen button, a single type-in field on a form, or a
command line area. It can also be viewed as the largest unit of the user
interface over which disparate input events should be serialized and combined
into a single stream, rather than divided up and distributed to separate
objects. Thus an interaction object is a locus both of maintained state and of
input serialization.

2. How should an input handler for each interaction object be specified?
Observe that, at the level of individual objects, each such object conducts only
a singlethread dialogue, with all inputs serialized and with a remembered state
whenever the individual dialogue is interrupted by that of another interaction
object. Thus a conventional single-thread state diagram is the appropriate
representation for the dialogue associated with an individual interaction object.
The input handler for each interaction object is specified as a simple state
transition diagram

3. How should the specifications of the individual objects be combined into an
“outer loop” or overall direct-manipulation user interface? As noted, a direct
manipulation interface could be described with a single, large state diagram,
but since the user sees the structure of the user interface as a collection of
many semi-independent objects, that is not a particularly perspicuous
description. Instead, a standard executive will be defined that embodies the
basic structure of a direct-manipulation dialogue and includes the ability to
make co-routine calls between individual state diagrams. This executive
operates by collecting all of the state diagrams of the individual interaction
objects and executing them as a collection of co-routines, assigning input

 31

events to them and arbitrating among them as they proceed. To do this, a co-
routine call mechanism for activating state diagrams must be defined. This
means that whenever a diagram is suspended by a co-routine call to another
diagram, the state in the suspended diagram is remembered. Whenever a
diagram is resumed by a co-routine call, it will begin executing at the state
from which it was last suspended. The executive causes the state diagram of
exactly one of the interaction objects to be active at any one time. As the active
diagram proceeds, it reaches each state, examines the next input event, and
takes the appropriate transition from that state. It continues in this way until it
reaches a state from which no outgoing transition matches the current input.
Then, the executive takes over, suspending the current diagram, but
remembering its state for later resumption. (It follows that a diagram can only
be suspended from a state in which it seeks an input token.) The executive
examines the diagrams associated with all the other interaction objects, looking
at their current (i.e., last suspended from) states to see which of them can
accept the current input. It then resumes (with a co-routine call) whichever
diagram has a transition to accept the input. If there is more than one such
diagram, one is chosen arbitrarily. In typical designs, however, there will be
only one diagram that can accept the input. Since entering and exiting disjoint
screen regions will be important input tokens in a typical direct-manipulation
interface, this is straightforward to arrange when the interaction objects
correspond to screen regions. (In some situations, such conflicts can also be
detected by static analysis of the interface specification.) Depending on the
overall system design, an input token acceptable to no diagrams could be
discarded or treated as a user error. While the language assumes a single top-
level executive, the use of component objects and synthetic tokens described
below allows the specification to use a deeper hierarchy in describing systems.

The initial design for the executive called for a list of acceptable input
events or classes to be associated with each state in each diagram. This list
would act like a guard in a guarded command or a when clause in a
select/accept statement in Ada. By associating different guards with different
states, a diagram could dynamically adjust the range of inputs that it will
accept. The executive for such a system would examine the guard associated
with the current state of every diagram in execution to decide which diagram
should be called to accept each new input. The current design should be
viewed as achieving the same result, even though it does not identify the
guards explicitly. What would have been given as the guard for each state is
now derived implicitly from the range of inputs on the transitions emanating
from that state. This requires somewhat more care in specifying “catchall”
transitions, but greatly reduces the redundancy and bulk of the specification.
The new specification language also makes heavy use of techniques of object
oriented programming. The interaction objects themselves are specified and
implemented as objects, in the sense of Smalltalk or Flavors, and diagram
activations and tokens are implemented as messages. The notion of co-
routines, however, is superimposed upon the objects as the means for

 32

describing how the individual interaction objects are bound together into the
top-level dialogue that the user ultimately sees. Other recent work on
specifying and building graphical user interfaces has also used an object-
oriented approach. Typically, they model the dialogue by a collection of
separate objects, each with an input handler. However, they have not proposed
that the input handlers explicitly specify their state-dependent responses by
means of state transition diagrams or that they retain their states during
execution by co-routine activation. Cardelli and Pike achieved a similar result
using communicating finite-state machines with actual concurrency. The use
of co-routines in the present language, combined with the synthetic tokens
described below, can also be mapped into the abstract device model introduced
by Anson, but that, too, does not use state diagrams to describe the state and
behavior of the abstract devices. Anson points out the weakness of a single-
thread state diagram for describing direct-manipulation interfaces: “It cannot
simulate a device . . . which retains its value between uses and which can be
changed by the user at any time”. The present technique attempts to remedy
this problem without giving up the benefits of state diagrams for depicting
device state and state-dependent behavior.

5. A Direct Manipulation Interface for 3D Computer Animation

Computer animation is a painstaking process requiring hand
adjustment of hundreds of key positions for every object in an animated scene.
Most animation systems provide precise control of motion using two-
dimensional graphs of individual parameters (e.g. x translation vs. time).
Animators must mentally integrate this 2D information with static 3D views
and occasional motion previews to maintain a clear sense of the motion which
they are creating. The principles of direct manipulation are used to achieve the
goal of fluid and natural interaction. The solution uses existing key frame and
parametric techniques in combination with displacement functions inspired by
digital signal processing for real-time direct manipulation of spatial and
temporal changes

5.1 Problems in Existing Animation Systems

Several problems found in a majority of commercial and research
animation systems. Not all of these problems are present in all systems, but
these are current trends in a large class of existing systems.

a] Animators can completely visualize and edit motion only in separate 2D
graphs. The only means to edit an object’s time-varying properties and
visualize the value of these properties over time is through 2D graph editors.
The 3D scene view is used primarily for viewing and editing an object at a
single point in time.

 33

b] Editing of motion curves is limited to single channels of motion.
Motion curves are normally limited to representing a one-dimensional
parameter vs. time (e.g. x translation vs. time, y rotation vs. time, red color
component vs. time). Animators must mentally integrate all of these channels
to visualize the animation which they are creating.

c] The natural parameterization of splines does not advance uniformly with
respect to distance. Many systems allow the animator to specify the path of an
object through space with a two- or three-dimensional spline curve. Motion
along this curve is then described by a single function of u vs. time, where u is
the parameter of the spline curve. However, equal steps in u result in unequal
distances traveled along the curve. In these systems,
a graph that appears to indicate constant velocity will actually result in a
velocity that varies based on the shape of the curve and the spacing of its
control points. The animator is forced to cancel out the timing induced by the
spline before creating the desired motion.

d] The shape of a motion curve is altered to achieve timing goals.
Some systems alter the shape of a motion path when users edit the timing of
an animation. This problem is also a result of tying motion to the u-parameter
of a spline. The actual shape of the curve must be changed in order to alter the
distance travelled over equal time steps.

e] Direct manipulation of the animated object is allowed only at control points.
When a spline curve is used as the underlying representation of spatial
change,most systems only allow the animator to change the object at the spline
control points [2][14]. If the animator wants to alter a position between control
points, shemust either work indirectly, altering surrounding control points and
tangents, or shemust add a new control
point. Adding control points can introduce undesired complexity to the
animation and reduces the range over which changes have effect.

f] Animations with densely spaced keyframes are difficult to modify.
Most production quality animations end up being specifiedby very densely
pacedkeyframes (10-15 keyframes/second is normal). If an animator decides
that part of the motion should be changed, she must individually change a
wide range of control points surrounding the specific change in order to blend
it with the surrounding motion—there are no tools for modifying multiple
keyframes simultaneously. Many animators find it faster to re-do the animation
from scratch in this situation

5.2 Goals for Animation Control

 34

The following set of goals is an attempt to describe an animation
system which addresses the above set of problems:

1. Create an system which allows visualization and editing of temporal and
spatial information in a single 3D view.

2. Express motion goals in terms of distance or velocity vs. time.

3. Maintain temporal and spatial continuity while editing animations.

4. Allow an arbitrary range over which editing tools are applied.

5. Develop motion control techniques which are natually extensible to
orientation, scale and any other animated parameters.

6. Provide real-time performance for complex scenes.As an interface to the
above goals, we require direct-manipulation tools which correspond to the
high-level goals of an animator.

7 Temporal translation
 Satisfies the goal “Reach this point at this time” while maintaining the shape
of the motion path, but changing the speed at which the object travels along
the given path.

8. Spatial translation
Satisfies the above goal by modifying the spatial curve while maintaining either
the duration or velocity of the given segment.

9. Temporal scale
Changes the duration of segment of animation. Satisfies the goal “Make this
segment of animation longer, shorter, or a specific duration”

10. Velocity modification
Satisfies the goals “Go faster”, “Go slower”, or “Reach a specific velocity” at a
given point, while maintaining the shape of the spatial curve and the duration
of the temporal segment.

6. Pick-and-Drop: A Direct Manipulation Technique for Multiple
Computer Environments

In a ubiquitous computing (UbiComp) environment, we no longer use
a single computer to perform tasks. Instead, many of our daily activities
including discussion, documentation, and meetings will be supported by the
combination of many (and often different kinds of) computers. Combinations of
computers will be quite dynamic and heterogeneous; one may use a personal

 35

digital assistant (PDA) as a remote commander for a wall-sized computer in a
presentation room, others might want to use two computers on the same
desktop for development tasks, or two people in a meeting room might want to
exchange information on their PDAs. Other than the UbiComp vision, we often
use multiple computers for more practical reasons; PCs, UNIXs, and Macs have
their own advantages and disadvantages, and users have to switch between
these computers to take full advantage of each (e.g., writing a program on a
UNIX while editing a diagram on a Mac).
However, using multiple computers without considering the user-interface
introduces several problems. The first problem resides in a restriction of
today’s input devices. Almost all keyboards and pointing devices are tethered to
a single computer; we cannot share a mouse between two computers.
Therefore, using multiple computers on the same desk top often results in a
‘‘mouse (or keyboard) jungle’’, as shown in the figure below. It is very confusing
to distinguish which input device belongs to which computer.

The other problem is the fact that today‘s user interface techniques
are not designed for multiple-computer environments. Oddly enough, as
compared with remote file transmission, it is rather cumbersome to transfer
information from one computer to another on the same desk, even though they
are connected by a network. A cut-and-paste on a single computer is easy, but
the system often forces users to transfer information between computers in a
very different way. A quick survey reveals that people transfer information from
display to display quite regularly. Interestingly, quite a few people even prefer
to transfer data by hand (e.g., read a text string on one display and type it on
another computer), especially for short text segments such as an e-mail
address or a universal resource locator (URL) for the World Wide Web. These
tendencies are caused by a lack of easy direct data transfer user interfaces
(e.g., copy and- paste or drag-and-drop) between different but nearby
computers.

The first problem is partially solved by using more sophisticated input

devices such as a stylus. Today’s stylus input devices such as WACOM’s,
provide untethered operation and thus can be shared among many pen
sensitive displays. This situation is more natural than that of a mouse, because
in the physical world, we do not have to select a specific pencil for each paper.
With the second problem, however, we have much room for improvement from
the viewpoint of user interfaces. Although some systems use multi-display
configurations, direct manipulation techniques for multi-display environments
have not been well explored to date. Multi-display direct manipulation offers
many new design challenges to the field of human-computer interfaces.

A new pen based interaction technique called ‘‘Pick-and-Drop’’ lets a

user exchange information from one display to another in the manner of
manipulating a physical object. This technique is a natural extension to the
drag-and-drop technique, which is popular in today’s many GUI applications.

 36

The figure below shows the conceptual difference between the traditional data
transfer method and Pick-and-Drop.

fig. The conceptual difference between remote copy and Pick-and-Drop

6.1 From Drag-And-Drop to Pick-And-Drop

Pick-and-Drop is a direct manipulation technique that is an
extrapolation of drag-and-drop, a commonly used interaction technique for
moving computer objects (e.g., an icon) by a mouse or other pointing devices.
With the traditional drag-and-drop technique, a user first ‘‘grabs’’ an object by
pressing a mouse button on it, then ‘‘drags’’ it towards a desired position on
the screen with the mouse button depressed, and ‘‘drops’’ it on that location by
releasing the button. This technique is highly suitable for a mouse and widely
used in today’s graphical applications. However, simply applying the drag-and-
drop to pen user interfaces presents a problem. It is rather difficult to drag an
object with a pen while keep the pen tip contacted on the display surface. It is
often the case that a user accidentally drops an object during the drag
operation, especially when dragging over a large display surface.

Pick-and-Drop method started as useful alternative to drag-and-drop

for overcoming this problem. With Pick-and-Drop, the user first picks up a
computer object by tapping it with the pen tip and then lifts the pen from the
screen. After this operation, the pen virtually holds the object. Then, the user
moves the pen tip towards the designated position on the screen without
contacting display surface. When the pen tip comes close enough to the screen,
a shadow of the object appears on the screen as show in the figure below as a
visual feedback showing that the pen has the data. Then, the user taps the
screen with the pen and the object moves from the pen to the screen at the
tapped position. This method looks much more natural than that of drag-and-
drop. In our real lives, we regularly pick up an object from one place and drop
it on another place, rather than sliding it along the surface of something.

 37

Pen and icons: (a) the pen contacts the display, (b) the pen lifts up but
remains close to the screen, (c) the pen is away from the screen

6.2 Pen-IDs

Storing data on a pen, however, makes the pen device heavy and
unwieldy. The multi-computer Pick-and-Drop is developed without making
such modifications to the pen by introducing the concept of Pen IDs. In this
design, each pen is assigned a unique ID. This ID is readable from the
computer when a pen is closer enough to its screen. There are currently
combination of modifier buttons (attached to the pen as a side switch) to
represent IDs. All computers must be connected to the network (either wired or
wireless). There is a server called the ‘‘pen manager’’ on the network as show in
the figure below.

System configuration

 38

When a user taps an object (typically an icon) on the screen with the

pen, the pen manager binds its object ID to the pen ID. This binding represents
a situation in which the pen virtually holds the object (even though the pen
itself does not contain any storage). When the user moves the same pen
towards the other display, the pen manager supplies the type of the bound
object to the display. Then the shadow of the data appears on the display below
the current pen position. At this moment, the pen does not touch the screen.
Finally, when the user touches the display with the pen, the pen manager asks
the first computer to transfer the data to second computer.
Since each pen has its own ID, simultaneous Pick-and-Drop operations by
more than one pen can overlap. This feature would be useful in a collaborative
setting. Pick-and-Drop can also coexist with the normal drag-and-drop by
using a time-out. The system distinguishes between these two operations by
measuring the period of time between pen-down and pen-up. When a user
touches an object with the pen and drags it without lifting the pen tip, it
initiates a drag-and-drop instead of a Pick-and-Drop.

The state transition of Pick-and-Drop is shown below.

The state transition diagrams of Pick-and-Drop

6.3 Object Shadows

When a pen holding data approaches a screen, a shadowed object
appears on the screen to indicate that the pen has the data. This visual
feedback is useful to know what kind of data the pen is holding without having
to drop it. A pen’s proximity to the screen can be sensed by combining the

 39

motion event and a time-out. When a user moves a pen close to the screen, the
screen begins reading motion events from the pen. If motion events occur
continuously, the system regards the pen as being near the screen. When a
pen leaves the screen, motion events seize and the system can detect it again
by setting a time-out. This technique is used for both the Pick and the Drop
operations.

Example Applications
Since Pick-and-Drop is a natural extension to drag-and-drop, which is a
commonly used direct manipulation technique, we should be able to apply this
technique to various situations in many user interface systems. The following
are some experimental applications that have identified.

6.4 Information Exchange between PDAs and Kiosk Terminals

The simplest usage of Pick-and-Drop is to support the exchange of
information between two co-workers. When two people need to transfer a file or
a short text segment between computers, they can simply pick it up from one’s
PDA display and drop it on the other’s display as shown in the figure below.
These two PDAs are communicating via wireless networks. It is also possible to
pick up information from a kiosk terminal in a public space or an office. The
terminals are installed at public spaces in the laboratory such as the coffee
corner, and continuously display information. Pick-and-Drop capability to this
system enables people to pick up URL information from the terminal and drop
it to his/her PDA.

fig. Information exchange between PDAs

 40

6.5 Picking up Paper Icons

Another possible way to extend the concept of multi display user
interfaces is to support information exchange between computers and non-
computer objects. For example, it would be convenient if we could freely pick
up printed icons on a paper document and drop it on the computer screen.
This prototype system called Paper-Icons allows Pick-and-Drop between a paper
object and a computer display as show in the figure below. The user can pick
up an object from a printed page and drop it on a display. The page is placed
on a pen sensitive tablet and a camera is mounted over the tablet. The camera
is used to identify the opened page by reading an ID mark printed on it. The
user can freely flip through the booklet to find a desirable icon. The system
determines which icon is picked based on the page ID and the picked position
on the tablet.

The Paper-Icons style is quite suitable for selecting ‘‘clip art’’ or ‘‘color
samples’’ from a physical book. If the user is accustomed to a frequently used
book, he/she can flip through pages very quickly by feeling the thickness of the
book.

7. Problems with Direct Manipulation

Direct manipulation systems have both virtues and vices. For
instance, the immediacy of feedback and the natural translation of intentions
to actions make some tasks easy. The matching of levels of thought to the
interface language - semantic directness - increases the ease and power of
performing some activities at a potential cost of generality and flexibility. But
not all things should be done directly. For example, a repetitive operation is
probably best done via a script, that is, through a symbolic description of the
tasks that are to be accomplished.
Some problems that can be identified in Direct Manipulation interfaces are as
follows:

1. Direct manipulation interfaces have difficulty handling variables, or
distinguishing the depiction of an individual element from a representation of a
set or class of elements.

2. Direct manipulation interfaces have problems with accuracy, for the notion
of mimetic action puts the responsibility on the user to control actions with
precision, a responsibility that is sometimes best handled through the
intelligence of the system and sometimes best communicated symbolically.

3. A more fundamental problem with direct manipulation interfaces arises from
the fact that much of the appeal and power of this form of interface comes from

 41

its ability to directly support the way we normally think about a domain. A
direct manipulation interface amplifies our knowledge of the domain and allows
us to think in the familiar terms of the application domain rather than in those
of the medium of computation. But if we restrict ourselves to only building an
interface that allows us to do things we can already do and to think in ways we
already think, we will miss the most exciting potential of new technology: to
provide new ways to think of and to interact with a domain. Providing these
new ways and creating conditions that will make them feel direct and natural is
an important challenge to the interface designer.

4. Direct manipulation interfaces are not a panacea. Although with sufficient
practice by the user many interfaces can come to feel direct, a properly
designed interface, one which exploits semantic and articulatory directness,
should decrease the amount of learning required and provide a natural
mapping to the task. But interface design is subject to many tradeoffs. There
are surely instances when one might wisely trade off directness for generality,
or for more facile ways of saying abstract things. The articulatory directness
involved in pointing at objects might need to be traded off against the
difficulties of moving the hands between input devices or of problems in
pointing with great precision.

5. It is important not to equate directness with ease of use. Indeed, if the
interface is really invisible, then the difficulties within the task domain get
transferred directly into difficulties for the user. Suppose the user struggles to
formulate an intention because of lack of knowledge of the task domain. The
user may complain that the system is difficult to use. But the difficulty is in the
task domain, not in the interface language. Direct manipulation interfaces do
not pretend to assist in overcoming problems that result from poor
understanding of the task domain.

6. Certain kinds of abstraction that are easy to deal with in language seem
difficult in a concrete model of a task domain. When we give up the
conversation metaphor, we also give up dealing in descriptions, and in some
contexts, there is great power in descriptions. As an interface to a programming
task, direct manipulation interfaces are problematic. We know of no really
useful direct manipulation programming environments. Issues such as
controlling the scope of variable bindings promise to be quite tricky in the
direct manipulation environments. Basically, the systems will be good and
powerful for some purposes, poor and weak for others. In the end, many things
done today will be replaced by direct manipulation systems. But we will still
have conventional programming languages.

7. On the surface, the fundamental idea of a direct manipulation interface to a
task flies in the face of two thousand years of development of abstract
formalisms as a means of understanding and controlling the world. Until very
recently, the use of computers has been an activity squarely in that tradition.

 42

So the exterior of direct manipulation, providing as it does for the direct control
of a specific task world, seems somehow atavistic, a return to concrete
thinking. On the inside, of course, the implementation of direct manipulation
system is yet another step in that long, formal tradition. The illusion of the
absolutely manipulable concrete world is made possible by the technology of
abstraction.

8. Future?
After Direct Manipulation—Direct Sonification

Direct Sonification interface allows musicologists to browse musical
data sets in novel ways. The data set (in the users’ language often called a
collection) is used by musicologists in their research. It contains over 7000
tunes, where each tune is represented by its score and a number of properties,
such as tonality and structure. The traditional format for a collection is a
printed book with various indexes. A common problem that musicologists have
to deal with is to determine if tunes they collect in their field work exist in a
particular collection and, if so, how they are related to other tunes in the
collection, e.g., in chronology, typology.

8.1 Browsing

Browsing has become a popular term in recent years with the
emergence of hypertext systems and the World Wide Web, but the concept of
browsing goes well beyond these fields of application. There are many ways
integrating text, sound, images, and video to provide richer and more
interesting systems that would allow us to use more of our natural abilities.
Marchionini and Shneiderman [1988] defined browsing as:

1. “an exploratory, information seeking strategy that depends upon

serendipity”
2. “especially appropriate for ill-defined problems and for exploring new task

domains”

This is the case when musicologists are searching for tunes in a
collection. Tunes collected through fieldwork can often be different from older
original versions. They can still be the same tunes but with the addition of an
individual performer’s style. This makes it difficult to use normal computer-
based search algorithms [´O Maid´ın 1995]. Humans have an outstanding
ability to recognize similarities in this domain, which suggests that in a good
solution we should make use of our auditory abilities.

8.2 Browsing with Sound Support

 43

In everyday listening, one is often exposed to hundreds of different
sounds simultaneously and is still able to pick out important parts of the
auditory scene. With musical sounds, or tunes, many different factors affect
our ability to differentiate and select between the sources. Using instrumental
sounds, the timbre, envelope, tonal range, and spatial cues support the
formation of auditory streams. The tunes themselves also assist the formation
of streams, as music has its own inherent syntactic and semantic properties. It
is also interesting to note the “cocktail party” effect, i.e., that it is possible to
switch one’s attention at will between sounds or tunes. Albers and Bergman
added sounds to a web browser, but kept the use of sound at a fairly low level
of interactivity. Various “clicks” were used when users clicked soft buttons and
selected menus. To indicate system events, such as data transfer, launch of
“plug-ins” and, for errors, he used “pops and clicks,” sliding sounds, and
breaking of glass sounds. For feedback about content, various auditory icons
were used to indicate what kind of file a hyperlink was pointing to and the file
size of the content indicated by piano notes (activated when the cursor was on
a hyperlink). He also created hybrid systems using combinations of auditory
icons, auralization, and sound spatialization to enhance operator performance
in mission control work settings.

LoPresti & Harris’ loudSPIRE system added auditory display to a

visualization system. This system is an interesting hybrid as it used at three
different layers for sonification. System events were represented by electronic-
sounding tones associated with computers; data set objects were represented
by percussive or atonal auditory icons parameterized for object properties;
domain attributes were represented by themes of orchestral music,
harmonious tonal sounds, and parameterized for attribute value of a region.
Begault [1994] demonstrated the use of 3D sound spatialization for use in
cockpits and mission control, in order to enhance speech perception.
Kobayashi and Schmandt showed that multiplestream speech perception can
be enhanced through 3D sound spatialization, including the existence of a
spatial/temporal relation for recall of position within a sample of streamed
speech, i.e., that the auditory content can be mapped to spatial memory.

With multiple auditory streams it is interesting to note the problem
with differences in the individual ability to differentiate between multiple sound
sources. A metaphor for a user controllable function that makes it visible to the
user is the application of an aura [Benford and Greenhalgh 1997], which in
this context, is a function that indicates the user’s range of interest in a
domain. The aura is the receiver of information in the domain.

8.3 Sonic Software

Normal multimedia PCs cannot play multiple sound files
concurrently. This would, of course, prohibit the desired development. To work

 44

around this problem, new intermediate drivers for the sound devices were
developed. The problem with existing drivers is that when a sound is to be
played, the operating system allocates the physical sound device exclusively. To
solve this problem, the intermediate drivers have to read sound files and
transform them into a common output format. Sound spatialization was
implemented to assist the users in differentiating and locating tunes.With
sampled sounds, 3D spatialization can be used, but currently there is no
existing support for 3D spatialization of MIDI synthesizer sounds on PC sound
cards. Only stereophonic “pan” with difference in loudness between the left and
right channel is available on standard sound cards [CreativeLabs 1996;
Microsoft 1996]. The problem with different speeds and formats of source files
applies to both sound files (such as, WAV) and sound-controlling files (such as,
MIDI). As the users had expressed a preference for melody lines with MIDI-
controlled synthesizer sounds, all further implementation work focused on
stereophonic spatialization with only the difference in loudness between the left
and right channel as a cue for auditory spatial location.

The users found that they sometimes wanted the aura on, sometimes

off, as this allowed them to shift their focus between the neighborhoods of
tunes to finer differentiation between just a few tunes. The number of tunes
within the aura can vary due to the location of the cursor in relation to the
density of the data set. Therefore an on–off function was added and the radius
of the aura was made user controllable. The interfaces in many standard
applications from some of the larger software developers have become
overloaded and complicated in the interaction sequences. Through a simplified
interaction sequence, users can work efficiently and with a high degree of
satisfaction. The results also show that through tight coupling of the
interaction, we can create a more engaging interface. By shifting some of the
load from the visual to the auditory modality, we can perceive more information
and make better use of our natural ability to recognize complex and “fuzzy”
patterns through seeing and hearing.

Audibility is the concept of how well a system can use auditory

representation in the human–computer interaction. If the audibility is good, the
users will perform their work better, faster, with fewer errors, and a higher
degree of satisfaction. If the use of sound in the user interface can provide
more affordances, or affordances that are complementary to the visual
interface, we have a system with good audibility. This is also important for
users with different abilities. By using sonic representations (or auditory
display) in the human–computer interaction, the resulting applications will
potentially be usable to visually impaired people.

Further investigations in perception and cognition at high levels of

environmental complexity are required. Many guidelines are based on
extremely isolated experiments. Hence, it is difficult to apply such guidelines in
real-work settings. To get more realistic models for what we, as human beings,

 45

can process, combinations of seeing, hearing, and interaction should be
studied.

9. Conclusion

Direct manipulation and its descendants are thriving. Visual
overviews accompanied by user interfaces that permit zooming, filtering,
extraction, viewing relations, history keeping and details on-demand can
provide users with appealing and powerful environments to accomplish their
tasks. Most users want comprehensible, predictable and controllable
interfaces that give them the feeling of accomplishment and responsibility.
Direct Manipulation can helps users to give such interfaces.

 46

10. References

1] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman “Direct
Manipulation Interfaces” HUMAN-COMPUTER INTERACTION, 1985, Volume
1, pp. 311-338

2] Ben Shneiderman “Direct Manipulation for Comprehensible, Predictable
and Controllable User Interfaces”

3] Jun Rekimoto “Pick-and-Drop: A Direct Manipulation Technique for
Multiple Computer Environments”

4] ROBERT J. K. JACOB “A Specification Language for Direct-Manipulation
User Interfaces” ACM Transactions on Graphics, Vol. 5, No. 4, October
1986, Pages 283-317.

5] Ben Shneiderman “Direct Manipulation Vs Interface Agents” Interactions,
November-December 1997

6] Mikael Fernstrom and Caolan MCNamara “After Direct Manipulation—
Direct Sonification” ACM Transactions on Applied Perception, Vol. 2, No. 4,
October 2005, Pages 495–499.

7] Scott Sona Snibbey “A Direct Manipulation Interface for 3D Computer
Animation”

8] Robert St. Amant and Thomas E. Horton “Tool-based direct manipulation
environments”

9] Francois Guimbretiere, Andrew Martin and Terry Winograd “Benefits of
Merging Command Selection and Direct Manipulation” ACM Transactions
on Computer-Human Interaction, Vol. 12, No. 3, September 2005, Pages
460–476.

10] Wolfgang Preea, Gustav Pornbergera, Hermann Sikorab “Construction
Techniques of Graphic, Direct-Manipulation User Interfaces”
EUROGRAPHICS ’91

11] Hao-wei Hsieh and Frank M. Shipman III “VITE: A Visual Interface
Supporting the Direct Manipulation of Structured Data Using Two-Way
Mappings”

