
HYBRID MASKED KARATSUBA
MULTIPLIER FOR 233(2)GF

Chester Rebeiro1 and Debdeep Mukhopadhyay2

Abstract

The paper presents a detailed study on the implementation of Karatsuba
Multiplier for GF (2233), which is a state of the art field for secured Elliptic
Curve Cryptography, according to NIST. The work suggests the trade-offs
involved in designing this important class of multiplier and proposes a Hybrid
Karatsuba Multiplier which requires least amount of space on a FPGA. The
work also shows a novel masking technique to prevent the multiplier from power
based side-channel attacks. Comparison shows that the proposed scheme
requires lesser number of gates compared with the conventional approach.

Keywords: Karatsuba Multiplier, Elliptic Curve Cryptography, Masked
Multiplication

1. Introduction
Elliptic Curve Cryptography (ECC) was invented independently by Koblitz and
Miller in 1985. Since then, the security and efficiency of ECC has been proven,
and ECC has been incorporated in several security standards. ECC offers more
security per key bit than any other public key cryptosystem. This has prompted
the U.S. National Security Agency to move to ECC based public key
cryptography. For a given level of security, the size of the key and the
operations involved in ECC computation is much shorter than other crypto
algorithms. This makes ECC an attractive alternative for today’s hand held
devices where processing bandwidth, memory resources and power are limited.

NIST’s standard for Digital Signatures [1] recommends using a prime
field, ()GF p , or a binary extension field (2)mGF for Elliptic Curves. Binary
Extension Fields have the advantage that field additions can be performed by
XOR operations, therefore no carry is involved. This leads to implementations
that require lesser area and have better performance. The NIST standard
recommends binary extension curves of degree 163, 233, 283, 409 and 571. For
our work on the implementation of Elliptic Curve Cryptosystem on a FPGA, we
have selected the field 233(2)GF as there have been very few published works [3]
for implementations specific to this field.

Implementation of Elliptic Curve Cryptosystems follows a layered
hierarchical scheme as shown in Figure (1). The performance of the top layers
of the hierarchy is greatly influenced by the performance of the underlying
layers. It is therefore important to have efficient implementations of finite field
operations such as additions, multiplications and inversion.

There are several methods to implement the finite field multiplication such

1. M.S. Student, Computer Sc. and Engg., IIT Madras. (chetrebeiro@gmail.com)
2. Asst. Professor, Computer Sc. and Engg., IIT Madras (debdeep@cse.iitm.ernet.in)

as the Classical Method, the Karatsuba Multiplier, Massey-Omura Multiplier
and the Sunar-Koς Multiplier. Of these the Karatsuba Multiplication algorithm
is the most efficient. However, the recursive Karatsuba algorithm cannot be
applied when the number of bits in the multiplicands (n) is not a power of two,
i.e. 2kn ≠ .For multiplications in such fields, a combination of the Karatsuba
multiplier and another multiplication algorithm is generally used. In [3] for
example, a multiplier was designed for 233(2)GF using a combination of a
Karatsuba multiplier and a classical multiplier. These techniques are not the best
because of the inefficiency of the classical multipliers. There have been few
techniques proposed for a generic recursive Karatsuba multiplier which can
handle multiplications for any value of n [4][5]. In this paper, we propose a new
hybrid technique to implement the Karatsuba multiplier for the field GF(2233) .
This technique results in most efficient designs on an FPGA. We also propose a
masking technique for the Karatsuba multiplier to prevent Differential Side
Channel Attacks [6]. We show that the proposed masked multiplier requires
lesser number of multiplications compared with the conventional masked
multiplier.

In Section 2 of the paper, we present the preliminaries of the Karatsuba
algorithm for Finite Field Multiplication and the Masked Multiplication. In
section 3 we discuss, analyze and compare the various techniques for Karatsuba
multiplication in the field 233(2)GF . In section 4 we present our Hybrid Karatsuba
Algorithm and compare its performance with the other Karatsuba multiplier for
233 bit multiplications. Section 5 presents our masked multiplier design, and
compares it with the conventional masked multiplier. Section 6 has the
conclusion of the paper.

2. Preliminaries
In the present section we present a background on the topic of finite field
multiplication and the Karatsuba method to efficiently multiply. We also briefly
state about Side Channel Attacks on cryptographic algorithms exploiting
statistics based on power consumption of the underlying multipliers.

2.1. Finite Field Multiplication and the Karatsuba Method
The finite field multiplication of two elements in the field (2)nGF is defined as

() () ()mod ()C x A x B x P x= (1)

ECC

Scalar Multiplication

Group Operations
(Point Addition, Point Doubling, Point Halving)

Finite Field Arithmetic
(Addition, Multiplication,Inversion)

Figure 1: Layered Hierarchical Model for ECC

where, ()A x , ()B x and () (2)nC x GF∈ , and ()P x is the irreducible polynomial of

degreen which generates the field (2)nGF . Implementing the multiplication

requires two steps. First, the polynomial product'() () ()C x A x B x= is determined

then, the modulo operation is done on'()C x . The Karatsuba algorithm is used for
the polynomial multiplication. The Karatsuba multiplier achieves its efficiency
by splitting the n bit multiplicands into two 2-term polynomials as shown in
equation (2). The multiplication is then done using three / 2n bit multiplications.
 ' / 2 / 2() ()()n n

h l h lC x A x A B x B= + +

 / 2()n n
h h h l l h l lA B x A B A B x A B= + + +

 / 2(()())n n
h h h l h l h h l l l lA B x A A B B A B A B x A B= + + + + + + (2)

When the multiplier operates in the field (2)nGF the basic Karatsuba
multiplier may be applied recursively to amplify the gains. Most efficient
multiplications are obtained when a fully recursive Karatsuba multiplier is used.
This is possible only when the finite field has the form (2)nGF . Such a field
would require k iterations of the Karatsuba algorithm. The number of gates
required for a fully recursive Karatsuba multiplier is given below.

#AND gates : 2log 3n
#XOR gates : 2log

0

4
3 4

2
()

n
r

r
r

n

=

−∑

2.2. Side Channel Resistant Multiplication
An important aspect of the finite field multiplier used for ECC cryptosystems is
that they have to be resistant to Side Channel Attacks (SCAs). In these attacks
knowledge is gathered about the key by exploiting information that leaks from
the device. Information can leak from various sources in the device. However
side channel analysis of power consumption of the device is the most researched.
There are two techniques for power analysis: Simple Power Analysis (SPA) and
Differential Power Analysis (DPA). DPA exploits the fact that power
consumption of a chip depends on intermediate results of the algorithm. The
most common technique to counter DPA in multipliers is by using masking [8].
The main idea behind a masked multiplier is to make all intermediate values of
the multiplier independent of the multiplicands. Such multipliers are secure
against SCAs, if the underlying CMOS gates switch once per clock cycle.

3. Design Exploration for the 233 bit Karatsuba Multiplier
In the present section we explore various techniques to implement the 233 bit
Karatsuba multiplier. We explore techniques like Padding, Binary, Simple,
Generalized and the proposed Hybrid Karatsuba Multiplier. The design trade-
offs involved in the various architectures are reported.

3.1. The Padded Karatsuba Multiplier
The Padded Karatsuba multiplier is the most simple method of implementing a
fully recursive Karatsuba multiplier for a field (2)nGF , where 2kn d= + and k is

the largest integer such that2k n< . The Padded Karatsuba multiplier extends the
n bit multiplicands to 12k+ bits by padding its most significant bits with

12k n+ − zeroes. This then allows the use of the basic recursive Karatsuba

algorithm. The obvious drawback of this method is the extra arithmetic
introduced due to the padding.

3.2. The Binary Karatsuba Multiplier
The Binary Karatsuba multiplier was proposed in [4]. The algorithm modifies
the basic Karatsuba multiplier to handle any field of the form (2)nGF , wheren =

2k d+ , and k is the largest integer such that2k n< . The algorithm splits each
multiplicand into two terms, the higher term containing d bits and the lower
term containing 2k bits. The higher term partial product (h hA B) is determined by

a Binary Karatsuba algorithm for d bits. The number of times the Binary
Karatsuba algorithm is called recursively depends on the hamming weight ofn .
For example, the binary equivalent of 233 is 2(11101001) , therefore the Binary

Karatsuba algorithm is used recursively for 5 iterations.

3.3. The Simple Karatsuba Multiplier
The Simple Karatsuba multiplier is the basic recursive Karatsuba multiplier with
a small modification. If ann bit multiplication is needed to be done, n being any
integer, it is split into two polynomials as in equation (2). The lA and

lB polynomials have / 2n terms while the hA and hB polynomials have

/ 2n terms. The Karatsuba multiplication can then be done with two / 2n bit
multiplications and a single / 2n bit multiplication.

The higher bound for the number of AND gates and XOR gates required for
the Simple Karatsuba multiplier is the same as that of a 2log2 n bit basic
Karatsuba multiplier. The Simple Karatsuba multiplier requires at most one bit
padding (for the ()()h l h lA A B B+ + multiplication). It therefore requires lesser

gates for implementation as compared with the Binary Karatsuba multiplier.
For a n bit multiplication, the number of times the Simple Karatsuba

multiplier would be used recursively is 2log n . This is higher then the Binary

Karatsuba multiplier which would be used recursively for 2log n times.

Therefore the delay in the Simple Karatsuba is expected to be higher than that of
a Binary Karatsuba algorithm. The results presented in Table (1) agree with the
above expected results.

3.4. The General Karatsuba Multiplier
The basic Karatsuba multiplier defines a method to multiply two n bit
polynomials using three / 2n bit multipliers. This is achieved by splitting the
n bit polynomial into a 2-term polynomial with each term having / 2n bits. In [5]
it was shown that if A and B are two 3n k= bit polynomials, the Karatsuba
multiplier for 3-term polynomials can be used as shown in equation (4). This
results in six multiplications and 13 additions.
 C AB=
 2 / 3 / 3 2 / 3 / 3

2 1 0 2 1 0()()n n n nA x A x A B x B x B= + + + +

4 / 3

2 2 2 1 1 2

2 / 3
2 0 0 2 1 1 1 0 0 1 0 0

()

() ()

n n

n

A B x A B A B x

A B A B A B x A B A B x A B

= + +

+ + + + + +

General Karatsuba
Multipliers

Simple Karatsuba
Multipliers

233 bit *

Two 117 bit *, One 116 bit *

Five 58 bit *, Four 59 bit *

Nineteen 29 bit *, Eight 30 bit *

Nineteen 14 bit *, Sixty-two 15 bit *

Figure 2: Hybrid 233 bit Karatsuba Multiplier

4 / 3
2 2 2 1 2 1 2 2 1 1

2 / 3
2 0 2 0 2 2 1 1 0 0

/ 3
1 0 1 0 1 1 0 0 0 0

(()())

((()())

(()())

n n

n

n

A B x A A B B A B A B x

A A B B A B A B A B x

A A B B A B A B x A B

= + + + + +

+ + + + + +

+ + + + + +

 (4)

The general formula for multiplying two m-term polynomials is given in
equation (5). In the equationsi i iD A B= and , ()()s t s t s tD A A B B= + + , and

0C , 2 2nC − , iC are coefficients of C .

0 0

2 2 1

,

0 0

, / 2

0 0

() 0 2 2

() 0 2 2

n n

i s t s t
s t i s t i
t s n t s

i s t s t i
s t i s t i
t s n t s

C D

C D

C D D D for odd i i n

C D D D D for even i i n

− −

+ = + =
> ≥ > > ≥

+ = + =
> ≥ > > ≥

=
=

= + + < < −

= + + + < < −

∑ ∑

∑ ∑

 (5)

To apply the Binary Karatsuba multiplier recursively: let n be a composite
number (if n is prime we pad it by one bit) with the prime factors in increasing
order being 1 2 3{ , , }p p p ⋯ .To multiply two n bit numbers, we first do the 1p term

Karatsuba. Each term is of 1/n p bits. The 1/n p term multiplication is done using

2p term Karatsuba. The 1 2/p p term multiplication is done using the3p term

Karatsuba and so on.

4. Hybrid Multiplier
This subsection presents our proposed hybrid multiplier. This design results in
most efficient implementation of Karatsuba multiplication on a FPGA, in
particular Xilinx FPGAs.

Table (1) shows that among the Padded, Binary, Simple and General
Karatsuba multipliers, the General Karatsuba multiplier requires the lowest
number of slices on the FPGA. This is ironic as the General Karatsuba algorithm
requires the most number of AND and XOR gates. The reason for this is because
of the granularity of the FPGA. Each slice in a Xilinx Virtex 4 FPGA [7]
contains two function generators capable of implementing any arbitrary four
input Boolean function. If two inputs are fed to the function generator instead of
four, the function generator is not fully utilized. In the Padded, Binary and
Simple Karatsuba implementations the smallest multiplication done is on two
bits. This leaves several of the function generators under utilized. In a 233 bit
General Karatsuba multiplier however, the smallest multiplication is a 13-term
13-bit multiplication. This has several operations that can be grouped in terms of
four inputs (Equation 5). For example, to determine the value of 13C would

require 20 additions, this would need only four slices on a FPGA. Therefore, the
General Karatsuba multiplier obtains maximum utilization of the slices of the

FPGA.
In our Hybrid Multiplier design we implement the initial recursions using

the Simple Karatsuba multiplier. The final recursion is done using the General
Karatsuba multiplier. The Simple Karatsuba multiplications reduce the gates
required to the minimum, while the final recursion with the General Karatsuba
multiplier maximizes the utilization of the function generator in each slice of the
FPGA. For a 233 bit Hybrid Multiplier, (Figure 2) we do all the larger
multiplications using the Simple Karatsuba algorithm. The smallest
multiplications, i.e. 14-bit and 15-bit, are done using the General Karatsuba
algorithm.

We now determine the upper bound for the number of gates required for a
n bit Hybrid Karatsuba multiplier. Let 2log' 2 nn = and let k be the number of
recursions of Simple Karatsuba multiplication. The final recursion using the
General Karatsuba algorithm is done with m (' '/ 2)km m n≤ = bit multiplicands.
The number of AND gates required for k recursions of Simple Karatsuba
multiplication is3k . The number of AND gates required for a 'm bit General
Karatsuba multiplication is '(' 1) / 2m m + [5].The upper bound for the total number
of AND gates required for the n bit Hybrid Karatsuba Multiplication is given by

#AND gates : 3 '(' 1) / 2k m m +

Similarly, k recursions of Simple Karatsuba multiplication require
0

4
3 4

2
()

k
r

r

r

n

=

−∑

XOR gates, and 'm bit General Karatsuba multiplication require
2(5/ 2) ' (7 / 2) ' 1m m− + gates [5]. The upper bound for the total number of

XOR gates required for the n bit Hybrid Karatsuba multiplication is given by
#XOR gates : 2

1

0

5 ' 7 ' 4
' 1 3 3 4

2 2 2
() ()

k
k r

r
r

m m n+

=

− + + −∑

4.1. Implementation results for 233 bit Karatsuba multiplier

Table (1) compares the gate requirements for the 233 bit Karatsuba
multiplication algorithms. The third and forth column shows the number of
slices taken and the maximum delay on a Xilinx Vertex 4 FPGA. The Hybrid
Karatsuba implementation requires minimum number of slices on the FPGA,
however the delay is the maximum. One method of decreasing the delay of the
implementation is to implement the Hybrid algorithm using a combination of the
Binary Karatsuba algorithm along with the General Karatsuba algorithm. If the
same algorithms were to be implemented on an ASIC instead of an FPGA where
the granularity is much lower, then the Simple Karatsuba implementation would
take the least amount of resources. However it will have a longer delay as
compared to the Binary Karatsuba multiplier. This is because the number of
recursions of the algorithm is more in case of the Simple Karatsuba (8
recursions) compared to a Binary Karatsuba (7 recursions).

Table 1: Comparison of 233 bit Karatsuba Implementations

 # AND # XOR Slices Delay
Padded Karatsuba 6561 37320 13067 14.625ns
Binary Karatsuba 6349 36028 12819 14.625ns
Simple Karatsuba 6292 34952 12569 15.743ns
General Karatsuba 9828 49832 11284 13.863ns
Hybrid Karatsuba 9435 47350 10434 16.100ns

5. Masked Karatsuba Multiplier
The most common approach for a masked multiplier design to prevent DPA
attacks is as shown in Figure (3). The multiplicands A and B are masked with

aM and bM respectively. The input to the masked multiplier is the masked value

mA and mB , and the masks aM , bM and qM . The output mQ is the product of

unmasked multiplicands and the maskqM . If the length of A and B is n bits,

then 4 ()AMUL n AND gates and 4 () 4(2 1)XMUL n n+ − XOR gates are required,

where ()AMUL n and ()xMUL n is the number of AND gates and XOR gates

required for a n bit multiplication. Our modified masked multiplier shown in
Figure (4) splits the multiplicands into two as is done in the Karatsuba multiplier.
We then use an / 2n bit mask aM to mask both thehA and lA terms. Similarly, an

/ 2n bit mask bM is used to mask thehB and lB terms (Equation 6). The output

mQ is the product of the two multiplicands masked with the mask qM (Equation

7). It may be noted that each state in Equation (7) uses an additive mask, thus
each computation masks the original values and hence the multiplier prevents
attacks based on DPA.

 h mh a

h mh b

A A M

B B M

= +
= +

 l ml a

l ml b

A A M

B B M

= +
= +

 (6)

/ 2 / 2

/ 2 / 2

/ 2

()()

(() ())(() ())

()

()

()

n n
m h l h l q

n n
mh a ml a mh b ml b q

n
mh mh mh b mh a a b

n
mh ml mh b ml a ml mh ml b mh a

ml ml ml b ml a a b q

Q A x A B x B M

A M x A M B M x B M M

A B A M B M M M x

A B A M B M A B A M B M x

A B A M B M M M M

= + + +

= + + + + + + +

= + + +

+ + + + + +
+ + + + +

 (7)

The number of gates required reduces to 9 (/ 2)AMUL n AND gates

and9 (/ 2) 9(1)X ppMUL n n ADD+ − + . (/ 2)AMUL n and (/ 2)XMUL n is the number of

AND gates and XOR gates required for an / 2n bit multiplication respectively.

PPADD is the number of XOR gates required for the final 2 1n − bit concatenation

and .XOR This method of generating a masked multiplier can be incorporated
with Karatsuba multipliers wherever the first recursion uses / 2n bit
multiplications. For example, a 233 bit masked multiplier can use Padded,
General, Simple or the proposed Hybrid Karatsuba multiplications. It cannot use
the Binary Karatsuba multiplier because the first split in the multiplicands is not
of same size (i.e 105 bits and 128 bits). Table (2) compares the gate

()
m q

Q AB M= +

 n n n n n n n n

N Bit
Multiplier

N Bit
Multiplier

N Bit
Multiplier

N Bit
Multiplier

XOR

XOR

XOR

XOR

mA mA mB mB bM aM aM bM qM

Figure 3: Generic n bit Masked Multiplier

Figure 4: Proposed n-bit Masked Multiplier

N/2 bit
Multiplier

bM
aM

N/2 bit
Multiplier

bM
mlA

N/2 bit
Multiplier

aM
mlB

N/2 bit
Multiplier

mlB
mlA

XOR

N/2 bit
Multiplier

mhB
mlA

mh
A

N/2 bit
Multiplier

mlB

XOR

n/2

N/2 bit
Multiplier

bM
mhA

N/2 bit
Multiplier

aM
mhB

N/2 bit
Multiplier

mhB
mhA

XOR

XOR XOR XOR

Concatenation and Xor qM

m qQ AB M= +

n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2

requirements for the generic masked multiplier with the proposed masked
multiplier for various multiplication algorithms. Results show that the proposed
masked multiplier requires lesser gates than the generic masked multiplier. It
may be noted that the masked multiplier with the Hybrid Karatsuba
implementation requires minimum number of slices. On a Virtex 4 FPGA, the
Hybrid Generic Masked Multiplier required 41107 slices, while the Hybrid
Proposed Masked Multiplier required 30435 slices. The delay of the two designs
was almost equal (around 17ns).

 Generic Masked Multiplier Proposed Masked Multiplier
 # AND # XOR # AND # XOR

Padded Karatsuba 26244 151140 19683 112217
Simple Karatsuba 25168 141668 18873 103937
General Karatsuba 39312 201188 29484 149612
Hybrid Karatsuba 37740 191940 28485 143937

Table 2: Comparison of 233 bit Masked Multiplier Implementations

6. Conclusion
In this paper we proposed a novel Hybrid Karatsuba multiplier which uses the
best of the Simple and the General Karatsuba algorithms. This resulted in lesser
space requirements on a FPGA. We also proposed a new design for a masked
multiplier based on the Karatsuba algorithm which requires lesser number of
gates compared to the conventional masked multiplier. This implementation of
finite field multiplication forms an ideal base for an elliptic curve cryptosystem
over 233(2)GF .

References
[1] U.S. Department of Commerce/National Institute of Standards and Technology, Digital

Signature Standards, Federal Information Processing Standards Publication 186.
[2] C. Paar, Efficient VLSI Architectures for Bit Parallel Computations in Galois Fields. PhD

thesis, Universtät GH Essen, VDI Verlag, 1994.
[3] C. Grabbe, et.al, FPGA Designs of Parallel High Performance GF(2233) Multipliers,

Proceedings of the 2003 International Symposium on Circuits and Systems, ISCAS’03, 2003.
[4] F. R. Henriquez, et. al., On Fully Parallel Karatsuba Multipliers for GF(2m), Proceedings of

the International Conference on Computer Science and Technology, CST 2003, 2003.
[5] A. Weimerskirch, et. al, Generalizations of the Karatsuba Algorithm for Efficient

Implementations, http://eprint.iacr.org/2006/224.pdf, 2006.
[6] P. Kocher, et. al, Differential Power Analysis, Advances in Cryptology-CRYPTO’99, 1999.
[7] Xilinx, Virtex 4 User Guide (Chapter 5 : Configurable Logic Blocks), 2007.
[8] J. D. Golic, Techniques for Random Masking in Hardware, http:// eprint.iacr.org/2005/026.ps

