
Python 3.7.9 Installation

64 Bit - https://www.python.org/ftp/python/3.7.9/python-3.7.9-amd64.exe

32 Bit - https://www.python.org/ftp/python/3.7.9/python-3.7.9.exe

Check Add Python 3.7 to PATH

Understating python virtual environments

Link: https://docs.python.org/3/tutorial/venv.html

1. Create a virtual environment

C:\>python -m venv py_venv/bn-in

2. Activate the environment

bn-in\Scripts\activate.bat

https://www.python.org/ftp/python/3.7.9/python-3.7.9-amd64.exe
https://www.python.org/ftp/python/3.7.9/python-3.7.9.exe
https://docs.python.org/3/tutorial/venv.html

Installing python packages using PIP

Link: https://jupyter.org/install

1. Upgrade pip (for all the environments)

pip install --upgrade pip

2. Install Jupyter Notebook package using PIP (In the REAL environment)

pip install notebook

3. Set the virtual environment kernel in jupyter notebook (In the VIRTUAL environment)

pip install --user ipykernel

ipython kernel install --user --name=bn-in

Python coding environments

• Using a code editor and file manager
o Atom: https://atom.io/
o Notepad++: https://notepad-plus-plus.org/downloads/

• Using Anaconda environment: https://www.anaconda.com/

• Google Collab: https://colab.research.google.com/

• Other IDEs

https://jupyter.org/install
https://atom.io/
https://notepad-plus-plus.org/downloads/
https://www.anaconda.com/
https://colab.research.google.com/

Python Basics
by Subhrasankar Chatterjee

Why Python?
Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).
Python has a simple syntax similar to the English language.
Python has syntax that allows developers to write programs with fewer lines than some other programming languages.
Python runs on an interpreter system, meaning that code can be executed as soon as it is written. This means that prototyping can be very
quick.
Python can be treated in a procedural way, an object-oriented way or a functional way.

Data Types
Text Type: str
Numeric Types: int, float, complex
Sequence Types: list, tuple, range
Mapping Type: dict
Set Types: set, frozenset
Boolean Type: bool
Binary Types: bytes, bytearray, memoryview
None Type: NoneType

<class 'int'>

Strings

In [1]: x = 5
print(type(x))

Hello
e
b
a
n
a
n
a
13
True
Hello
HELLO, WORLD!
Hello, World!
Jello, World!
['Hello', ' World!']

String Methods

In [2]: a = "Hello"
print(a)
a = "Hello, World!"
print(a[1])
for x in "banana":
 print(x)
a = "Hello, World!"
print(len(a))

txt = "The best things in life are free!"
print("free" in txt)

b = "Hello, World!"
print(b[:5])

a = "Hello, World!"
print(a.upper())

a = " Hello, World! "
print(a.strip()) # returns "Hello, World!"
a = "Hello, World!"
print(a.replace("H", "J"))
a = "Hello, World!"
print(a.split(",")) # returns ['Hello', ' World!']

Python has a set of built-in methods that you can use on strings.

Note: All string methods return new values. They do not change the original string.

capitalize() Converts the first character to upper case
casefold() Converts string into lower case
center() Returns a centered string
count() Returns the number of times a specified value occurs in a string
encode() Returns an encoded version of the string
endswith() Returns true if the string ends with the specified value
expandtabs() Sets the tab size of the string
find() Searches the string for a specified value and returns the position of where it was found
format() Formats specified values in a string
format_map() Formats specified values in a string
index() Searches the string for a specified value and returns the position of where it was found
isalnum() Returns True if all characters in the string are alphanumeric
isalpha() Returns True if all characters in the string are in the alphabet
isdecimal() Returns True if all characters in the string are decimals
isdigit() Returns True if all characters in the string are digits
isidentifier() Returns True if the string is an identifier
islower() Returns True if all characters in the string are lower case
isnumeric() Returns True if all characters in the string are numeric
isprintable() Returns True if all characters in the string are printable
isspace() Returns True if all characters in the string are whitespaces
istitle() Returns True if the string follows the rules of a title
isupper() Returns True if all characters in the string are upper case
join() Joins the elements of an iterable to the end of the string
ljust() Returns a left justified version of the string
lower() Converts a string into lower case
lstrip() Returns a left trim version of the string
maketrans() Returns a translation table to be used in translations
partition() Returns a tuple where the string is parted into three parts

replace() Returns a string where a specified value is replaced with a specified value
rfind() Searches the string for a specified value and returns the last position of where it was found
rindex() Searches the string for a specified value and returns the last position of where it was found
rjust() Returns a right justified version of the string
rpartition() Returns a tuple where the string is parted into three parts
rsplit() Splits the string at the specified separator, and returns a list
rstrip() Returns a right trim version of the string
split() Splits the string at the specified separator, and returns a list
splitlines() Splits the string at line breaks and returns a list
startswith() Returns true if the string starts with the specified value
strip() Returns a trimmed version of the string
swapcase() Swaps cases, lower case becomes upper case and vice versa
title() Converts the first character of each word to upper case
translate() Returns a translated string
upper() Converts a string into upper case
zfill() Fills the string with a specified number of 0 values at the beginning

Python Collections (Arrays)
There are four collection data types in the Python programming language:

List is a collection which is ordered and changeable. Allows duplicate members.
Tuple is a collection which is ordered and unchangeable. Allows duplicate members.
Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate members.
Dictionary is a collection which is ordered** and changeable. No duplicate members.

Lists
List Items List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has index [1] etc.

Ordered When we say that lists are ordered, it means that the items have a defined order, and that order will not change.

If you add new items to a list, the new items will be placed at the end of the list.

Note: There are some list methods that will change the order, but in general: the order of the items will not change.

Changeable The list is changeable, meaning that we can change, add, and remove items in a list after it has been created.

Allow Duplicates Since lists are indexed, lists can have items with the same value:

['apple', 'banana', 'cherry']
['apple', 'banana', 'cherry', 'apple', 'cherry']
3
['apple', 'banana', 'cherry']

banana
['apple', 'blackcurrant', 'cherry']

In [3]: mylist = ["apple", "banana", "cherry"]
thislist = ["apple", "banana", "cherry"]
print(thislist)
thislist = ["apple", "banana", "cherry", "apple", "cherry"]
print(thislist)

thislist = ["apple", "banana", "cherry"]
print(len(thislist))

list1 = ["abc", 34, True, 40, "male"]
thislist = list(("apple", "banana", "cherry")) # note the double round-brackets
print(thislist)

In [4]: thislist = ["apple", "banana", "cherry"]
print(thislist[1])

thislist = ["apple", "banana", "cherry"]
thislist[1] = "blackcurrant"
print(thislist)

In [5]: thislist = ["apple", "banana", "cherry"]
thislist.append("orange")
print(thislist)

['apple', 'banana', 'cherry', 'orange']
['apple', 'orange', 'banana', 'cherry']
['apple', 'banana', 'cherry', 'mango', 'pineapple', 'papaya']
['apple', 'cherry']
['apple', 'cherry']
['banana', 'cherry']

[23, 50, 65, 82, 100]

List Methods
Python has a set of built-in methods that you can use on lists.

append() Adds an element at the end of the list
clear() Removes all the elements from the list
copy() Returns a copy of the list

thislist = ["apple", "banana", "cherry"]
thislist.insert(1, "orange")
print(thislist)

thislist = ["apple", "banana", "cherry"]
tropical = ["mango", "pineapple", "papaya"]
thislist.extend(tropical)
print(thislist)

thislist = ["apple", "banana", "cherry"]
thislist.remove("banana")
print(thislist)

thislist = ["apple", "banana", "cherry"]
thislist.pop(1)
print(thislist)

thislist = ["apple", "banana", "cherry"]
del thislist[0]
print(thislist)

In [6]: thislist = [100, 50, 65, 82, 23]
thislist.sort()
print(thislist)

count() Returns the number of elements with the specified value
extend() Add the elements of a list (or any iterable), to the end of the current list
index() Returns the index of the first element with the specified value
insert() Adds an element at the specified position
pop() Removes the element at the specified position
remove() Removes the item with the specified value
reverse() Reverses the order of the list
sort() Sorts the list

Tuples
Tuple Items Tuple items are ordered, unchangeable, and allow duplicate values.

Tuple items are indexed, the first item has index [0], the second item has index [1] etc.

Ordered When we say that tuples are ordered, it means that the items have a defined order, and that order will not change.

Unchangeable Tuples are unchangeable, meaning that we cannot change, add or remove items after the tuple has been created.

Allow Duplicates Since tuples are indexed, they can have items with the same value:

('apple', 'banana', 'cherry')
banana

('apple', 'kiwi', 'cherry')

In [7]: thistuple = ("apple", "banana", "cherry")
print(thistuple)

thistuple = ("apple", "banana", "cherry")
print(thistuple[1])

In [8]: x = ("apple", "banana", "cherry")
y = list(x)
y[1] = "kiwi"
x = tuple(y)

print(x)

apple
banana
cherry

Tuple Methods
Python has two built-in methods that you can use on tuples.

count() Returns the number of times a specified value occurs in a tuple
index() Searches the tuple for a specified value and returns the position of where it was found

Sets
Set Items Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by index or key.

Unchangeable Set items are unchangeable, meaning that we cannot change the items after the set has been created.

Once a set is created, you cannot change its items, but you can remove items and add new items.

In [9]: ## Note: You cannot remove items in a tuple.

thistuple = ("apple", "banana", "cherry")
y = list(thistuple)
y.remove("apple")
thistuple = tuple(y)

In [10]: fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)
print(yellow)
print(red)

Duplicates Not Allowed Sets cannot have two items with the same value.

{'apple', 'banana', 'cherry'}

apple
banana
cherry

{'apple', 'orange', 'banana', 'cherry'}
{'apple', 'cherry'}
{'apple', 'cherry'}

{1, 'c', 2, 3, 'a', 'b'}

In [11]: thisset = {"apple", "banana", "cherry"}
print(thisset)

In [12]: #You cannot access items in a set by referring to an index or a key.

thisset = {"apple", "banana", "cherry"}

for x in thisset:
 print(x)

In [13]: thisset = {"apple", "banana", "cherry"}
thisset.add("orange")
print(thisset)

thisset = {"apple", "banana", "cherry"}
thisset.remove("banana")
print(thisset)

thisset = {"apple", "banana", "cherry"}
thisset.discard("banana")
print(thisset)

In [14]: set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}

set3 = set1.union(set2)
print(set3)

Set Methods
Python has a set of built-in methods that you can use on sets.

add() Adds an element to the set
clear() Removes all the elements from the set
copy() Returns a copy of the set
difference() Returns a set containing the difference between two or more sets
difference_update() Removes the items in this set that are also included in another, specified set
discard() Remove the specified item
intersection() Returns a set, that is the intersection of two other sets
intersection_update() Removes the items in this set that are not present in other, specified set(s)
isdisjoint() Returns whether two sets have a intersection or not
issubset() Returns whether another set contains this set or not
issuperset() Returns whether this set contains another set or not
pop() Removes an element from the set
remove() Removes the specified element
symmetric_difference() Returns a set with the symmetric differences of two sets
symmetric_difference_update() inserts the symmetric differences from this set and another
union() Return a set containing the union of sets

Dictionary
Ordered or Unordered? As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries are unordered.

When we say that dictionaries are ordered, it means that the items have a defined order, and that order will not change.

Unordered means that the items does not have a defined order, you cannot refer to an item by using an index.

Changeable Dictionaries are changeable, meaning that we can change, add or remove items after the dictionary has been created.

Duplicates Not Allowed Dictionaries cannot have two items with the same key:

In [15]: thisdict = {

{'brand': 'Ford', 'model': 'Mustang', 'year': 2020}

3

dict_keys(['brand', 'model', 'year'])
dict_keys(['brand', 'model', 'year', 'color'])

 "brand": "Ford",
 "model": "Mustang",
 "year": 1964,
 "year": 2020
}
print(thisdict)

In [16]: print(len(thisdict))

In [17]: thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
x = thisdict["model"]

x = thisdict.get("model")

x = thisdict.keys()

In [18]: car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}

x = car.keys()

print(x) #before the change

car["color"] = "white"

print(x) #after the change

In [19]: thisdict = {
 "brand": "Ford",
 "model": "Mustang",

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'red'}

 "year": 1964
}
thisdict["year"] = 2018

thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
thisdict.update({"year": 2020})

In [20]: thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
thisdict["color"] = "red"
print(thisdict)

thisdict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
thisdict.update({"color": "red"})

In [21]: for x in thisdict:
 print(thisdict[x])

for x in thisdict.values():
 print(x)

for x in thisdict:
 print(x)

for x, y in thisdict.items():
 print(x, y)

Ford
Mustang
1964
red
Ford
Mustang
1964
red
brand
model
year
color
brand Ford
model Mustang
year 1964
color red

Dictionary Methods
Python has a set of built-in methods that you can use on dictionaries.

clear() Removes all the elements from the dictionary
copy() Returns a copy of the dictionary
fromkeys() Returns a dictionary with the specified keys and value
get() Returns the value of the specified key
items() Returns a list containing a tuple for each key value pair
keys() Returns a list containing the dictionary's keys
pop() Removes the element with the specified key
popitem() Removes the last inserted key-value pair
setdefault() Returns the value of the specified key. If the key does not exist: insert the key, with the specified value
update() Updates the dictionary with the specified key-value pairs
values() Returns a list of all the values in the dictionary

1. Write a program to compute and print the taxi fare based on the following chart. Total number of Kilometers

traveled will be input by the user.

First 12 KM: Rs. 100/-

Next 4 KM: Rs. 8 / KM

Next 4 KM: Rs. 6 / KM

Above 20 KM: Rs. 5 / KM

2. Acceleration due to gravity of a celestial object of mass M and radius R is given by

𝑔𝑔 = 𝐺𝐺
𝑀𝑀
𝑅𝑅2

Calculate and print the values of g’s for the earth and moon, given that

● Mass of the earth = 5.972 × 1024 kg

● Radius of the earth = 6361 km

● Mass of the moon = 7.35 x 1022 kg

● Radius of the moon = 1737 km

● Assume the value of Newton’s constant G as 6.67408×10−11 m3⋅kg−1⋅s−2

3. Write a program to find the sum of the following series for a given value of n.

𝑆𝑆 = 1 −
1
3

+
1

32
−

1
33

+ ⋯ (−1)𝑛𝑛
1

3𝑛𝑛

Your program should take n as input from the user and print the sum.

4. An Armstrong number is the number which is the sum of the cubes of all its units, tens and hundred digits, etc.

For example, for a three-digit number 153,

153 = 1 ∗ 1 ∗ 1 + 5 ∗ 5 ∗ 5 + 3 ∗ 3 ∗ 3 = 1 + 125 + 27 = 153

For a four-digit number 1634,

1634 = 1 ∗ 1 ∗ 1 ∗ 1 + 6 ∗ 6 ∗ 6 ∗ 6 + 3 ∗ 3 ∗ 3 ∗ 3 + 4 ∗ 4 ∗ 4 ∗ 4 = 1 + 1296 + 81 + 256 = 1634

Write a Python Program to check if the user entered number is Armstrong number or not.

5. A number is called Harshad number (also called Niven number) if the number is divisible by the sum of its digits.

For example, 210 is a Harshad number because 210 is divisible by the sum of its digits (2 + 1 + 0 = 3). Write a

program which will print the first 10 Harshad numbers with n-digits. The number n will be known at the time of

running your program.

6. Write a Python Program to find whether a string or number is palindrome or not, and print the decision as output.

7. Evaluate the expression of Tp, and print the result.

𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑠𝑠
�𝑅𝑅𝑠𝑠�

1−∝
𝜎𝜎

2𝐷𝐷

Where, 𝛼𝛼 = 0.306,𝑇𝑇𝑇𝑇 = 6.96 × 108 𝑚𝑚, 𝑅𝑅𝑇𝑇 = 6.96 × 108 𝑚𝑚, 𝐷𝐷 = 1.496 × 1011 𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎 = 1.2

8. Symmetric matrix is a square matrix which is equal to its transpose. If 𝐴𝐴[][] is a square matrix with (𝑎𝑎 𝑥𝑥 𝑎𝑎) order,

then this matrix is said to be symmetric if every element at 𝑖𝑖𝑡𝑡ℎ row and 𝑗𝑗𝑡𝑡ℎ column is equal to element at 𝑗𝑗𝑡𝑡ℎ row

and 𝑖𝑖𝑡𝑡ℎ column, that is, 𝐴𝐴[𝑖𝑖][𝑗𝑗] == 𝐴𝐴[𝑗𝑗][𝑖𝑖]. Your program should take the input matrix from the user, display it

and check whether the matrix is symmetric or not.

9. Saddle point of a matrix is an element in the matrix which is smallest in its row and largest in its column. For

example, in the following matrix, 7 is the saddle point at (2,2).

6 3 1

9 7 8

2 4 5

Write a program to find all the saddle point in a given matrix

10. A ball is released from a height of h meters. Each time it bounces on the floor, its velocity becomes halved. Write

a program, which takes the value of h and then prints the total distance traversed by the ball when it touches the

ground for the nth time. Assume that the value of acceleration due to gravity, g is 9.8 m/sec2.

	1. Python Install
	2. Basic of Python I
	3. Assignment

