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1.0 Introduction 
 

The term direct manipulation was coined by Shneiderman (1974, 1982, 
1983) to refer to systems having the following properties:  
 
1. Continuous representation of the object of interest.  
 
2. Physical actions or labeled button presses instead of complex syntax. 
 
3. Rapid incremental reversible operations whose impact on the object of interest 
is immediately visible. (Shneiderman, 1982, p. 251) 
 
1.2 Virtues of Direct Manipulation Systems 
 

Direct manipulation interfaces seem remarkably powerful. Shneiderman 
(1982) has suggested that direct manipulation systems have the following 
virtues: 
 
1. Novices can learn basic functionality quickly, usually through a 
demonstration by a more experienced user. 
 
2.  Experts can work extremely rapidly to carry out a wide range of tasks, even 
defining new functions and features. 
 
3.  Knowledgeable intermittent users can retain operational concepts. 
 
4.  Error messages are rarely needed. 
 
5. Users can see immediately if their actions are furthering their goals,   and if 
not, they can simply change the direction of their activity. 
 
6. Users have reduced anxiety because the system is comprehensible and 
because actions are so easily reversible. (Shneiderman, 1982, p. 251) 
 

Certainly there must be problems as well as benefits. It turns out that the 
concept of direct manipulation is complex. Moreover, although there are 
important benefits there are also costs. Like everything else, direct manipulation 
systems trade off one set of virtues and vices against another. It is important 
that we understand these trade-offs. A checklist of surface features is unlikely to 
capture the real sources of power in direct manipulation interfaces. 
 
2. History of Direct Manipulation 
 

Hints of direct manipulation programming environments have been 
around for quite some time. The first major landmark is Sutherland’s Sketchpad, 
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a graphical design program (Sutherland, 1963). Sutherland’s goal was to devise a 
program that would make it possible for a person and a computer “to converse 
rapidly through the medium of line drawings.” Sutherland’s work is a landmark 
not only because of historical priority but because of the ideas that he helped 
develop: He was one of the first to discuss the power of graphical interfaces, the 
conception of a display as “sheets of paper,” the use of pointing devices, the 
virtues of constraint representations, and the importance of depicting 
abstractions graphically. 

 
 Sutherland’s ideas took 20 years to have widespread impact. The lag is 
perhaps due more to hardware limitations than anything else. Highly interactive, 
graphical programming requires the ready availability of considerable 
computational power, and it is only recently that machines capable of 
supporting this type of computational environment have become inexpensive 
enough to be generally available. Now we see these ideas in many of the 
computer-aided design and manufacturing systems, many of which can trace 
their heritage directly to Sutherland’s work. Borning‘s ThingLab program (1979) 
explored a general programming environment, building upon many of 
Sutherland’s ideas within the Smalltalk programming environment. More 
recently direct manipulation systems have been appearing with reasonable 
frequency. For example, Bill Budge’s Pinball Construction Set (Budge, 1983) 
permits a user to construct an infinite variety of electronic pinball games by 
directly manipulating graphical objects that represent the components of the 
game surface. Other examples exist in the area of intelligent training systems 
(e.g., the Steamer system of Hollan, Hutchins, & Weitzman, 1984; Hollan, 
Stevens, & Williams, 1980). Steamer makes use of similar techniques and also 
provides tools for the construction of interactive graphical interfaces. Finally, 
spreadsheet programs incorporate many of the essential features of direct 
manipulation. In the lead article of Scientific American’s special issue on 
computer software, Kay (1984) claims that the development of dynamic 
spreadsheet systems gives strong hints that programming styles are in the offing 
that will make programming as it has been done for the past 40 years - that is, 
by  composing text that represents instructions - obsolete. 
 
3. Two Aspects of Directness: Distance and Engagement 
 

There are two distinct aspects of the feeling of directness. One involves 
a notion of the distance between one’s thoughts and the physical requirements 
of the system under use. A short distance means that the translation is simple 
and straightforward, that thoughts are readily translated into the physical 
actions required by the system and that the system output is in a form readily 
interpreted in terms of the goals of interest to the user. We will use the term 
directness to refer to the feeling that results from interaction with an interface. 
The term distance will be used to describe factors which underlie the generation 
of the feeling of directness. 
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The second aspect of directness concerns the qualitative feeling of 

engagement, the feeling that one is directly manipulating the objects of interest. 
There are two major metaphors for the nature of human-computer interaction, a 
conversation metaphor and a model-world metaphor. In a system built on the 
conversation metaphor, the interface is a language medium in which the user 
and system have a conversation about an assumed, but not explicitly 
represented world. In this case, the interface is an implied intermediary between 
the user and the world about which things are said. In a system built on the 
model-world metaphor, the interface is itself a world where the user can act, and 
which changes state in response to user actions. The world of interest is 
explicitly represented and there is no intermediary between user and world. 
Appropriate use of the model-world metaphor can create the sensation in the 
user of acting upon the objects of the task domain themselves. We call this 
aspect of directness direct engagement. 
 
3.1 Distance 
 

We call one underlying aspect of directness distance to emphasize the 
fact that directness is never a property of the interface alone, but involves a 
relationship between the task the user has in mind and the way that task can be 
accomplished via the interface. Here the critical issues involve minimizing the 
effort required to bridge the gulf between the user’s goals and the way they must 
be specified to the system. 

 
An interface introduces distance to the extent there are gulfs between a 

person’s goals and knowledge and the level of description provided by the 
systems with which the person must deal. These are referred to as the gulf of 
execution and the gulf of evaluation shown in the figure below. The gulf of 
execution is bridged by making the commands and mechanisms of the system 
match the thoughts and goals of the user. The gulf of evaluation is bridged by 
making the output displays present a good conceptual model of the system that 
is readily perceived, interpreted, and evaluated. The goal in both cases is to 
minimize cognitive effort. 

 
We suggest that the feeling of directness is inversely proportional to the 

amount of cognitive effort it takes to manipulate and evaluate a system and, 
moreover, that cognitive effort is a direct result of the gulfs of execution and 
evaluation. The better the interface to a system helps bridge the gulfs, the less 
cognitive effort needed and the more direct the resulting feeling of interaction. 

 



 

 
 5

 
 
Fig. The gulfs of execution and evaluation. Each gulf is unidirectional: The 
gulf of execution goes from goals to system state; the gulf of evaluation 
goes from system state to goals. 
 
 
3.2 Direct Engagement 
 

The description of the nature of interaction to this point begins to 
suggest how to make a system less difficult to use, but it misses an important 
point, a point that is the essence of direct manipulation. The analysis of the 
execution and evaluation process explains why there is difficulty in using a 
system, and it says something about what must be done to minimize the mental 
effort required to use a system. But there is more to it than that. The systems 
that best exemplify direct manipulation all give the qualitative feeling that one is 
directly engaged with control of the objects- not with the programs, not with the 
computer, but with the semantic objects of our goals and intentions. This is the 
feeling that Laurel (1986) discusses: a feeling of first-personness, of direct 
engagement with the objects that concern us. Are we analyzing data? Then we 
should be manipulating the data themselves; or if we are designing an analysis 
of data, we should be manipulating the analytic structures themselves. Are we 
playing a game? Then we should be manipulating directly the game world, 
touching and controlling the objects in that world, with the output of the system 
responding directly to our actions, and in a form compatible with them.  
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Historically, most interfaces have been built on the conversation 
metaphor. There is power in the abstractions that language provides (we discuss 
some of this later), but the implicit role of interface as an intermediary to a 
hidden world denies the user direct engagement with the objects of interest. 
Instead, the user is in direct contact with linguistic structures, structures that 
can be interpreted as referring to the objects of interest, but that are not those 
objects themselves. Making the central metaphor of the interface that of the 
model world supports the feeling of directness. Instead of describing the actions 
of interest, the user performs those actions. In a conventional interface, the 
system describes the results of the actions. In a model world the system directly 
presents the actions taken upon the objects. This change in central metaphor is 
made possible by relatively recent advances in technology. One of the exciting 
prospects for the study of direct manipulation is the exploration of the properties 
of systems that provide for direct engagement. 

 
Building interfaces based on the model-world metaphor requires a 

special sort of relationship between the input interface language and the output 
interface language. In particular, the output language must represent its subject 
of discourse in a way that natural language does not normally do. The 
expressions of a direct manipulation output language must behave in such a 
way that the user can assume that they, in some sense, are the things they refer 
to. DiSessa (1985) calls this “naive realism.” Furthermore, the nature of the 
relationship between input and output language must be such that an output 
expression can serve as a component of an input expression. Draper (1986) has 
coined the term inter-referential 1/0 to refer to relationships between input and 
output in which an expression in one can refer to an expression in the other. 
When these conditions are met, it is as if we are directly manipulating the things 
that the system represents. 

 
Thus, if we consider a system in which a file is represented by an image 

on the screen and actions are done by pointing to and manipulating the image. 
In this case, if we can specify a file by pointing at the screen representation, we 
have met the goal that an expression in the output language (in this case, an 
image) is allowed as a component of the input expression (in this case, by 
pointing at the screen representation). If we ask for a listing of files, we would 
want the result to be a representation that can, in turn, be used directly to 
specify the further operations to be done. Notice that this is not how a 
conversation works. In conversation, one may refer to what has been said 
previously, but one cannot operate upon what has been said. This requirement 
does not necessarily imply an interface of pictures, diagrams, or icons. It can be 
done with words and descriptions. The key properties are that the objects, 
whatever their form, have behaviors and can be referred to by other objects, and 
that referring to an object causes it to behave. In the file-listing example, we 
must be able to use the output expression that represents the file in question as 
a part of the input expression calling for whatever operation we desire upon that 
file, and the output expression that represents the file must change as a result of 
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being referred to in this way. The goal is to permit the user to act as if the 
representation is the thing itself. 

 
These conditions are met in many screen editors when the task is the 

arrangement of strings of characters. The characters appear as they are typed. 
They are then available for further operations. We treat them as though they are 
the things we are manipulating. These conditions are also met in the statistics 
example with which we opened this article (Figure l), and in Steamer. The special 
conditions are not met in file-listing commands on most systems, the commands 
that allow one to display the names and attributes of file structure. 

 
The issue is that the outputs of these commands are simply “names” of 

the objects, and operating on the names does nothing to the objects to which the 
names refer. In a direct manipulation situation, we would feel that we had the 
files in front of us, that the program that “listed” the files actually placed the files 
before us. Any further operation on the files would take place upon the very 
objects delivered by the directory-listing command. This would provide the 
feeling of directly manipulating the objects that were returned. 

 
The point is that when an interface presents a world of behaving objects 

rather than a language of description, manipulating a representation can have 
the same effects and the same feel as manipulating the thing being represented. 
The members of the audience of a well-staged play willfully suspend their beliefs 
that the players are actors and become directly engaged in the content of the 
drama. In a similar way, the user of a well-designed model-world interface can 
willfully suspend belief that the objects depicted are artifacts of some program 
and can thereby directly engage the world of the objects. This is the essence of 
the “first-personness” feeling of direct engagement. Let us now return to the 
issue of distance and explore the ways that an interface can be direct or indirect 
with respect to a particular task. 

 
3.3 Two forms of Distance: Semantic and Articulatory 
 

Whenever we interact with a device, we are using an interface language. 
That is, we must use a language to describe to the device the nature of the 
actions we wish to have performed. This is true regardless of whether we are 
dealing with an interface based on the conversation metaphor or on the model 
world metaphor, although the properties of the language in the two cases are 
different. A description of desired actions is an expression in the interface 
language. 

The notion of an interface language is not confined to the everyday 
meaning of language. Setting a switch or turning a steering wheel can be 
expressions in an interface language if switch setting or wheels turning are how 
one specifies the operations that are to be done. After an action has been 
performed, evaluation of the outcome requires that the device make available 
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some indication of what has happened: that output is an expression in the 
output interface language. Output interface languages are often impoverished. 
Frequently the output interface language does not share vocabulary with the 
input interface language. Two forms of interface language- two dialects exist to 
span the gulfs between user and device: the input interface language and the 
output interface language. 
  

Both the languages people speak and computer programming 
languages are almost entirely symbolic in the sense that there is an arbitrary 
relationship between the form of a vocabulary item and its meaning. The 
reference relationship is established by convention and must be learned. There is 
no way to infer meaning from form for most vocabulary items. Because of the 
relative independence of meaning and form we describe separately two properties 
of interface languages: semantic distance and articulatory distance. The figure 
below summarizes the relationship between semantic and articulatory distance. 
In the following sections we treat each of these distances separately and discuss 
them in relation to the gulfs of execution and evaluation. 

 
 
 

 
 

 
 
Fig. Every expression in the interface language has a meaning and a form. 
Semantic distance reflects the relationship between the user intentions 
and the meaning of expressions in the interface languages both for input 
and output. Articulatory distance reflects the relationship between the 
physical form of an expression in the interaction language and its meaning, 
again, both for input and output. The easier it is to go from the form or 
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appearance of the input or output to meaning, the smaller the articulatory 
distance. 
 
3.4 Semantic Distance 
 

Semantic distance concerns the relation of the meaning of an expression 
in the interface language to what the user wants to say. Two important questions 
about semantic distance are :  

 
1. Is it possible to say what one wants to say in this language? That is, does 
the language support the user’s conception of the task domain? Does it encode 
the concepts and distinctions in the domain in the same way that the user 
thinks about them?  
2. Can the thing1 of interest be said concisely? Can the user say what is 
wanted in a straightforward fashion, or must the user construct a complicated 
expression to do what appears in the user’s thoughts as a conceptually simple 
piece of work? 

 
Semantic distance is an issue with all languages. Natural languages 

generally evolve such that they have rich vocabularies for domains that are of 
importance to their speakers. When a person learns a new language- especially 
when the language is from a different culture - the new language may seem 
indirect, requiring complicated constructs to describe things the learner thinks 
should be easy to say. But the differences in apparent directness reflect 
differences in what things are thought important in the two cultures. Natural 
languages can and do change as the need arises. This occurs through the 
introduction of new vocabulary or by changing the meaning of existing terms. 
The result is to make the language semantically more direct with respect to the 
topic of interest. 
 
3.5 Semantic Distance in the Gulfs of Execution and Evaluation 
 
The Gulf of Execution 
 

At the highest level of description, a task may be described by the 
user’s intention: “compose this piece” or “format this paper.” At the lowest level 
of description, the performance of the task consists of the shuffling of bits inside 
the machine. Between the interface and the low-level operations of the machine 
is the system-provided task-support structure that implements the expressions 
in the interface language. The situation that Perlis (1982) called the “Turing 
tarpit” is one in which the interface language lies near or at the level of bit 
shuffling of a very simple abstract machine. In this case, the entire burden of 
spanning the gulf from user intention to bit manipulation is carried by the user. 
The relationship between the user’s intention and the organization of the 
instructions given to the machine is distant, complicated, and hard to follow. 
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Where the machine is of minimal complexity, as is the case with the Turing 
machine example, the wide gulf between user intention and machine 
instructions must be filled by the user’s extensive planning and translation 
activities. These activities are difficult and rife with opportunities for error. 
  

Semantic directness requires matching the level of description required 
by the interface language to the level at which the person thinks of the task. It is 
always the case that the user must generate some information-processing 
structure to span the gulf. Semantic distance in the gulf of execution reflects 
how much of the required structure is provided by the system and how much by 
the user. The more that the user must provide, the greater the distance to be 
bridged. 
 
The Gulf of Evaluation 

 
On the evaluation side, semantic distance refers to the amount of 

processing structure that is required for the user to determine whether the goal 
has been achieved. If the terms of the output are not those of the user’s 
intention, the user will be required to translate the output into terms that are 
compatible with the intention in order to make the evaluation. For example, 
suppose a user’s intent is to control how fast the water level in a tank rises. The 
user does some controlling action and observes the output. But if the output 
only shows the current value, the user has to observe the value over time and 
mentally compare the values at different times to see what the rate of change is. 
The information needed for the evaluation is in the output, but it is not there in 
a form that directly fits the terms of the evaluation. The burden is on the user to 
perform the required transformations, and that requires effort. Suppose the rate 
of change were directly displayed. This indication reduces the mental workload, 
making the semantic distance between intentions and output language much 
shorter. 
 
3.6 Reducing the Semantic Distance That Must Be Spanned 
 
Higher-Level Languages 
 

One way to bridge the gulf between the intentions of the user and the 
specifications required by the computer is well known: Provide the user with a 
higher-level language, one that directly expresses frequently encountered 
structures of problem decomposition. Instead of requiring the complete 
decomposition of the task to low-level operations, let the task be described in the 
same language used within the task domain itself. Although the computer still 
requires low-level specification, the job of translating from the domain language 
to the programming language can be taken over by the machine itself. This 
implies that designers of higher-level languages should consider how to develop 
interface languages for which it will be easy for the user to create the mediating 
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structure between intentions and expressions in the language. One way to 
facilitate this process is to provide consistency across the interface surface. That 
is, if the user builds a structure to make contact with some part of the interface 
surface, a savings in effort can be realized if it is possible to use all or part of 
that same structure to make contact with other areas. 

 
The result of matching a language to the task domain brings both good 

news and bad news. The good news is that tasks are easier to specify. Even if 
considerable planning is still required to express a task in a high-level language, 
the amount of planning and translation that can be avoided by the user and 
passed off to the machine can be enormous. The bad news is that the language 
has lost generality. Tasks that do not easily decompose into the terms of the 
language may be difficult or impossible to represent. In the extreme case, what 
can be done is easy to do, but outside that specialized domain, nothing can be 
done. The power of a specialized language system derives from carefully specified 
primitive operations, selected to match the predicted needs of the user, thus 
capturing frequently occurring structures of problem decomposition. The trouble 
is that there is a conflict between generality and matching to any specific 
problem domain. Some high-level languages and operating systems have 
attempted to close the gap between user intention and the interaction language 
while preserving freedom and ease of general expression by allowing for 
extensibility of the language or operating system. Such systems allow the users 
to move the interface closer to their conception of the task. 

 
The Lisp language and the UNIX operating system serve as examples of 

this phenomenon. Lisp is a general-purpose language, but one that has extended 
itself to match a number of special high-level domains. As a result, Lisp can be 
thought of as having numerous levels on top of the underlying language kernel. 
There is a cost to this method. As more and more specialized domain levels get 
added, the language system gets larger and larger, becoming more clumsy to 
use, more expensive to support, and more difficult to learn. Just look at any of 
the manuals for the large Lisp systems (Interlisp, Zetalisp) to get a feel for the 
complexity involved. The same is true for the UNIX operating system, which 
started out with a number of low-level, general primitive operations. Users were 
allowed (and encouraged) to add their own, more specialized operations, or to 
package the primitives into higher-level operations. The results in all these cases 
are massive systems that are hard to learn and that require a large amount of 
support facilities. The documentation becomes huge, and not even system 
experts know all that is present. Moreover, the difficulty of maintaining such a 
large system increases the burden on everyone, and the possibility of having 
standard interfaces to each specialized function has long been given up. 
  
  The point is that as the interface approaches the user’s intention end of 
the gulf, functions become more complicated and more specialized in purpose. 
Because of the incredible variety of human intentions, the lexicon of a language 
that aspires to both generality of coverage and domain-specific functions can 
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grow very large. In any of the modern dialects of Lisp one sees a microcosm of 
the argument about high-level languages in general. The fundamentals of the 
language are simple, but a great deal of effort is required to do anything useful 
at the low level of the language itself. Higher-level functions written in terms of 
lower-level ones make the system easier to use when the functions match 
intentions, but in doing so they may restrict possibilities, proliferate vocabulary, 
and require that a user know an increasing amount about the language of 
interaction rather than the domain of action. 
 
Make the Output Show Semantic Concepts Directly 
 

An example of reducing semantic distance on the output side is 
provided by the scenario of controlling the rate of filling a water tank, described 
above. In that situation, the output display was modified to show rate of flow 
directly, something normally not displayed but instead left to the user to 
compute mentally. In similar fashion, the change from line-oriented text editors 
to screen oriented text editors, where the effects of editing commands can be 
seen instantly, is another example of matching the display to the user’s 
semantics. In general, the development of WYSIWYG (“What You See Is What 
You Get”) systems provides other examples. And finally, spreadsheet programs 
have been valuable, in part because their output format continually shows the 
state of the system as values are changed. The attempt to develop good semantic 
matches with the system output confronts the same conflict between generality 
and power faced in the design of input languages. If the system is too specific 
and specialized, the output displays lack generality. If the system is too rich, the 
user has trouble learning and selecting among the possibilities. One solution for 
both the output and input problem is to abandon hope of maintaining general 
computing and output ability and to develop special-purpose systems for 
particular domains or tasks. In such a world, the location of the interface in 
semantic space is pushed closer to the domain language description. Here, 
things of interest are made simple because the lexicon of the interface language 
maps well into the lexicon of domain description. Considerable planning may 
still go on in the conception of the domain itself, but little or no planning or 
translation is required to get from the language of domain description to the 
language of the interface. The price paid for these advantages is a loss of 
generality: Many things are unnatural or even impossible. 
 
Automated Behavior Does Not Reduce Semantic Distance 
 

Cognitive effort is required to plan a sequence of actions to satisfy some 
intent. Generally, the more structure required of the user, the more effort use of 
the system will entail. However, this gap can be overcome if the users become 
familiar enough with the system. Structures that are used frequently need not be 
rebuilt every time they are needed if they have been remembered. Thus, a user 
may remember how to do something rather than having to re-derive how to do it. 
It is well known that when tasks are practiced sufficiently often, they become 
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automated, requiring little or no conscious attention. As a result, over time the 
use of an interface to solve a particular set of problems will feel less difficult and 
more direct. Experienced users will sometimes argue that the interface they use 
directly satisfies their intentions, even when less skilled users complain of the 
complexity of the structures. To skilled users, the interface feels direct because 
the invocation of mediating structure has been automated. They have learned 
how to transform frequently arising intentions into action specifications. The 
result is a feeling of directness as compelling as that which results from 
semantic directness. As far as such users are concerned, the intention comes to 
mind and the action gets executed. There are no conscious intervening stages. 
(For example, a user of the vi text editor expressed this as follows: “I am an 
expert user of vi, and when I wish to delete a word, all I do is think ‘delete that 
word,’ my fingers automatically type ‘dw,’ and the word disappears from the 
screen. How could anything be more direct?” The frequent use of even a poorly 
designed interface can sometimes result in a feeling of directness like that 
produced by a semantically direct interface. A user can compensate for the 
deficiencies of the interface through continual use and practice so that the 
ability to use it becomes automatic, requiring little conscious activity. While 
automatism is one factor which can contribute to a feeling of directness, it is 
essential for an interface designer to distinguish it from semantic distance. 
Automatization does not reduce the semantic distance that must be spanned; 
the gulfs between a user’s intentions and the interface must still be bridged by 
the user. Although practice and the resulting expertise can make the crossing 
less difficult, it does not reduce the magnitude of the gulfs. Planning activity may 
be replaced by single memory retrieval so that instead of figuring out what to do, 
the user remembers what to do. Automatization may feel like direct control, but 
it comes about for completely different reasons than semantic directness. 
Automatization is useful, for it improves the interaction of the user with the 
system, but the feeling of directness it produces depends only on how much 
practice a particular user has with the system and thus gives the system credit 
for the work the user has done. Although we need to remember that this 
happens, that users may adjust themselves to the interface and, with sufficient 
practice, may view it as directly supporting their intentions, we need to 
distinguish between the cases in which the feeling of directness originates from a 
close semantic coupling between intentions and the interface language and that 
which originates from practice. The resultant feeling of directness might be the 
same in the two cases, but there are crucial differences between how the feeling 
is acquired and what one needs to do as an interface designer to generate it. 
 
The User Can Adapt to the System Representation 

 
Another way to span the gulf is for the users to change their own 

conceptualization of the problem so that they come to think of it in the same 
terms as the system. In some sense, this means that the gulf is bridged by 
moving the user closer to the system. Because of their experience with the 
system, the users change both their understanding of the task and the language 
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with which they think about issues. This is related to the notion of linguistic 
determinism. If it is true that the way we think about something is shaped by 
the vocabulary we have for talking about it, then it is important for the designer 
of a system to provide the user with a good representation of the task domain in 
question. The interface language should provide a powerful, productive way of 
thinking about the domain. 

 
This form of the users adapting to the system representation takes 

place at a more fundamental level than the other ways of reducing semantic 
distance. While moving the interface closer to the users’ intentions may make it 
difficult to realize some intentions, changing the users’ conception of the domain 
may prevent some intentions from arising at all. So while a well-designed special 
purpose language may give the users a powerful way of thinking about the 
domain, it may also restrict the users’ flexibility to think about the domain in 
different ways. The assumption that a user may change conceptual structure to 
match the interface language follows from the notion that every interface 
language implies a representation of the tasks it is applied to. The representation 
implied by an interface is not always a coherent one. Some interfaces provide a 
collection of partially overlapping views of a task domain. If a user is to move 
toward the model implied by the interface, and thus reduce the semantic 
distance, that model should be coherent and consistent over some conception of 
the domain. There is, of course, a trade-off here between the costs to the user of 
learning a new way to think about a domain and the potential added power of 
thinking about it in the new way. 
 
Virtuosity and Semantic Distance 

 
Sometimes users have a conception of a task and of a system that is 

broader and more powerful than that provided by an interface. The structures 
they build to make contact with the interface go beyond it. This is how we 
characterize virtuoso performances in which the user may “misuse” limited 
interface tools to satisfy intentions that even the system designer never 
anticipated. In such cases of virtuosity the notion of semantic distance becomes 
more complicated and we need to look very carefully at the task that is being 
accomplished. Semantic directness always involves the relationship between the 
task one wishes to accomplish and the ways the interface provides for 
accomplishing it. If the task changes, then the semantic directness of the 
interface may also change. Consider a musical example: Take the task of 
producing a middle-C note on two musical instruments, a piano and a violin. For 
this simple task, the piano provides the more direct interface because all one 
need do is find the key for middle-C and depress it, whereas on the violin, one 
must place the bow on the G string, place a choice of fingers in precisely the 
right location on that string, and draw the bow. A piano’s keyboard is more 
semantically direct than the violin’s strings and bow for the simple task of 
producing notes. The piano has a single well-defined vocabulary item for each of 
the notes within its range, while the violin has an infinity of vocabulary items, 
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many of which do not produce proper notes at all. However, when the task is 
playing a musical piece well rather than simply producing notes, the directness 
of the interfaces can change. In this case, one might complain that a piano has a 
very indirect interface because it is a machine with which the performer “throws 
hammers at strings.” The performer has no direct contact with the components 
that actually produce the sound, and so the production of desired nuances in 
sound is more difficult. Here, as musical virtuosity develops, the task that is to 
be accomplished also changes from just the production of notes to concern for 
how to control more subtle characteristics of the sounds like vibrato, the slight 
changes in pitch used to add expressiveness. For this task the violin provides a 
semantically more direct interface than the piano. Thus, as we have argued 
earlier, an analysis of the nature of the task being performed is essential in 
determining the semantic directness of an interface. 
 
3.7 Articulatory Distance 
 

In addition to its meaning, every vocabulary item in every language has 
a physical form and that form has an internal structure. Words in natural 
languages, for example, have phonetic structure when spoken and typographic 
structure when printed. Similarly, the vocabulary items that constitute an 
interface language have a physical structure. Where semantic distance has to do 
with the relationship between user’s intentions and meanings of expressions, 
articulatory distance has to do with the relationship between the meanings of 
expressions and their physical form. On the input side, the form may be a 
sequence of character-selecting key presses for a command language interface, 
the movement of a mouse and the associated “mouse clicks” in a pointing device 
interface, or a phonetic string in a speech interface. On the output side, the form 
might be a string of characters, a change in an iconic representation, or 
variation in an auditory signal. There are ways to design languages such that the 
relationships between the forms of the vocabulary items and their meanings are 
not arbitrary. One technique is to make the physical form of the vocabulary 
items structurally similar to their meanings. In spoken language this 
relationship is called onomatopoeia. Onomatopoetic words in spoken language 
refer to their meanings by imitating the sound they refer to. Thus we talk about 
the “boom” of explosions or the “cock-a-doodle-doo” of roosters. There is an 
economy here in that the user’s knowledge of the structure of the surface 
acoustical form has a non arbitrary relation to meaning. There is a directness of 
reference in this imitation; an intervening level of arbitrary symbolic relations is 
eliminated. Other uses of language exploit this effect partially. Thus, although 
the word “long is arbitrarily associated with its meaning, sentences like “She 
stayed a looooooooooong time” exploit a structural similarity between the surface 
form of “long” (whether written or spoken) and the intended meaning. The same 
sorts of things can be done in the design of interface languages. 
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In many ways, the interface languages should have an easier time of 
exploiting articulatory similarity than do natural languages because of the rich 
technological base available to them. Thus, if the intent is to draw a diagram, the 
interface might accept as input drawing motions. In turn, it could present as 
output diagrams, graphs, and images. If one is talking about sound patterns in 
the input interface language, the output could be the sounds themselves. The 
computer has the potential to exploit articulatory similarities through 
technological innovation in the varieties of dimensions upon which it can 
operate. This potential has not been exploited, in part because of economic 
constraints. The restriction to simple keyboard input limits the form and 
structure of the input languages and the restriction to simple, alphanumeric 
terminals with small, low-resolution screens, limits the form and structure of the 
output languages. 
 
3.8 Articulatory Distance in the Gulfs of Execution and Evaluation 
 

The relationships among semantic distance, articulatory distance, and 
the gulfs of execution and evaluation are illustrated in the figure below. Take the 
simple, commonplace activity of moving a cursor on the screen. If we do this by 
moving a mouse, pointing with a finger or a light pen at the screen, or otherwise 
mimicking the desired motion, then at the level of action execution, these 
interactions all exhibit articulatory directness. The meaning of the intention is 
cursor movement and the action is specified by means of a similar movement. 
One way to achieve articulatory directness at the input side is to provide an 
interface that permits specification of an action by mimicking it, thus supporting 
an articulatory similarity between the vocabulary item and its meaning. Any 
nonarbitrary relationship between the form of an item and its meaning can be a 
basis for articulatory directness. While structural relationships of form to 
meaning may be desirable, it is sometimes necessary to resort to an arbitrary 
relationship of form to meaning. Still, some arbitrary relationships are easier to 
learn than others. It may be possible to exploit previous user knowledge in 
creating this relationship. Much of the work on command names in command 
language interfaces is an instance of trying to develop memorable and 
discriminable relationships between the forms and the meanings of command 
names. 

 
Articulatory directness on the output side is similar. If the user is 

following the changes in some variable, a moving graphical display can provide 
articulatory directness. A table of numbers, although containing the same 
semantic information, does not provide articulatory directness. Thus, the 
graphical display and the table of numbers might be equal in semantic 
directness, but unequal in articulatory directness. The goal of designing for 
articulatory directness is to couple the perceived form of action and meaning so 
naturally that the relationships between intentions and actions and between 
actions and output seem straight forward and obvious. In general, articulatory 
directness is highly dependent upon I/O technology. Increasing the articulatory 
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directness of actions and displays requires a much richer set of input/output 
devices than most systems currently have. In addition to keyboards and bit-
mapped screens, we see the need for various forms of pointing devices. Such 
pointing devices have important spatio-mimetic properties and thus support the 
articulatory directness of input for tasks that can be represented spatially. The 
mouse is useful for a wide variety of tasks not because of any properties inherent 
in itself, but because we map so many kinds of relationships (even ones that are 
not intrinsically spatial) on to spatial metaphors. In addition, there are often 
needs for sound and speech, certainly as outputs, and possibly as inputs. 
Precise control of timing will be necessary for those applications where the 
domain of interest is time sensitive. 
 

 
 
Forming an intention is the activity that spans semantic distance in the 
gulf of execution. The intention specifies the meaning of the input 
expression that is to satisfy the user’s goal. Forming an action specification 
is the activity that spans articulatory distance in the gulf of execution. The 
action specification prescribes the form of an input expression having the 
desired meaning. The form of the input expression is executed by the user 
on the machine interface and the form of the output expression appears on 
the machine interface, to be perceived by the user. When some part of the 
form of a previous output expression is incorporated in the form of a new 
input expression, the input and output are said to be inter-referential. 
Interpretation is the activity that spans aritculatory distance in the gulf of 
evaluation. Interpretation determines the meaning of the output 
expression from the form of the output expression. Evaluation is the 
activity that spans semantic distance in the gulf of evaluation. Evaluation 
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assesses the relationship between the meaning of the output expression 
and the user’s goal. 
 

Perhaps it is stretching the imagination beyond its willing limits, but 
Galton (1894) suggested and carried out a set of experiments on doing arithmetic 
by sense of smell. Less fancifully conceived, input might be sensitive not only to 
touch, place, and timing, but also to pressure or to torque (see Buxton, 1986; 
Minsky, 1984). 
 

Direct engagement occurs when a user experiences direct interaction 
with the objects in a domain. Here there is a feeling of involvement directly with 
a world of objects rather than of communication with an intermediary. The 
interactions are much like interacting with objects in the physical world. Actions 
apply to the objects, observations are made directly upon those objects, and the 
interface and the computer become invisible. Although we believe this feeling of 
direct engagement to be of critical importance, in fact, we know little about the 
actual requirements for producing it. Laurel (1986) discusses some of the 
requirements. At a minimum, to allow a feeling of direct engagement the system 
requires the following: 

 
1. Execution and evaluation should exhibit both semantic and articulatory 
directness. 
 
2. Input and output languages of the interface should be inter-referential, 
allowing an input expression to incorporate or make use of a previous output 
expression. This is crucial for creating the illusion that one is directly 
manipulating the objects of concern. 

 
 
3. The system should be responsive with no delays between execution and the 
results, except where those delays are appropriate for the knowledge domain 
itself. 

 
4. The interface should be unobtrusive, not interfering or intruding. If the 
interface itself is noticed, then it stands in a third-person relationship to the 
objects of interest, and detracts from the directness of the engagement. 

 
5. In order to have a feeling of direct engagement, the interface must provide the 
user with a world in which to interact. The objects of that world must feel like 
they are the objects of interest that one is doing things with them and watching 
how they react. For this to be the case, the output language must present 
representations of objects in forms that behave in the way that the user thinks of 
the objects behaving. Whatever changes are caused in the objects by the set of 
operations must be depicted in the representation of the objects. This use of the 
same object as both an input and output entity is essential to providing objects 
that behave as if they are the real thing. It is because an input expression can 
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contain a previous output expression that the user feels the output expression is 
the thing itself and that the operation is applied directly to the thing itself. 

 
6. In addition, all of the discussions of semantic and articulatory directness 
apply here too because the designer of the interface must be concerned with 
what is to be done and how one articulates that in the languages of interaction. 
But the designer must also be concerned with creating and supporting an 
illusion. The specification of what needs to be done and evidence that it has been 
done must not violate the illusion, else the feeling of direct engagement will be 
lost. 

 
7. One factor that seems especially relevant to maintaining this illusion is the 
form and speed of feedback. Rapid feedback in terms of changes in the behavior 
of objects not only allows for the modification of actions even as they are being 
executed, but also supports the feeling of acting directly on the objects 
themselves. It removes the perception of the computer as an intermediary by 
providing continual representation of system state. In addition, rapidity of 
feedback and continual representation of state allows one to make use of 
perceptual faculties in evaluating the outcome of actions. We can watch the 
actions take place, monitoring them much like we monitor our interactions with 
the physical world. The reduction in the cognitive load of mentally maintaining 
relevant information and the form of the interaction contribute to the feeling of 
engagement. 
 
3.9 A space of Interfaces 
 

Distance and engagement are depicted in the figure below as two major 
dimensions in a space of interface designs. The dimension of engagement has 
two landmark values: One is the metaphor of interface as conversation; the other 
is the metaphor of interface as model world. The dimension of distance actually 
contains two distances to be spanned: semantic and articulatory distances, the 
two kinds of gulfs that lie between the user’s conception of the task and the 
interface language. The least direct interface is often one that provides a low-
level language interface, for this is apt to provide the weakest semantic match 
between intentions and the language of the interface. In this case, the interface 
is an intermediary between the user and the task. Even worse, it is an 
intermediary that does not understand actions at the level of description in 
which the user likes to think of them. Here the user must translate intentions 
into complex or lengthy expressions in the language that the interface 
intermediary can understand. 

 
A more direct situation arises when the central metaphor of the 

interface is a world. Then the user can be directly engaged with the objects in a 
world; but still, if the actions in that world do not match those that the user 
wishes to perform within the task domain, getting the task done may be a 
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difficult process. The user may believe that things are getting done and may even 
experience a sense of engagement with the world, yet still be doing things at too 
low a level. This is the state of some of the recently introduced direct 
manipulation systems: They produce an immediate sense of engagement, but as 
the user develops experience with the system, the interface appears clumsy, to 
interfere too much, and to demand too many actions and decisions at the wrong 
level of specification. These interfaces appear on the surface to be direct 
manipulation interfaces, but they fail to produce the proper feelings of direct 
engagement with the task world. Closing the distance between the user’s 
intentions and the level of specification of the interface language allows the user 
to make efficient specifications of intentions. Where this is done with a high-level 
language, quite efficient interfaces can be designed. This is the situation in most 
modern integrated programming environments. For some classes of tasks, such 
interfaces may be superior to direct manipulation interfaces. 

 

 
 
A space of interfaces. The dimensions of distance from user goals and 
degree of engagement form a space of interfaces within which we can locate 
some familiar types of interfaces. Direct manipulation interfaces are those 
that minimize the distances and maximize engagement. As always, the 
distance between user intentions and the interface language depends on 
the nature of the task the user is performing. 
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Finally, the most direct of the interfaces will lie where engagement is 
maximized, where just the right semantic and articulatory matches are provided, 
and where all distances are minimized. 

 
3.10 Adaptive agents and user models versus control Panels 
 

Some designers promote the notion of adaptive and/or 
anthropomorphic agents that would carry out the users’ intents and anticipate 
needs. Their scenarios often show a responsive, butler-like human being to 
represent the agent (a bow-tied, helpful young man in Apple Computer’s 1987 
video on the Knowledge Navigator), or refer to the agent on a first-name basis 
(such as Sue or Bill in Hewlett-Packard’s 1990 video on future computing). 
Microsoft’s unsuccessful BOB program used cartoon characters to create 
onscreen partners. Others have described “knowbots,” agents that traverse the 
World Wide Web in search of interesting information or a low price on a trip to 
Hawaii. 

 
  Many people are attracted to the idea of a powerful functionary 
carrying out their tasks and watching out for their needs. The wish to create an 
autonomous agent that knows people’s likes and dislikes, makes proper 
inferences, re-spends to novel situations, and performs competently with little 
guidance is strong for some designers. They believe that human–human 
interaction is a good model for human–computer interaction and seek to create 
computerized partners, assistants, or agents. They promote their designs as 
intelligent and adaptive, and often, they pursue anthropomorphic 
representations of the computer to the point of having artificial faces talking to 
users. Anthropomorphic representations of computers have been unsuccessful 
in bank terminals, computer assisted instruction, talking cars, or postal service 
stations, but some designers believe that they can find a way to attract users. A 
variant of the agent scenario, which does not include an anthropomorphic 
realization, is that the computer employs a “user model” to guide an adaptive 
system. The system keeps track of user performance and adapts its behavior to 
suit the users’ needs. For example, several proposals suggest that, as users 
make menu selections more rapidly, indicating proficiency, advanced menu 
items or a command-line interface appears. Automatic adaptations have been 
proposed for response time, length of messages, density of feedback, content of 
menus, order of menu items, type of feedback (graphic or tabular), and content 
of help screens. Advocates point to video games that increase the speed or 
number of dangers as user’s progress though stages of the game. However, 
games are quite different from most work situations, where users have external 
goals and motivations to accomplish their tasks. There is much discussion of 
user models, but little empirical evidence of their efficacy. There are some 
opportunities for adaptive user models to tailor system responses, but even 
occasional unexpected behavior has serious negative side effects that 
discourage use. If adaptive systems make surprising changes, users must 
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pause to see what has happened. Then, users may become anxious because 
they may not be able to predict the next change, interpret what has happened, 
or restore the system to the previous state. Suggestions that users could be 
consulted before a change is made are helpful, but such intrusions may still 
disrupt problem-solving processes and annoy users.  
  

The agent metaphor is based on the design philosophy that assumes 
users would be attracted to “autonomous, adaptive, intelligent” systems. 
Designers believe that they are creating something lifelike and smart, however 
users may feel anxious and unable to control these systems. Success stories 
for advocates of adaptive systems include a few training and help systems that 
have been extensively studied and carefully refined to give users appropriate 
feedback for the errors that they make. Generalizing from these systems has 
proven to be more difficult than advocates hoped. The philosophical contrast is 
with “user-control, responsibility, and accomplishment” Designers who 
emphasize a direct manipulation style believe that users have a strong desire to 
be in control and to gain mastery over the system. Then users can accept 
responsibility for their actions and derive feelings of accomplishment. Historical 
evidence suggests that users seek comprehensible and predictable systems and 
shy away from complex unpredictable behavior, such as the pilots who 
disengage automatic piloting devices or VCR users who don’t believe that they 
can properly program it to record a future show. 
  

Comprehensible and predictable user interfaces should mask the 
underlying computational complexity, in the same way that turning on an 
automobile ignition is comprehensible to the user but invokes complex 
algorithms in the engine- control computer. These algorithms may adapt to 
varying engine temperatures or air pressures, but the action at the user-
interface level remains unchanged. A critical issue for designers is the clear 
placement of responsibility for failures. Agent advocates usually avoid 
discussing responsibility. Their designs rarely allow for monitoring the agent’s 
performance, and feedback to users about the current user model is often given 
little attention. However, most human operators recognize and accept their 
responsibility for the operation of the computer, and therefore designers of 
financial, medical, or military systems ensure that detailed feedback is 
provided. An alternative to agents and user models may be to expand the 
control-panel metaphor. Current control panels are used to set physical 
parameters, such as the speed of cursor blinking, rate of mouse tracking, or 
loudness of a speaker, and to establish personal preferences such as time, date 
formats, placement and format of menus, or color schemes. Some software 
packages allow users to set parameters such as the speed in games or the 
usage level as in HyperCard (from browsing to editing buttons to writing scripts 
and creating graphics). Users start at level 1, and can then choose when to 
progress to higher levels. Often, users are content remaining experts at level 1 
of a complex system, rather than dealing with the uncertainties of higher 
levels. More elaborate control panels exist in style sheets of word processors, 
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specification boxes of query facilities, and scheduling software that carries out 
processes at regular intervals or when triggered by other processes. Computer 
control panels, like cruise-control in automobiles and remote controllers for 
televisions, are designed to convey the sense of control that users seem to 
expect. Increasingly, complex processes are specified by direct-manipulation 
programming or by graphical specifications of scheduled procedures, style 
sheets, and templates. 

 
 
 

 
4. A Specification Language for Direct-Manipulation User 
Interfaces 
 

A direct-manipulation user interface presents its user with a set of 
visual representations of objects on a display and a repertoire of generic 
manipulations that can be performed on any of them. Some of these techniques 
were first seen in interactive graphics systems; they are now proving effective in 
user interfaces for applications that are not inherently graphical. With a direct 
manipulation interface, the user seems to operate directly on the objects in the 
computer instead of carrying on a dialogue about them. Instead of using a 
command language to describe operations on objects that are frequently 
invisible, the user “manipulates” objects visible on a graphic display. This 
ability to manipulate displayed objects has been identified as direct 
engagement. The displayed objects are active in the sense that they are affected 
by each command issued; they are not the fixed outputs of one execution of a 
command, frozen in time. They are also usable as inputs to subsequent 
commands. The ultimate success of a direct-manipulation interface also 
requires directness in the form of low cognitive distance, the mental effort 
needed to translate from the input actions and output representations to the 
operations and objects of the problem domain itself. The visual metaphor 
chosen to depict the problem domain should thus be easy for the user to 
translate to and from that domain, and the actions required to effect a 
command should be closely related to the meaning of the command in the 
problem domain. 
 
4.1 Specifying a Direct Manipulation User Interface 
 

It is useful to be able to write a specification of the user interface of a 
computer system before building it, because the interface designer can thereby 
describe and study a variety of possible user interfaces without having to code 
them. Such a specification should describe precisely the user-visible behavior 
of the interface, but should not constrain its implementation. Specification 
techniques for describing the user-visible behavior of conventional user 
interfaces without reference to implementation details are gaining currency; 
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most have been based on state transition diagrams or BNF (and a few on other 
models listed below); there are some reasons to prefer the state diagrams. If the 
specification language itself can be executed or compiled, it can also serve as 
the basis for a user-interface management system (UIMS). To be useful, a UIMS 
needs a convenient and understandable way for the user-interface designer to 
describe the desired interface. The choice of specification language is thus at 
the heart of the design of a UIMS. UIMSs have been built using BNF or other 
grammar-based specifications, state- transition-diagram-based specifications, 
programming-language-based specifications, frames, flow diagrams, and other 
models. More recently, several investigators have used an object-oriented 
approach. Research is also under way in describing user interfaces by example, 
where the interface designer is not concerned with a programming or 
specification language. 

 
Although direct manipulation can make systems easy to learn and 

use, such user interfaces have proved more difficult to construct and specify. 
Direct manipulation interfaces have some important differences from other 
styles of interfaces and these must be understood in order to develop an 
appropriate specification technique for them. Although state-transition-
diagram-based notations have proved effective and powerful for specifying 
conventional user interfaces, they must be modified to handle direct- 
manipulation interfaces. State diagrams tend to emphasize the modes or states 
of a system and the sequence of transitions from one state to another. 
Although direct-manipulation user interfaces initially appear to be modeless 
and thus unsuited to this approach, they will be shown below to have a 
particular, highly regular moded structure, which can be exploited in devising 
a specification technique for them. 
 
4.2 Structure of a Direct Manipulation dialogue 
 

In order to develop an appropriate specification language for direct-
manipulation interfaces, it is necessary to identify the basic structure of such 
an interface as the user sees it. The goal of this specification method is not 
strictly compactness or ease of programming, but rather capturing the way the 
end user sees the dialogue. Many existing specification techniques could be 
extended in various ways to describe the unusual aspects of direct-
manipulation dialogues. However, the real problem is not just to find some way 
to describe the user interface (since, after all, assembly language can do that 
job), but to find a language that captures the user’s view of a direct-
manipulation interface as perspicuously as possible and with as few ad hoc 
features and extensions to the specification technique as possible. The object is 
to describe the interface or dialogue between the system and its end user, as 
seen by that user, rather than to describe the structure of the system or its 
components at some other level. 
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 First, consider what a dialogue specification should describe. Trying 
to capture the layout and precise appearance of the display of a direct-
manipulation interface at every turn would make the top level of the dialogue 
specification excessively detailed and complex. Instead, the initial specification 
should be centered around the sequence of abstract input and output events 
that comprise the dialogue. The syntax of an interactive user interface-whether 
conventional or direct manipulation is effectively described by such a sequence 
of input and output events, with the specification of the meanings of the events 
in terms of specific input actions or display images deferred. The abstract input 
or output events themselves are called tokens and are then described 
individually in separate specifications. Information about display 
representation and layout is isolated there, rather than as part of the 
description of the syntax of the dialogue. This decomposition of direct-
manipulation dialogues follows the model of general user-computer dialogues 
introduced by Foley and Wallace. The sequence of input and output tokens 
comprises the syntactic level, while the individual token descriptions comprise 
the lexical level. The semantic level is defined by a collection of procedures that 
implement the functional requirements of the system; they are invoked from 
the syntactic-level specification. This three level separation has been used to 
good effect in user-interface management systems. Separating the abstract 
dialogue sequence and overall display organization (syntactic) description from 
the precise input and output format (lexical) description is of particular 
importance for direct-manipulation interfaces, because such interfaces 
typically provide rapid and rich graphical feedback and may vary the 
appearance of the display considerably during a dialogue. Users may also be 
permitted to rearrange windows and other images arbitrarily to suit their 
preference.  

 
Despite such variations, there are some more fundamental 

characterization of the dialogue than moment-to-moment display appearance 
should thus be identified and used as the foundation for a clear specification; 
the sequence of abstract events or tokens is proposed to provide this 
foundation. The issue did not arise with early user interfaces based on tele-
printers or scrolling display terminals. The sequence of specific input and 
output events precisely determined the appearance of the display in a simple 
and straightforward way. Later display terminals added some special 
commands, such as clear screen, vertical tab, or cursor motions, which 
disrupted the relationship between sequence of inputs and outputs and display 
appearance. These have required some extensions to conventional specification 
techniques. With a full graphic display, however, much more complex user 
interfaces have been built. It is still true in principle that the sequence of input 
and output events completely determines the final appearance of the display, 
but in a far less straightforward way-a way that the user-interface specifier 
should not have to understand. The specification writer needs to be able to 
speak about the display appearance at a higher level: the sequence of input 
and output events. Details about graphical representations, sizes, windows, 
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particular input/output devices, and the like can then be abstracted out of the 
dialogue specification. Even the choice of particular modes of user-computer 
communication can be isolated, since an output token can be any discrete, 
meaningful event in the dialogue, including, for example, an audible or tactile 
output. Note that building the syntax specification around the sequences of 
tokens does not preclude semantic-level feedback. For example, as a file icon is 
dragged over various directory icons, those directories (and only those) into 
which the user is currently permitted to move that file might be highlighted. 
The specification technique permits such an operation, but it divides the 
description of the feedback into its three appropriate aspects. The decision as 
to which directories should be highlighted is given in the semantic-level 
specification; the specification of when in the dialogue such highlighting will 
occur is given in the syntactic-level specification (as transitions that test the 
condition and call a highlight token); and the description of the highlighting 
operation itself is given in the lexical level specification (as the definition of the 
highlight token).  

 
Consider next the basic sequence of events in a direct-manipulation 

dialogue. A direct-manipulation user interface resembles an interacting 
collection of active and/or responsive objects more than it does a single 
command language dialogue with the user. The display typically presents a 
variety of graphical objects. Users can select any of them (most often by moving 
a cursor). Once selected, the user can begin a dialogue about that object-
adjusting a parameter, deleting or moving an object, etc. Each object thus has 
its own particular dialogue, which the user may activate or deactivate at any 
time. Further, some object dialogues remember their state between activations. 
For example, if the user moves the cursor to a type-in field and types a few 
characters, moves it somewhere else and performs other operations, and then 
returns to the type-in field, the dialogue within that field would be resumed 
with the previously entered characters and insertion point intact. As a better 
example, if the user had begun an operation that prompted for and required 
him or her to enter some additional arguments, the user could move to another 
screen area and do something else before returning to the first area and 
resuming entry of the arguments where he or she had left them. Given this 
structure, it is unnatural, though possible, to describe the user interface of a 
direct-manipulation system as a conventional dialogue by means of a syntax 
diagram or other such notation. Instead the user sees a multitude of small 
dialogues, each of which may be interrupted or resumed under the control of a 
simple master dialogue. Each of the individual objects on the screen thus has a 
particular syntax or dialogue associated with it. Each such dialogue can be 
suspended (typically if the user moves the cursor away) and later resumed at 
the point from which it was suspended. The relationship between the 
individual dialogues or branches of the top-level diagram is that of co-routines. 
So, the basic structure of a direct-manipulation interface is seen to be a 
collection of individual dialogues connected by an executive that activates and 
suspends them as co-routines. The specification technique for direct-



 

 
 27

manipulation interfaces will thus allow the individual dialogues to be specified 
individually and to exchange control with each other through a co-routine call 
mechanism. 
    
4.3 Modes in the user interface 
 

Many traditional user interfaces are highly moded, and this has made 
it convenient to specify them using state transition diagrams. Modes or states 
refer to the varying interpretation of a user’s input. In each different mode, a 
user interface may give different meanings to the same input operations. Some 
use of modes is necessary in most user interfaces, since there are generally not 
enough distinct brief input operations (e.g., single keystrokes) to map into all 
the commands of a system. A moded user interface requires that users 
remember (or the system remind them) of which mode it is in at any time and 
which different commands or syntax rules apply to each mode. Modeless 
systems do not require this; the system is always in the same mode, and 
inputs always have the same interpretation. Direct-manipulation user 
interfaces appear to be modeless. Many objects are visible on the screen; and 
at any time the user can apply any of a standard set of commands to any 
object. The system is thus nearly always in the same “universal” or “top-level” 
mode. This is approximately true of some screen editors, but for most other 
direct-manipulation systems, where the visual representation contains more 
than one type of component, this is a misleading view. It ignores the input 
operation of moving the cursor to the object of interest. A clearer view suggests 
that such a system has many distinct modes. Moving the cursor to point to a 
different object is the command to cause a mode change, because once it is 
moved, the range of acceptable inputs i.e. reduced and the meaning of each of 
those inputs is determined.  

 
This is precisely the definition of a mode change. For example, moving 

the cursor to a screen button, such as the “Display” buttons in the message 
system, should be viewed as putting the system into a mode where the 
meaning of the next mouse button click is determined (it displays that 
message) and the set of permissible inputs is circumscribed (e.g., keyboard 
input could be illegal or ignored). Moving the cursor somewhere else would 
change that mode. As shown in following 1, the top level of a typical direct-
manipulation interface such as the message-system example could thus be 
described by a large state diagram with one top-level state and a branch 
(containing a cursor motion input) leading from it to each mode (marked with a 
“+“). Each such branch continues through one or more additional states before 
returning to the top-level state. There is typically no crossover between these 
branches. If direct-manipulation user interfaces are not really modeless, why 
do they appear to have the psychological advantages over moded interfaces 
that are usually ascribed to modeless ones? The reason is that they make the 
mode so apparent and easy to change that it ceases to be a stumbling block. 
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The mode is always clearly visible (as the location of a cursor), and it has an 
obvious representation (simply the echo of the same cursor location just used 
to enter the mode change command), in contrast to some special flag or 
prompt. Thus the input mode is always visible to the user. The direct-
manipulation approach makes the output display (cursor location to indicate 
mode) and the related input command (move cursor to change mode) operate 
through the same visual representation (cursor location). At all times the user 
knows exactly how to change modes; he or she can never get stuck. It appears, 
then, that direct-manipulation user interfaces are highly moded, but they are 
much easier to use than traditional moded interfaces because of the direct way 
in which the modes are displayed and manipulated. 
 

 
Fig. State-diagram specification of the top level of a simple direct-manipulation 
user interface. 
 
4.4 A SPECIFICATION LANGUAGE 
 

Figure above shows a typical direct-manipulation user interface 
represented as a state transition diagram. Although a simple direct-
manipulation interface could be specified in this fashion, it has some 
shortcomings. The top-level state diagram for each new direct-manipulation 
interface will be a large, regular, and relatively uninformative diagram with one 
start state and a self-contained (i.e., no crossover) path to each mode and 
thence back to start state. It is essentially the same for any direct-
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manipulation system and need not be specified anew for each system. 
Moreover, since the individual paths are usually self-contained and interact 
with each other in very limited ways, it would be clearer to separate their 
specifications. A more serious problem with this approach is that there is often 
a remembered state within some of the paths (partial type-in on a field, an item 
awaiting confirmation, etc.), which are suspended when the cursor leaves the 
field and resumed when it reenters. This requires that the paths of the diagram 
be handled separately. Each path will thus now be specified separately (as a 
co-routine), and an executive will be given for the outer dialogue loop. A 
specification language based on the characteristics found in the foregoing 
examination of direct-manipulation interfaces can now be described:-A direct-
manipulation interface was found to comprise a collection of many relatively 
simple individual dialogues. Thus the specification will be centered around a 
collection of individual objects, called interaction objects, each of which will 
have a separate specification. Each of the dialogues of the direct-manipulation 
interface will be specified as a separate interaction object with an independent 
dialogue description. The individual dialogues of a direct-manipulation 
interface were found to be related to each other as a set of co-routines. Thus 
the specification language will permit the dialogue associated with each 
interaction object to be suspended and resumed, with retained state, like a co-
routine. A simple executive will be defined to manage the overall flow of control. 
It specifies the interconnection of the interaction object dialogues, allocates 
input events, and suspends the individual dialogues to relinquish control to 
others as needed. Because of the complexity and variability in the layout of the 
display of a direct-manipulation interface, it was found that the dialogue 
should be specified as a sequence of abstract input and output events, with 
layout and graphic details given separately. Thus the dialogue specification for 
each interaction object will be written using input and output tokens, which 
represent input or output events. The dialogue specification will define the 
possible sequences of input and output tokens. The internals of the tokens 
themselves will then be specified separately from the dialogue. These token 
definitions will contain details of layout, graphical representation, and device 
handling. 

  
Direct-manipulation interfaces were seen to have definite modes or 

states, despite their surface appearance. This applied both to the overall 
structure and to the retained state within each co-routine. Thus state 
transition diagrams are a suitable notation for describing the individual 
interaction-object dialogues. The state diagrams will assume co-routine calling 
between them. Given this structure, a direct-manipulation user interface will 
be specified as a collection of individual, possibly mutually interacting 
interaction objects, organized around the manipulable objects and the loci of 
remembered state in the dialogue. These objects will often coincide with screen 
regions or windows, but need not. A typical object might be a screen button, 
individual type-in field, scroll bar, or the like. ach such object will be specified 
separately, and then a standard executive will be defined for the outer dialogue 
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loop. Thus, to describe a direct-manipulation user interface, it will be 
necessary to 

 
 (1) Define a collection of interaction objects,  
 (2) Specify their internal behaviors, and  
 (3) Provide a mechanism for combining them into a coordinated user interface. 
 
As noted, a goal of this notation is to capture the way the end user sees the 
interface. The underlying claim is thus that the user indeed sees the direct 
manipulation dialogue as a collection of small, individual objects or dialogues, 
each suspendable and resumable like a co-routine, joined by a straightforward 
executive. The specification language is defined by devising a mechanism for 
each of the three tasks in the preceding paragraph:  
 
1. How should the user interface be divided into individual objects? An 
interaction object will be the smallest unit with which the user conducts a 
meaningful, step-by-step dialogue, that is, one that has continuity or syntax. It 
can be viewed as the smallest unit in the user interface that has a state that is 
remembered when the dialogue associated with it is interrupted and resumed. 
In that respect, it is like a window, but in a direct-manipulation user interface, 
it is generally smaller-a screen button, a single type-in field on a form, or a 
command line area. It can also be viewed as the largest unit of the user 
interface over which disparate input events should be serialized and combined 
into a single stream, rather than divided up and distributed to separate 
objects. Thus an interaction object is a locus both of maintained state and of 
input serialization.  
 
2. How should an input handler for each interaction object be specified? 
Observe that, at the level of individual objects, each such object conducts only 
a singlethread dialogue, with all inputs serialized and with a remembered state 
whenever the individual dialogue is interrupted by that of another interaction 
object. Thus a conventional single-thread state diagram is the appropriate 
representation for the dialogue associated with an individual interaction object. 
The input handler for each interaction object is specified as a simple state 
transition diagram  
 
3. How should the specifications of the individual objects be combined into an 
“outer loop” or overall direct-manipulation user interface? As noted, a direct 
manipulation interface could be described with a single, large state diagram, 
but since the user sees the structure of the user interface as a collection of 
many semi-independent objects, that is not a particularly perspicuous 
description. Instead, a standard executive will be defined that embodies the 
basic structure of a direct-manipulation dialogue and includes the ability to 
make co-routine calls between individual state diagrams. This executive 
operates by collecting all of the state diagrams of the individual interaction 
objects and executing them as a collection of co-routines, assigning input 
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events to them and arbitrating among them as they proceed. To do this, a co-
routine call mechanism for activating state diagrams must be defined. This 
means that whenever a diagram is suspended by a co-routine call to another 
diagram, the state in the suspended diagram is remembered. Whenever a 
diagram is resumed by a co-routine call, it will begin executing at the state 
from which it was last suspended. The executive causes the state diagram of 
exactly one of the interaction objects to be active at any one time. As the active 
diagram proceeds, it reaches each state, examines the next input event, and 
takes the appropriate transition from that state. It continues in this way until it 
reaches a state from which no outgoing transition matches the current input. 
Then, the executive takes over, suspending the current diagram, but 
remembering its state for later resumption. (It follows that a diagram can only 
be suspended from a state in which it seeks an input token.) The executive 
examines the diagrams associated with all the other interaction objects, looking 
at their current (i.e., last suspended from) states to see which of them can 
accept the current input. It then resumes (with a co-routine call) whichever 
diagram has a transition to accept the input. If there is more than one such 
diagram, one is chosen arbitrarily. In typical designs, however, there will be 
only one diagram that can accept the input. Since entering and exiting disjoint 
screen regions will be important input tokens in a typical direct-manipulation 
interface, this is straightforward to arrange when the interaction objects 
correspond to screen regions. (In some situations, such conflicts can also be 
detected by static analysis of the interface specification.) Depending on the 
overall system design, an input token acceptable to no diagrams could be 
discarded or treated as a user error. While the language assumes a single top-
level executive, the use of component objects and synthetic tokens described 
below allows the specification to use a deeper hierarchy in describing systems.  
 

The initial design for the executive called for a list of acceptable input 
events or classes to be associated with each state in each diagram. This list 
would act like a guard in a guarded command or a when clause in a 
select/accept statement in Ada. By associating different guards with different 
states, a diagram could dynamically adjust the range of inputs that it will 
accept. The executive for such a system would examine the guard associated 
with the current state of every diagram in execution to decide which diagram 
should be called to accept each new input. The current design should be 
viewed as achieving the same result, even though it does not identify the 
guards explicitly. What would have been given as the guard for each state is 
now derived implicitly from the range of inputs on the transitions emanating 
from that state. This requires somewhat more care in specifying “catchall” 
transitions, but greatly reduces the redundancy and bulk of the specification. 
The new specification language also makes heavy use of techniques of object 
oriented programming. The interaction objects themselves are specified and 
implemented as objects, in the sense of Smalltalk or Flavors, and diagram 
activations and tokens are implemented as messages. The notion of co-
routines, however, is superimposed upon the objects as the means for 
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describing how the individual interaction objects are bound together into the 
top-level dialogue that the user ultimately sees. Other recent work on 
specifying and building graphical user interfaces has also used an object-
oriented approach. Typically, they model the dialogue by a collection of 
separate objects, each with an input handler. However, they have not proposed 
that the input handlers explicitly specify their state-dependent responses by 
means of state transition diagrams or that they retain their states during 
execution by co-routine activation. Cardelli and Pike achieved a similar result 
using communicating finite-state machines with actual concurrency. The use 
of co-routines in the present language, combined with the synthetic tokens 
described below, can also be mapped into the abstract device model introduced 
by Anson, but that, too, does not use state diagrams to describe the state and 
behavior of the abstract devices. Anson points out the weakness of a single-
thread state diagram for describing direct-manipulation interfaces: “It cannot 
simulate a device . . . which retains its value between uses and which can be 
changed by the user at any time”. The present technique attempts to remedy 
this problem without giving up the benefits of state diagrams for depicting 
device state and state-dependent behavior.  
 
5. A Direct Manipulation Interface for 3D Computer Animation 
 

Computer animation is a painstaking process requiring hand 
adjustment of hundreds of key positions for every object in an animated scene. 
Most animation systems provide precise control of motion using two-
dimensional graphs of individual parameters (e.g. x translation vs. time). 
Animators must mentally integrate this 2D information with static 3D views 
and occasional motion previews to maintain a clear sense of the motion which 
they are creating. The principles of direct manipulation are used to achieve the 
goal of fluid and natural interaction. The solution uses existing key frame and 
parametric techniques in combination with displacement functions inspired by 
digital signal processing for real-time direct manipulation of spatial and 
temporal changes 
 
5.1 Problems in Existing Animation Systems 
 

Several problems found in a majority of commercial and research 
animation systems. Not all of these problems are present in all systems, but 
these are current trends in a large class of existing systems. 
 
 
a] Animators can completely visualize and edit motion only in separate 2D 
graphs. The only means to edit an object’s time-varying properties and 
visualize the value of these properties over time is through 2D graph editors. 
The 3D scene view is used primarily for viewing and editing an object at a 
single point in time. 
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b] Editing of motion curves is limited to single channels of motion. 
Motion curves are normally limited to representing a one-dimensional 
parameter vs. time (e.g. x translation vs. time, y rotation vs. time, red color 
component vs. time). Animators must mentally integrate all of these channels 
to visualize the animation which they are creating. 
 
c] The natural parameterization of splines does not advance uniformly with 
respect to distance. Many systems allow the animator to specify the path of an 
object through space with a two- or three-dimensional spline curve. Motion 
along this curve is then described by a single function of u vs. time, where u is 
the parameter of the spline curve. However, equal steps in u result in unequal 
distances traveled along the curve. In these systems, 
a graph that appears to indicate constant velocity will actually result in a 
velocity that varies based on the shape of the curve and the spacing of its 
control points. The animator is forced to cancel out the timing induced by the 
spline before creating the desired motion. 
  
d] The shape of a motion curve is altered to achieve timing goals. 
Some systems alter the shape of a motion path when users edit the timing of 
an  animation. This problem is also a result of tying motion to the u-parameter 
of a spline. The actual shape of the curve must be changed in order to alter the 
distance travelled over equal time steps. 
 
e] Direct manipulation of the animated object is allowed only at control points. 
When a spline curve is used as the underlying representation of spatial 
change,most systems only allow the animator to change the object at the spline 
control points [2][14]. If the animator wants to alter a position between control 
points, shemust either work indirectly, altering surrounding control points and 
tangents, or shemust add a new control 
point. Adding control points can introduce undesired complexity to the 
animation and reduces the range over which changes have effect. 
 
f] Animations with densely spaced keyframes are difficult to modify. 
Most production quality animations end up being specifiedby very densely  
pacedkeyframes (10-15 keyframes/second is normal). If an animator decides 
that part of the motion should be changed, she must individually change a 
wide range of control points surrounding the specific change in order to blend 
it with the surrounding motion—there are no tools for modifying multiple 
keyframes simultaneously. Many animators find it faster to re-do the animation 
from scratch in this situation 
 
5.2 Goals for Animation Control 
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The following set of goals is an attempt to describe an animation 
system which addresses the above set of problems: 

 
1. Create an system which allows visualization and editing of temporal and 
spatial information in a single 3D view. 
 
2. Express motion goals in terms of distance or velocity vs. time. 
 
3. Maintain temporal and spatial continuity while editing animations. 
 
4. Allow an arbitrary range over which editing tools are applied. 
 
5. Develop motion control techniques which are natually extensible to 
orientation, scale and any other animated parameters. 
 
6. Provide real-time performance for complex scenes.As an interface to the 
above goals, we require direct-manipulation tools which correspond to the 
high-level goals of an animator. 
 
7 Temporal translation 
 Satisfies the goal “Reach this point at this time” while maintaining the shape 
of the motion path, but changing the speed at which the object travels along 
the given path. 
 
8. Spatial translation 
Satisfies the above goal by modifying the spatial curve while maintaining either 
the duration or velocity of the given segment. 
 
9. Temporal scale 
Changes the duration of segment of animation. Satisfies the goal “Make this 
segment of animation longer, shorter, or a specific duration” 
 
10. Velocity modification 
Satisfies the goals “Go faster”, “Go slower”, or “Reach a specific velocity” at a 
given point, while maintaining the shape of the spatial curve and the duration 
of the temporal segment. 
 
6. Pick-and-Drop: A Direct Manipulation Technique for Multiple 
Computer Environments 
 

In a ubiquitous computing (UbiComp) environment, we no longer use 
a single computer to perform tasks. Instead, many of our daily activities 
including discussion, documentation, and meetings will be supported by the 
combination of many (and often different kinds of) computers. Combinations of 
computers will be quite dynamic and heterogeneous; one may use a personal 
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digital assistant (PDA) as a remote commander for a wall-sized computer in a 
presentation room, others might want to use two computers on the same 
desktop for development tasks, or two people in a meeting room might want to 
exchange information on their PDAs. Other than the UbiComp vision, we often 
use multiple computers for more practical reasons; PCs, UNIXs, and Macs have 
their own advantages and disadvantages, and users have to switch between 
these computers to take full advantage of each (e.g., writing a program on a 
UNIX while editing a diagram on a Mac).  
However, using multiple computers without considering the user-interface 
introduces several problems. The first problem resides in a restriction of 
today’s input devices. Almost all keyboards and pointing devices are tethered to 
a single computer; we cannot share a mouse between two computers. 
Therefore, using multiple computers on the same desk top often results in a 
‘‘mouse (or keyboard) jungle’’, as shown in the figure below. It is very confusing 
to distinguish which input device belongs to which computer. 
 

The other problem is the fact that today‘s user interface techniques 
are not designed for multiple-computer environments. Oddly enough, as 
compared with remote file transmission, it is rather cumbersome to transfer 
information from one computer to another on the same desk, even though they 
are connected by a network. A cut-and-paste on a single computer is easy, but 
the system often forces users to transfer information between computers in a 
very different way. A quick survey reveals that people transfer information from 
display to display quite regularly. Interestingly, quite a few people even prefer 
to transfer data by hand (e.g., read a text string on one display and type it on 
another computer), especially for short text segments such as an e-mail 
address or a universal resource locator (URL) for the World Wide Web. These 
tendencies are caused by a lack of easy direct data transfer user interfaces 
(e.g., copy and- paste or drag-and-drop) between different but nearby 
computers. 

 
The first problem is partially solved by using more sophisticated input 

devices such as a stylus. Today’s stylus input devices such as WACOM’s, 
provide untethered operation and thus can be shared among many pen 
sensitive displays. This situation is more natural than that of a mouse, because 
in the physical world, we do not have to select a specific pencil for each paper. 
With the second problem, however, we have much room for improvement from 
the viewpoint of user interfaces. Although some systems use multi-display 
configurations, direct manipulation techniques for multi-display environments 
have not been well explored to date. Multi-display direct manipulation offers 
many new design challenges to the field of human-computer interfaces. 

  
A new pen based interaction technique called ‘‘Pick-and-Drop’’ lets a 

user exchange information from one display to another in the manner of 
manipulating a physical object. This technique is a natural extension to the 
drag-and-drop technique, which is popular in today’s many GUI applications. 
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The figure below shows the conceptual difference between the traditional data 
transfer method and Pick-and-Drop. 

 

 
fig. The conceptual difference between remote copy and Pick-and-Drop 
 
 
6.1 From Drag-And-Drop to Pick-And-Drop 
 

Pick-and-Drop is a direct manipulation technique that is an 
extrapolation of drag-and-drop, a commonly used interaction technique for 
moving computer objects (e.g., an icon) by a mouse or other pointing devices. 
With the traditional drag-and-drop technique, a user first ‘‘grabs’’ an object by 
pressing a mouse button on it, then ‘‘drags’’ it towards a desired position on 
the screen with the mouse button depressed, and ‘‘drops’’ it on that location by 
releasing the button. This technique is highly suitable for a mouse and widely 
used in today’s graphical applications. However, simply applying the drag-and-
drop to pen user interfaces presents a problem. It is rather difficult to drag an 
object with a pen while keep the pen tip contacted on the display surface. It is 
often the case that a user accidentally drops an object during the drag 
operation, especially when dragging over a large display surface.  

 
Pick-and-Drop method started as useful alternative to drag-and-drop 

for overcoming this problem. With Pick-and-Drop, the user first picks up a 
computer object by tapping it with the pen tip and then lifts the pen from the 
screen. After this operation, the pen virtually holds the object. Then, the user 
moves the pen tip towards the designated position on the screen without 
contacting display surface. When the pen tip comes close enough to the screen, 
a shadow of the object appears on the screen as show in the figure below as a 
visual feedback showing that the pen has the data. Then, the user taps the 
screen with the pen and the object moves from the pen to the screen at the 
tapped position. This method looks much more natural than that of drag-and-
drop. In our real lives, we regularly pick up an object from one place and drop 
it on another place, rather than sliding it along the surface of something.  
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Pen and icons: (a) the pen contacts the display, (b) the pen lifts up but 
remains close to the screen, (c) the pen is away from the screen 
 
 
6.2 Pen-IDs 
 

Storing data on a pen, however, makes the pen device heavy and 
unwieldy. The multi-computer Pick-and-Drop is developed without making 
such modifications to the pen by introducing the concept of Pen IDs. In this 
design, each pen is assigned a unique ID. This ID is readable from the 
computer when a pen is closer enough to its screen. There are currently 
combination of modifier buttons (attached to the pen as a side switch) to 
represent IDs. All computers must be connected to the network (either wired or 
wireless). There is a server called the ‘‘pen manager’’ on the network as show in 
the figure below.  

 
System configuration 
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When a user taps an object (typically an icon) on the screen with the 

pen, the pen manager binds its object ID to the pen ID. This binding represents 
a situation in which the pen virtually holds the object (even though the pen 
itself does not contain any storage). When the user moves the same pen 
towards the other display, the pen manager supplies the type of the bound 
object to the display. Then the shadow of the data appears on the display below 
the current pen position. At this moment, the pen does not touch the screen. 
Finally, when the user touches the display with the pen, the pen manager asks 
the first computer to transfer the data to second computer.  
Since each pen has its own ID, simultaneous Pick-and-Drop operations by 
more than one pen can overlap. This feature would be useful in a collaborative 
setting. Pick-and-Drop can also coexist with the normal drag-and-drop by 
using a time-out. The system distinguishes between these two operations by 
measuring the period of time between pen-down and pen-up. When a user 
touches an object with the pen and drags it without lifting the pen tip, it 
initiates a drag-and-drop instead of a Pick-and-Drop. 
 
The state transition of Pick-and-Drop is shown below. 

 
 
The state transition diagrams of Pick-and-Drop 
 
 
6.3 Object Shadows 
 

When a pen holding data approaches a screen, a shadowed object 
appears on the screen to indicate that the pen has the data. This visual 
feedback is useful to know what kind of data the pen is holding without having 
to drop it. A pen’s proximity to the screen can be sensed by combining the 
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motion event and a time-out. When a user moves a pen close to the screen, the 
screen begins reading motion events from the pen. If motion events occur 
continuously, the system regards the pen as being near the screen. When a 
pen leaves the screen, motion events seize and the system can detect it again 
by setting a time-out. This technique is used for both the Pick and the Drop 
operations. 
 
Example Applications 
Since Pick-and-Drop is a natural extension to drag-and-drop, which is a 
commonly used direct manipulation technique, we should be able to apply this 
technique to various situations in many user interface systems. The following 
are some experimental applications that have identified. 
 
6.4 Information Exchange between PDAs and Kiosk Terminals 
 

The simplest usage of Pick-and-Drop is to support the exchange of 
information between two co-workers. When two people need to transfer a file or 
a short text segment between computers, they can simply pick it up from one’s 
PDA display and drop it on the other’s display as shown in the figure below. 
These two PDAs are communicating via wireless networks. It is also possible to 
pick up information from a kiosk terminal in a public space or an office. The 
terminals are installed at public spaces in the laboratory such as the coffee 
corner, and continuously display information. Pick-and-Drop capability to this 
system enables people to pick up URL information from the terminal and drop 
it to his/her PDA. 
 

 
fig. Information exchange between PDAs 
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6.5 Picking up Paper Icons 
 

Another possible way to extend the concept of multi display user 
interfaces is to support information exchange between computers and non-
computer objects. For example, it would be convenient if we could freely pick 
up printed icons on a paper document and drop it on the computer screen.  
This prototype system called Paper-Icons allows Pick-and-Drop between a paper 
object and a computer display as show in the figure below. The user can pick 
up an object from a printed page and drop it on a display. The page is placed 
on a pen sensitive tablet and a camera is mounted over the tablet. The camera 
is used to identify the opened page by reading an ID mark printed on it. The 
user can freely flip through the booklet to find a desirable icon. The system 
determines which icon is picked based on the page ID and the picked position 
on the tablet. 
 

The Paper-Icons style is quite suitable for selecting ‘‘clip art’’ or ‘‘color 
samples’’ from a physical book. If the user is accustomed to a frequently used 
book, he/she can flip through pages very quickly by feeling the thickness of the 
book. 
 
7. Problems with Direct Manipulation 
 

Direct manipulation systems have both virtues and vices. For 
instance, the immediacy of feedback and the natural translation of intentions 
to actions make some tasks easy. The matching of levels of thought to the 
interface language - semantic directness - increases the ease and power of 
performing some activities at a potential cost of generality and flexibility. But 
not all things should be done directly. For example, a repetitive operation is 
probably best done via a script, that is, through a symbolic description of the 
tasks that are to be accomplished.  
Some problems that can be identified in Direct Manipulation interfaces are as 
follows: 
 
1. Direct manipulation interfaces have difficulty handling variables, or 
distinguishing the depiction of an individual element from a representation of a 
set or class of elements.  
 
2. Direct manipulation interfaces have problems with accuracy, for the notion 
of mimetic action puts the responsibility on the user to control actions with 
precision, a responsibility that is sometimes best handled through the 
intelligence of the system and sometimes best communicated symbolically. 
 
3. A more fundamental problem with direct manipulation interfaces arises from 
the fact that much of the appeal and power of this form of interface comes from 
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its ability to directly support the way we normally think about a domain. A 
direct manipulation interface amplifies our knowledge of the domain and allows 
us to think in the familiar terms of the application domain rather than in those 
of the medium of computation. But if we restrict ourselves to only building an 
interface that allows us to do things we can already do and to think in ways we 
already think, we will miss the most exciting potential of new technology: to 
provide new ways to think of and to interact with a domain. Providing these 
new ways and creating conditions that will make them feel direct and natural is 
an important challenge to the interface designer. 
 
4. Direct manipulation interfaces are not a panacea. Although with sufficient 
practice by the user many interfaces can come to feel direct, a properly 
designed interface, one which exploits semantic and articulatory directness, 
should decrease the amount of learning required and provide a natural 
mapping to the task. But interface design is subject to many tradeoffs. There 
are surely instances when one might wisely trade off directness for generality, 
or for more facile ways of saying abstract things. The articulatory directness 
involved in pointing at objects might need to be traded off against the 
difficulties of moving the hands between input devices or of problems in 
pointing with great precision.  
 
5. It is important not to equate directness with ease of use. Indeed, if the 
interface is really invisible, then the difficulties within the task domain get 
transferred directly into difficulties for the user. Suppose the user struggles to 
formulate an intention because of lack of knowledge of the task domain. The 
user may complain that the system is difficult to use. But the difficulty is in the 
task domain, not in the interface language. Direct manipulation interfaces do 
not pretend to assist in overcoming problems that result from poor 
understanding of the task domain. 
 
6. Certain kinds of abstraction that are easy to deal with in language seem 
difficult in a concrete model of a task domain. When we give up the 
conversation metaphor, we also give up dealing in descriptions, and in some 
contexts, there is great power in descriptions. As an interface to a programming 
task, direct manipulation interfaces are problematic. We know of no really 
useful direct manipulation programming environments. Issues such as 
controlling the scope of variable bindings promise to be quite tricky in the 
direct manipulation environments. Basically, the systems will be good and 
powerful for some purposes, poor and weak for others. In the end, many things 
done today will be replaced by direct manipulation systems. But we will still 
have conventional programming languages. 
 
7. On the surface, the fundamental idea of a direct manipulation interface to a 
task flies in the face of two thousand years of development of abstract 
formalisms as a means of understanding and controlling the world. Until very 
recently, the use of computers has been an activity squarely in that tradition. 
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So the exterior of direct manipulation, providing as it does for the direct control 
of a specific task world, seems somehow atavistic, a return to concrete 
thinking. On the inside, of course, the implementation of direct manipulation 
system is yet another step in that long, formal tradition. The illusion of the 
absolutely manipulable concrete world is made possible by the technology of 
abstraction. 
 
8. Future? 
After Direct Manipulation—Direct Sonification 
 

Direct Sonification interface allows musicologists to browse musical 
data sets in novel ways. The data set (in the users’ language often called a 
collection) is used by musicologists in their research. It contains over 7000 
tunes, where each tune is represented by its score and a number of properties, 
such as tonality and structure. The traditional format for a collection is a 
printed book with various indexes. A common problem that musicologists have 
to deal with is to determine if tunes they collect in their field work exist in a 
particular collection and, if so, how they are related to other tunes in the 
collection, e.g., in chronology, typology. 
 
8.1 Browsing 
 

Browsing has become a popular term in recent years with the 
emergence of hypertext systems and the World Wide Web, but the concept of 
browsing goes well beyond these fields of application. There are many ways 
integrating text, sound, images, and video to provide richer and more 
interesting systems that would allow us to use more of our natural abilities. 
Marchionini and Shneiderman [1988] defined browsing as: 
 
1. “an exploratory, information seeking strategy that depends upon 

serendipity” 
2. “especially appropriate for ill-defined problems and for exploring new task 

domains” 
 

This is the case when musicologists are searching for tunes in a 
collection. Tunes collected through fieldwork can often be different from older 
original versions. They can still be the same tunes but with the addition of an 
individual performer’s style. This makes it difficult to use normal computer-
based search algorithms [´O Maid´ın 1995]. Humans have an outstanding 
ability to recognize similarities in this domain, which suggests that in a good 
solution we should make use of our auditory abilities. 
 
8.2 Browsing with Sound Support 
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In everyday listening, one is often exposed to hundreds of different 
sounds simultaneously and is still able to pick out important parts of the 
auditory scene. With musical sounds, or tunes, many different factors affect 
our ability to differentiate and select between the sources. Using instrumental 
sounds, the timbre, envelope, tonal range, and spatial cues support the 
formation of auditory streams. The tunes themselves also assist the formation 
of streams, as music has its own inherent syntactic and semantic properties. It 
is also interesting to note the “cocktail party” effect, i.e., that it is possible to 
switch one’s attention at will between sounds or tunes. Albers and Bergman 
added sounds to a web browser, but kept the use of sound at a fairly low level 
of interactivity. Various “clicks” were used when users clicked soft buttons and 
selected menus. To indicate system events, such as data transfer, launch of 
“plug-ins” and, for errors, he used “pops and clicks,” sliding sounds, and 
breaking of glass sounds. For feedback about content, various auditory icons 
were used to indicate what kind of file a hyperlink was pointing to and the file 
size of the content indicated by piano notes (activated when the cursor was on 
a hyperlink). He also created hybrid systems using combinations of auditory 
icons, auralization, and sound spatialization to enhance operator performance 
in mission control work settings. 

 
LoPresti & Harris’ loudSPIRE system added auditory display to a 

visualization system. This system is an interesting hybrid as it used at three 
different layers for sonification. System events were represented by electronic-
sounding tones associated with computers; data set objects were represented 
by percussive or atonal auditory icons parameterized for object properties; 
domain attributes were represented by themes of orchestral music, 
harmonious tonal sounds, and parameterized for attribute value of a region. 
Begault [1994] demonstrated the use of 3D sound spatialization for use in 
cockpits and mission control, in order to enhance speech perception. 
Kobayashi and Schmandt showed that multiplestream speech perception can 
be enhanced through 3D sound spatialization, including the existence of a 
spatial/temporal relation for recall of position within a sample of streamed 
speech, i.e., that the auditory content can be mapped to spatial memory.  
 

With multiple auditory streams it is interesting to note the problem 
with differences in the individual ability to differentiate between multiple sound 
sources. A metaphor for a user controllable function that makes it visible to the 
user is the application of an aura [Benford and Greenhalgh 1997], which in 
this context, is a function that indicates the user’s range of interest in a 
domain. The aura is the receiver of information in the domain. 
 
8.3 Sonic Software 
 

Normal multimedia PCs cannot play multiple sound files 
concurrently. This would, of course, prohibit the desired development. To work 
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around this problem, new intermediate drivers for the sound devices were 
developed. The problem with existing drivers is that when a sound is to be 
played, the operating system allocates the physical sound device exclusively. To 
solve this problem, the intermediate drivers have to read sound files and 
transform them into a common output format. Sound spatialization was 
implemented to assist the users in differentiating and locating tunes.With 
sampled sounds, 3D spatialization can be used, but currently there is no 
existing support for 3D spatialization of MIDI synthesizer sounds on PC sound 
cards. Only stereophonic “pan” with difference in loudness between the left and 
right channel is available on standard sound cards [CreativeLabs 1996; 
Microsoft 1996]. The problem with different speeds and formats of source files 
applies to both sound files (such as, WAV) and sound-controlling files (such as, 
MIDI). As the users had expressed a preference for melody lines with MIDI-
controlled synthesizer sounds, all further implementation work focused on 
stereophonic spatialization with only the difference in loudness between the left 
and right channel as a cue for auditory spatial location. 

 
The users found that they sometimes wanted the aura on, sometimes 

off, as this allowed them to shift their focus between the neighborhoods of 
tunes to finer differentiation between just a few tunes. The number of tunes 
within the aura can vary due to the location of the cursor in relation to the 
density of the data set. Therefore an on–off function was added and the radius 
of the aura was made user controllable. The interfaces in many standard 
applications from some of the larger software developers have become 
overloaded and complicated in the interaction sequences. Through a simplified 
interaction sequence, users can work efficiently and with a high degree of 
satisfaction. The results also show that through tight coupling of the 
interaction, we can create a more engaging interface. By shifting some of the 
load from the visual to the auditory modality, we can perceive more information 
and make better use of our natural ability to recognize complex and “fuzzy” 
patterns through seeing and hearing. 

 
Audibility is the concept of how well a system can use auditory 

representation in the human–computer interaction. If the audibility is good, the 
users will perform their work better, faster, with fewer errors, and a higher 
degree of satisfaction. If the use of sound in the user interface can provide 
more affordances, or affordances that are complementary to the visual 
interface, we have a system with good audibility. This is also important for 
users with different abilities. By using sonic representations (or auditory 
display) in the human–computer interaction, the resulting applications will 
potentially be usable to visually impaired people. 

 
Further investigations in perception and cognition at high levels of 

environmental complexity are required. Many guidelines are based on 
extremely isolated experiments. Hence, it is difficult to apply such guidelines in 
real-work settings. To get more realistic models for what we, as human beings, 
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can process, combinations of seeing, hearing, and interaction should be 
studied. 

9. Conclusion 
  

Direct manipulation and its descendants are thriving. Visual 
overviews accompanied by user interfaces that permit zooming, filtering, 
extraction, viewing relations, history keeping and details on-demand can 
provide users with appealing and powerful environments to accomplish their 
tasks. Most users want comprehensible, predictable and controllable 
interfaces that give them the feeling of accomplishment and responsibility. 
Direct Manipulation can helps users to give such interfaces. 
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