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Abstract

The paper presents a detailed study on the implementation of Karatsuba
Multiplier for GF (2%%%), which is a state of the art field for secured Elliptic
Curve Cryptography, according to NIST. The work suggests the trade-offs
involved in designing this important class of multiplier and proposes a Hybrid
Karatsuba Multiplier which requires least amount of space on a FPGA. The
work also shows a novel masking technique to prevent the multiplier from power
based side-channel attacks. Comparison shows that the proposed scheme
requires lesser number of gates compared with the conventional approach.
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1. Introduction

Elliptic Curve Cryptography (ECC) was invented ipdadently by Koblitz and
Miller in 1985. Since then, the security and e#fitcy of ECC has been proven,
and ECC has been incorporated in several secuahdards. ECC offers more
security per key bit than any other public key ¢togystem. This has prompted
the U.S. National Security Agency to move to ECCsdah public key
cryptography. For a given level of security, theesiof the key and the
operations involved in ECC computation is much srothan other crypto
algorithms. This makes ECC an attractive altermafior today’'s hand held
devices where processing bandwidth, memory resswcd power are limited.

NIST’'s standard for Digital Signatures [1] recommenusing a prime
field, GF(p) , or a binary extension fiel&F2™) for Elliptic Curves. Binary
Extension Fields have the advantage that fieldtexhdi can be performed by
XOR operations, therefore no carry is involved. Thiadie to implementations
that require lesser area and have better performnafbe NIST standard
recommends binary extension curves of degree 1&38,283, 409 and 571. For
our work on the implementation of Elliptic Curvey@tosystem on a FPGA, we
have selected the fieldF (2***) as there have been very few published works [3]
for implementations specific to this field.

Implementation of Elliptic Curve Cryptosystems ¢olls a layered
hierarchical scheme as shown in Figure (1). Tdréopmance of the top layers
of the hierarchy is greatly influenced by the perfance of the underlying
layers. It is therefore important to have efficiamplementations of finite field
operations such as additions, multiplications arvetision.

There are several methods to implement the fimitiel imultiplication such
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Figure 1: Layered Hierarchical Model for ECC

as the Classical Method, the Karatsuba Multiplassey-Omura Multiplier
and the Sunar-KpMultiplier. Of these the Karatsuba Multiplicati@gorithm

is the most efficient. However, the recursive Ksuat algorithm cannot be
applied when the number of bits in the multiplicarfd) is not a power of two,
i.e. nz2*.For multiplications in such fields, a combinatiof the Karatsuba
multiplier and another multiplication algorithm generally used. In [3] for
example, a multiplier was designed faF(2**) using a combination of a
Karatsuba multiplier and a classical multiplier €8k techniques are not the best
because of the inefficiency of the classical mli#i;s. There have been few
techniques proposed for a generic recursive Kdatguultiplier which can
handle multiplications for any value of [4][5]. In this paper, we propose a hew
hybrid technique to implement the Karatsuba muéipfor the field GF(2*3) .
This technique results in most efficient designsaarFPGA. We also propose a
masking technique for the Karatsuba multiplier t@vent Differential Side
Channel Attacks [6]. We show that the proposed ea@shkultiplier requires
lesser number of multiplications compared with tbenventional masked
multiplier.

In Section 2 of the paper, we present the prelimésaof the Karatsuba
algorithm for Finite Field Multiplication and the agked Multiplication. In
section 3 we discuss, analyze and compare theusatézhniques for Karatsuba
multiplication in the fieldsF (2°*). In section 4 we present our Hybrid Karatsuba
Algorithm and compare its performance with the otkaratsuba multiplier for
233 bit multiplications. Section 5 presents our keasmultiplier design, and
compares it with the conventional masked multipli&ection 6 has the
conclusion of the paper.

2. Preliminaries

In the present section we present a backgroundhentdpic of finite field
multiplication and the Karatsuba method to effitigmultiply. We also briefly
state about Side Channel Attacks on cryptographgorithms exploiting
statistics based on power consumption of the uyiskerimultipliers.

2.1. Finite Field Multiplication and the Karatsuba M ethod
The finite field multiplication of two elements the fieldGF (2") is defined as
C(x) = A(X)B(x)modP (x) 1)



where,A(x), B(x) and C(x)OGF(2"), and P(x) is the irreducible polynomial of
degreen which generates the fieléF(2"). Implementing the multiplication
requires two steps. First, the polynomial prodtict) = A(x)B(x) is determined
then, the modulo operation is done®fx) . The Karatsuba algorithm is used for
the polynomial multiplication. The Karatsuba muigp achieves its efficiency
by splitting then bit multiplicands into two 2-term polynomials asosvn in
equation (2). The multiplication is then done udiimgpe n/2 bit multiplications.
C(x)=(AX"*+A)BX"?+B)
=ABX"+(AB +AB)Xx"*+AB
=ABX" +((A +A)B,+B)+AB, +AB)X"* + AB @)
When the multiplier operates in the fieldF(2") the basic Karatsuba
multiplier may be applied recursively to amplifyetigains. Most efficient
multiplications are obtained when a fully recursk@ratsuba multiplier is used.
This is possible only when the finite field has fleemGF(2"). Such a field
would requirek iterations of the Karatsuba algorithm. The numbkmates
required for a fully recursive Karatsuba multiplisigiven below.
#AND gates : n°%3
- log, n
#XORgates : i 3 if‘ ~ 4)
r=0 2
2.2. Side Channel Resistant Multiplication
An important aspect of the finite field multipliased for ECC cryptosystems is
that they have to be resistant to Side ChannelcR$tdSCAS). In these attacks
knowledge is gathered about the key by exploitimigrimation that leaks from
the device. Information can leak from various sesrin the device. However
side channel analysis of power consumption of #ndag is the most researched.
There are two techniques for power analysis: SirRgeer Analysis (SPA) and
Differential Power Analysis (DPA). DPA exploits théact that power
consumption of a chip depends on intermediate tesfl the algorithm. The
most common technique to counter DPA in multiplisry using masking [8].
The main idea behind a masked multiplier is to malkéntermediate values of
the multiplier independent of the multiplicands.cBumultipliers are secure
against SCAs, if the underlying CMOS gates switobeoper clock cycle.

3. Design Exploration for the 233 bit Karatsuba Multiplier

In the present section we explore various techrsidoeimplement the 233 bit
Karatsuba multiplier. We explore techniques likeddiag, Binary, Simple,
Generalized and the proposed Hybrid Karatsuba plidti The design trade-
offs involved in the various architectures are régah

3.1. The Padded Karatsuba Multiplier

The Padded Karatsuba multiplier is the most sinmpé¢hod of implementing a
fully recursive Karatsuba multiplier for a fiei(2"), wheren=2+d and k is

the largest integer such ti#a n. The Padded Karatsuba multiplier extends the
n bit multiplicands to2** bits by padding its most significant bits with
2" —n zeroes. This then allows the use of the basic sdeirKaratsuba



algorithm. The obvious drawback of this method e textra arithmetic
introduced due to the padding.

3.2. TheBinary Karatsuba M ultiplier

The Binary Karatsuba multiplier was proposed in [Bfhe algorithm modifies
the basic Karatsuba multiplier to handle any fieldhe formGF(2"), wheren=
2“+d, andk is the largest integer such tkAkn. The algorithm splits each
multiplicand into two terms, the higher term contag d bits and the lower
term containing2“ bits. The higher term partial productg,) is determined by
a Binary Karatsuba algorithm fod bits. The number of times the Binary
Karatsuba algorithm is called recursively dependshe hamming weight of.
For example, the binary equivalent of 23311901001), therefore the Binary
Karatsuba algorithm is used recursively for 5 tierss.

3.3. The Simple Karatsuba M ultiplier

The Simple Karatsuba multiplier is the basic reimar&aratsuba multiplier with
a small modification. If anbit multiplication is needed to be donebeing any
integer, it is split into two polynomials as in egon (2). TheaA and

B polynomials havel n/2 ] terms while theA and B, polynomials have

| n/2 |terms. The Karatsuba multiplication can then beedaith two [ n/2 1bit
multiplications and a singlen/2_| bit multiplication.

The higher bound for the number oD gates andXOR gates required for
the Simple Karatsuba multiplier is the same as tfa@m 2 °*"' bit basic
Karatsuba multiplier. The Simple Karatsuba mulépliequires at most one bit
padding (for the(A, + A)(B, + B) multiplication). It therefore requires lesser
gates for implementation as compared with the Biaaratsuba multiplier.

For a n bit multiplication, the number of times the Simpkaratsuba
multiplier would be used recursivelylisog,n |. This is higher then the Binary
Karatsuba multiplier which would be used recursivébr | log,n_| times.
Therefore the delay in the Simple Karatsuba is etgqueto be higher than that of

a Binary Karatsuba algorithm. The results presememable (1) agree with the
above expected results.

3.4. The General Karatsuba Multiplier
The basic Karatsuba multiplier defines a method nialtiply two n bit
polynomials using thre@/2 bit multipliers. This is achieved by splitting the
nbit polynomial into a 2-term polynomial with ea@rm havingn/2 bits. In [5]
it was shown that ifA and B are two n=3k bit polynomials, the Karatsuba
multiplier for 3-term polynomials can be used asveh in equation (4). This
results in six multiplications and 13 additions.

C=AB

= (AZXZn/3+ Alxn/3+ Ao)(Bzxzn/B"' len/3+ Bu)

= ABX""?+(AB,+ AB,X'
+(AB, + AB,+ AB)X"? + (AB,+ AB)x+AB



=ABX"+((A,+ A)(B,+B) + AB,+ AB)X’
+((A+ A)(B, +By) + AB,+ AB+ AB X" (4)
+((A+A)B,+B) +AB+ ABYX"* +AB,
The general formula for multiplying two m-term pobmials is given in
equation (5). In the equations,=AB and D, =(A +A)B,+B) , and
C,,C,.,,C, are coefficients of°.

C, =D,

CanZ = anl

C =>D,+ Y (D,+D) foroddi O<i<2n-2 (5)
& Wheo

C =>D,+ > (D,+D)+D,, for eveni O<i<2n-2
2% s
To apply the Binary Karatsuba multiplier recursizdet nbe a composite
number (if n is prime we pad it by one bit) with the prime farstin increasing

order being{p, p, p,--} .To multiply two nbit numbers, we first do the, term
Karatsuba. Each term is af p,bits. Then/ p,term multiplication is done using
p, term Karatsuba. Thep/p, term multiplication is done using thg term
Karatsuba and so on.

4. Hybrid Multiplier

This subsection presents our proposed hybrid ntieltipThis design results in
most efficient implementation of Karatsuba multplion on a FPGA, in
particular Xilinx FPGAs.

Table (1) shows that among the Padded, Binary, Binamd General
Karatsuba multipliers, the General Karatsuba miigtiprequires the lowest
number of slices on the FPGA. This is ironic as@emeral Karatsuba algorithm
requires the most number @D and XOR gates. The reason for this is because
of the granularity of the FPGA. Each slice in aiil Virtex 4 FPGA [7]
contains two function generators capable of implging any arbitrary four
input Boolean function. If two inputs are fed t@ tunction generator instead of
four, the function generator is not fully utilizeth the Padded, Binary and
Simple Karatsuba implementations the smallest plidétion done is on two
bits. This leaves several of the function genegatorder utilized. In a 233 bit
General Karatsuba multiplier however, the smaltesttiplication is a 13-term
13-bit multiplication. This has several operatitimst can be grouped in terms of
four inputs (Equation 5). For example, to determihe value ofC,would

require 20 additions, this would need only foucesdi on a FPGA. Therefore, the
General Karatsuba multiplier obtains maximum wifian of the slices of the
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Figure 2: Hybrid 233 bit Karatsuba Multiplier




FPGA.

In our Hybrid Multiplier design we implement theitial recursions using
the Simple Karatsuba multiplier. The final recursis done using the General
Karatsuba multiplier. The Simple Karatsuba multations reduce the gates
required to the minimum, while the final recursiaith the General Karatsuba
multiplier maximizes the utilization of the functigenerator in each slice of the
FPGA. For a 233 bit Hybrid Multiplier, (Figure 2)ewdo all the larger
multiplications using the Simple Karatsuba algarith The smallest
multiplications, i.e. 14-bit and 15-bit, are donsing the General Karatsuba
algorithm.

We now determine the upper bound for the numbegatés required for a
nbit Hybrid Karatsuba multiplier. Leb'=2"%""and letk be the number of
recursions of Simple Karatsuba multiplication. Tl recursion using the
General Karatsuba algorithm is done with(m< m'=n"2*) bit multiplicands.
The number of AND gates required foikk recursions of Simple Karatsuba
multiplication is3“. The number ofAND gates required for an' bit General
Karatsuba multiplication isn'(m'+1)/2[5].The upper bound for the total number
of AND gates required for thebit Hybrid Karatsuba Multiplication is given by

#AND gates : 3*m'(m+1)/2

Similarly, k recursions of Simple Karatsuba multiplication reqﬁs‘(ﬂw)
=0 2

XOR gates, and m' bit General Karatsuba multiplication require
(5/2)m®- (7/2m¥% 1gates [5]. The upper bound for the total number of
XOR gates required for thebit Hybrid Karatsuba multiplication is given by

#XOR gates : (5i2'2_77m.+1)3<+1+23(§_ 3
=0

4.1. Implementation resultsfor 233 bit Karatsuba multiplier

Table (1) compares the gate requirements for thg B8 Karatsuba
multiplication algorithms. The third and forth cala shows the number of
slices taken and the maximum delay on a Xilinx ¥erd FPGA. The Hybrid
Karatsuba implementation requires minimum numbeslies on the FPGA,
however the delay is the maximum. One method ofedesing the delay of the
implementation is to implement the Hybrid algoritlusing a combination of the
Binary Karatsuba algorithm along with the Generaldtsuba algorithm. If the
same algorithms were to be implemented on an AGs@ad of an FPGA where
the granularity is much lower, then the Simple Ksuba implementation would
take the least amount of resources. However it halve a longer delay as
compared to the Binary Karatsuba multiplier. Thisbecause the number of
recursions of the algorithm is more in case of Bimple Karatsuba (8
recursions) compared to a Binary Karatsuba (7 s2oos).

#AND #XOR Slices Delay
Padded Karatsuba 6561 3732( 13067 14.62%ns
Binary Karatsuba 6349 36028 12819 14.625ns
Simple Karatsuba 6292 34952 12569 15.743ps
General Karatsuba 9828 49832 11284 13.863ns
Hybrid Karatsuba 9435 47350 10434 16.100ns

Table 1: Comparison of 233 bit Karatsuba Implementations
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Figure 3: Generic n bit Masked Multiplier

5. Masked Karatsuba Multiplier

The most common approach for a masked multipliigiheto prevent DPA
attacks is as shown in Figure (3). The multiplicardand B are masked with
M, and M, respectively. The input to the masked multipliethis masked value

A,andB,, and the mask®,, M, andM, . The outputQ, is the product of
unmasked multiplicands and the mask If the length ofA and Bis nbits,
then 4MUL, (n) AND gates and4MUL, (n)+4(2n-1) XOR gates are required,
where MUL,(n) and MUL (n) is the number ofAND gates andXOR gates
required for anbit multiplication. Our modified masked multipli@hown in
Figure (4) splits the multiplicands into two aglne in the Karatsuba multiplier.
We then use am/2 bit mask M, to mask both thg, and A terms. Similarly, an
n/2 bit mask M, is used to mask thg andB terms (Equation 6). The output
Q, is the product of the two multiplicands masked wviite maskv, (Equation
7). It may be noted that each state in Equatiru¢es an additive mask, thus

each computation masks the original values and enéime multiplier prevents
attacks based on DPA.

A= An+ M, A=A +M,
B, =Bm t M, B =B, t+M, (6)
Qn = (AX"?+A)BX"?+B)+M,
= (A +MX"2 + (A, + MO)(Byy + M)X2 + (B, +M,)) + M,
=(A,B., +A,M, + B M, +M_M,)X" (7)
+(AnBy + AuM, + B M, + A B, + A,M, + B M )x"'?
+(AuBy + AM, + B M, + M M,) + M,

The number of gates required reduces 4®@UL,(n/2) AND gates
andoMUL, (n/2)+9( - 1)+ ADD,,. MUL,(n/2)and MUL, (n/2)is the number of
AND gates andXOR gates required for an/2 bit multiplication respectively.
ADD,, is the number ofXOR gates required for the fina&h -1bit concatenation

and XOR This method of generating a masked multiplier cenirzorporated
with Karatsuba multipliers wherever the first resian uses n/2 bit

multiplications. For example, a 233 bit masked ipliir can use Padded,
General, Simple or the proposed Hybrid KaratsubHipligations. It cannot use
the Binary Karatsuba multiplier because the figit $n the multiplicands is not
of same size (i.e 105 bits and 128 bits). Table ¢@npares the gate
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Figure 4: Proposed n-bit Masked Multiplier

requirements for the generic masked multiplier witle proposed masked
multiplier for various multiplication algorithms.eRults show that the proposed
masked multiplier requires lesser gates than thmerge masked multiplier. It
may be noted that the masked multiplier with the bty Karatsuba
implementation requires minimum number of slices. DVirtex 4 FPGA, the
Hybrid Generic Masked Multiplier required 41107cek, while the Hybrid
Proposed Masked Multiplier required 30435 slicdse @elay of the two designs
was almost equal (around 17ns).

Generic Masked Multiplier Proposed Masked Multiplier
#AND #XOR #AND #XOR
Padded Karatsuba 26244 151140 19683 112217
Simple Karatsuba 25168 141668 18873 103937
General Karatsuba 39312 201188 29484 149612
Hybrid Karatsuba 37740 191940 28485 143937

Table 2: Comparison of 233 bit Masked Multiplier Implementations

6. Conclusion

In this paper we proposed a novel Hybrid Karatsuoredtiplier which uses the

best of the Simple and the General Karatsuba dlhgosi. This resulted in lesser
space requirements on a FPGA. We also proposedvalesign for a masked
multiplier based on the Karatsuba algorithm whielquires lesser number of
gates compared to the conventional masked multiplieis implementation of

finite field multiplication forms an ideal base fan elliptic curve cryptosystem
oVerGF (2°%).
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