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Abstract 

 
The paper presents a detailed study on the implementation of Karatsuba 
Multiplier for GF (2233), which is a state of the art field for secured Elliptic 
Curve Cryptography, according to NIST. The work suggests the trade-offs 
involved in designing this important class of multiplier and proposes a Hybrid 
Karatsuba Multiplier which requires least amount of space on a FPGA. The 
work also shows a novel masking technique to prevent the multiplier from power 
based side-channel attacks. Comparison shows that the proposed scheme 
requires lesser number of gates compared with the conventional approach.  
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1. Introduction 
Elliptic Curve Cryptography (ECC) was invented independently by Koblitz and 
Miller in 1985. Since then, the security and efficiency of ECC has been proven, 
and ECC has been incorporated in several security standards. ECC offers more 
security per key bit than any other public key cryptosystem. This has prompted 
the U.S. National Security Agency to move to ECC based public key 
cryptography. For a given level of security, the size of the key and the 
operations involved in ECC computation is much shorter than other crypto 
algorithms. This makes ECC an attractive alternative for today’s hand held 
devices where processing bandwidth, memory resources and power are limited. 

NIST’s standard for Digital Signatures [1] recommends using a prime 
field, ( )GF p , or a binary extension field (2 )mGF for Elliptic Curves. Binary 
Extension Fields have the advantage that field additions can be performed by 
XOR operations, therefore no carry is involved. This leads to implementations 
that require lesser area and have better performance. The NIST standard 
recommends binary extension curves of degree 163, 233, 283, 409 and 571. For 
our work on the implementation of Elliptic Curve Cryptosystem on a FPGA, we 
have selected the field 233(2 )GF as there have been very few published works [3] 
for implementations specific to this field.  

Implementation of Elliptic Curve Cryptosystems follows a layered 
hierarchical scheme as shown in Figure (1).   The performance of the top layers 
of the hierarchy is greatly influenced by the performance of the underlying 
layers. It is therefore important to have efficient implementations of finite field 
operations such as additions, multiplications and inversion.   

There are several methods to implement the finite field multiplication such 
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as the Classical Method, the Karatsuba Multiplier, Massey-Omura Multiplier 
and the Sunar-Koς Multiplier. Of these the Karatsuba Multiplication algorithm 
is the most efficient. However, the recursive Karatsuba algorithm cannot be 
applied when the number of bits in the multiplicands (n ) is not a power of two, 
i.e. 2kn ≠ .For multiplications in such fields, a combination of the Karatsuba 
multiplier and another multiplication algorithm is generally used. In [3] for 
example, a multiplier was designed for 233(2 )GF using a combination of a 
Karatsuba multiplier and a classical multiplier. These techniques are not the best 
because of the inefficiency of the classical multipliers. There have been few 
techniques proposed for a generic recursive Karatsuba multiplier which can 
handle multiplications for any value of n  [4][5]. In this paper, we propose a new 
hybrid technique to implement the Karatsuba multiplier for the field GF(2233) . 
This technique results in most efficient designs on an FPGA. We also propose a 
masking technique for the Karatsuba multiplier to prevent Differential Side 
Channel Attacks [6]. We show that the proposed masked multiplier requires 
lesser number of multiplications compared with the conventional masked 
multiplier.  

In Section 2 of the paper, we present the preliminaries of the Karatsuba 
algorithm for Finite Field Multiplication and the Masked Multiplication. In 
section 3 we discuss, analyze and compare the various techniques for Karatsuba 
multiplication in the field 233(2 )GF . In section 4 we present our Hybrid Karatsuba 
Algorithm and compare its performance with the other Karatsuba multiplier for 
233 bit multiplications. Section 5 presents our masked multiplier design, and 
compares it with the conventional masked multiplier. Section 6 has the 
conclusion of the paper. 
 
2. Preliminaries 
In the present section we present a background on the topic of finite field 
multiplication and the Karatsuba method to efficiently multiply. We also briefly 
state about Side Channel Attacks on cryptographic algorithms exploiting 
statistics based on power consumption of the underlying multipliers.  
  
2.1. Finite Field Multiplication and the Karatsuba Method 
The finite field multiplication of two elements in the field (2 )nGF is defined as 

( ) ( ) ( )mod ( )C x A x B x P x=  (1) 

ECC 

Scalar Multiplication 

Group Operations 
(Point Addition, Point Doubling, Point Halving) 

Finite Field Arithmetic 
(Addition, Multiplication,Inversion) 

Figure 1: Layered Hierarchical Model for ECC 



where, ( )A x , ( )B x and ( ) (2 )nC x GF∈ , and ( )P x is the irreducible polynomial of 

degreen which generates the field (2 )nGF . Implementing the multiplication 

requires two steps. First, the polynomial product'( ) ( ) ( )C x A x B x= is determined 

then, the modulo operation is done on'( )C x . The Karatsuba algorithm is used for 
the polynomial multiplication. The Karatsuba multiplier achieves its efficiency 
by splitting the n  bit multiplicands into two 2-term polynomials as shown in 
equation (2). The multiplication is then done using three / 2n bit multiplications.  
                         ' / 2 / 2( ) ( )( )n n

h l h lC x A x A B x B= + +   

                                / 2( )n n
h h h l l h l lA B x A B A B x A B= + + +   

                           / 2(( )( ) )n n
h h h l h l h h l l l lA B x A A B B A B A B x A B= + + + + + +  (2) 

When the multiplier operates in the field (2 )nGF the basic Karatsuba 
multiplier may be applied recursively to amplify the gains. Most efficient 
multiplications are obtained when a fully recursive Karatsuba multiplier is used. 
This is possible only when the finite field has the form (2 )nGF . Such a field 
would require k iterations of the Karatsuba algorithm. The number of gates 
required for a fully recursive Karatsuba multiplier is given below. 

#AND gates : 2log 3n  
#XOR gates : 2log
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2.2. Side Channel Resistant Multiplication 
An important aspect of the finite field multiplier used for ECC cryptosystems is 
that they have to be resistant to Side Channel Attacks (SCAs). In these attacks 
knowledge is gathered about the key by exploiting information that leaks from 
the device. Information can leak from various sources in the device. However 
side channel analysis of power consumption of the device is the most researched. 
There are two techniques for power analysis: Simple Power Analysis (SPA) and 
Differential Power Analysis (DPA). DPA exploits the fact that power 
consumption of a chip depends on intermediate results of the algorithm. The 
most common technique to counter DPA in multipliers is by using masking [8]. 
The main idea behind a masked multiplier is to make all intermediate values of 
the multiplier independent of the multiplicands. Such multipliers are secure 
against SCAs, if the underlying CMOS gates switch once per clock cycle.  
 
3. Design Exploration for the 233 bit Karatsuba Multiplier 
In the present section we explore various techniques to implement the 233 bit 
Karatsuba multiplier. We explore techniques like Padding, Binary, Simple, 
Generalized and the proposed Hybrid Karatsuba Multiplier. The design trade-
offs involved in the various architectures are reported.  
 
3.1. The Padded Karatsuba Multiplier 
The Padded Karatsuba multiplier is the most simple method of implementing a 
fully recursive Karatsuba multiplier for a field (2 )nGF , where 2kn d= + and k is 

the largest integer such that2k n< . The Padded Karatsuba multiplier extends the 
n  bit multiplicands to 12k+ bits by padding its most significant bits with 

12k n+ − zeroes. This then allows the use of the basic recursive Karatsuba 



algorithm. The obvious drawback of this method is the extra arithmetic 
introduced due to the padding.  
 
3.2. The Binary Karatsuba Multiplier 
The Binary Karatsuba multiplier was proposed in [4]. The algorithm modifies 
the basic Karatsuba multiplier to handle any field of the form (2 )nGF , wheren = 

2k d+ , and k is the largest integer such that2k n< . The algorithm splits each 
multiplicand into two terms, the higher term containing d bits and the lower 
term containing 2k bits. The higher term partial product (h hA B ) is determined by 

a Binary Karatsuba algorithm for d bits. The number of times the Binary 
Karatsuba algorithm is called recursively depends on the hamming weight ofn . 
For example, the binary equivalent of 233 is 2(11101001) , therefore the Binary 

Karatsuba algorithm is used recursively for 5 iterations.  
 

3.3. The Simple Karatsuba Multiplier 
The Simple Karatsuba multiplier is the basic recursive Karatsuba multiplier with 
a small modification. If ann bit multiplication is needed to be done, n being any 
integer, it is split into two polynomials as in equation (2). The lA and 

lB polynomials have / 2n terms while the hA and hB polynomials have 

/ 2n terms. The Karatsuba multiplication can then be done with two / 2n bit 
multiplications and a single / 2n bit multiplication.  

The higher bound for the number of AND gates and XOR gates required for 
the Simple Karatsuba multiplier is the same as that of a 2log2 n bit basic 
Karatsuba multiplier. The Simple Karatsuba multiplier requires at most one bit 
padding (for the ( )( )h l h lA A B B+ + multiplication). It therefore requires lesser 

gates for implementation as compared with the Binary Karatsuba multiplier. 
For a n bit multiplication, the number of times the Simple Karatsuba 

multiplier would be used recursively is 2log n . This is higher then the Binary 

Karatsuba multiplier which would be used recursively for 2log n times. 

Therefore the delay in the Simple Karatsuba is expected to be higher than that of 
a Binary Karatsuba algorithm. The results presented in Table (1) agree with the 
above expected results.  

 
3.4. The General Karatsuba Multiplier 
The basic Karatsuba multiplier defines a method to multiply two n bit 
polynomials using three / 2n bit multipliers. This is achieved by splitting the 
n bit polynomial into a 2-term polynomial with each term having / 2n bits. In [5] 
it was shown that if A and B are two 3n k= bit polynomials, the Karatsuba 
multiplier for 3-term polynomials can be used as shown in equation (4). This 
results in six multiplications and 13 additions. 
                   C AB=   
                      2 / 3 / 3 2 / 3 / 3

2 1 0 2 1 0( )( )n n n nA x A x A B x B x B= + + + +   

                      
4 / 3

2 2 2 1 1 2

2 / 3
2 0 0 2 1 1 1 0 0 1 0 0

( )

( ) ( )

n n

n

A B x A B A B x

A B A B A B x A B A B x A B

= + +

+ + + + + +
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Figure 2: Hybrid 233 bit Karatsuba Multiplier 
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The general formula for multiplying two m-term polynomials is given in 
equation (5). In the equationsi i iD A B= and , ( )( )s t s t s tD A A B B= + + , and 

0C , 2 2nC − , iC  are coefficients of C . 
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 (5) 

To apply the Binary Karatsuba multiplier recursively: let n be a composite 
number (if n  is prime we pad it by one bit) with the prime factors in increasing 
order being 1 2 3{ , , }p p p ⋯ .To multiply two n bit numbers, we first do the 1p term 

Karatsuba. Each term is of 1/n p bits. The 1/n p term multiplication is done using 

2p term Karatsuba. The 1 2/p p term multiplication is done using the3p term 

Karatsuba and so on.  
 

4. Hybrid Multiplier 
This subsection presents our proposed hybrid multiplier. This design results in 
most efficient implementation of Karatsuba multiplication on a FPGA, in 
particular Xilinx FPGAs. 

Table (1) shows that among the Padded, Binary, Simple and General 
Karatsuba multipliers, the General Karatsuba multiplier requires the lowest 
number of slices on the FPGA. This is ironic as the General Karatsuba algorithm 
requires the most number of AND and XOR gates. The reason for this is because 
of the granularity of the FPGA. Each slice in a Xilinx Virtex 4 FPGA [7] 
contains two function generators capable of implementing any arbitrary four 
input Boolean function. If two inputs are fed to the function generator instead of 
four, the function generator is not fully utilized. In the Padded, Binary and 
Simple Karatsuba implementations the smallest multiplication done is on two 
bits. This leaves several of the function generators under utilized. In a 233 bit 
General Karatsuba multiplier however, the smallest multiplication is a 13-term 
13-bit multiplication. This has several operations that can be grouped in terms of 
four inputs (Equation 5). For example, to determine the value of 13C would 

require 20 additions, this would need only four slices on a FPGA. Therefore, the 
General Karatsuba multiplier obtains maximum utilization of the slices of the 



FPGA.  
In our Hybrid Multiplier design we implement the initial recursions using 

the Simple Karatsuba multiplier. The final recursion is done using the General 
Karatsuba multiplier. The Simple Karatsuba multiplications reduce the gates 
required to the minimum, while the final recursion with the General Karatsuba 
multiplier maximizes the utilization of the function generator in each slice of the 
FPGA. For a 233 bit Hybrid Multiplier, (Figure 2) we do all the larger 
multiplications using the Simple Karatsuba algorithm. The smallest 
multiplications, i.e. 14-bit and 15-bit, are done using the General Karatsuba 
algorithm.  

We now determine the upper bound for the number of gates required for a 
n bit Hybrid Karatsuba multiplier. Let 2log' 2 nn = and let k be the number of 
recursions of Simple Karatsuba multiplication. The final recursion using the 
General Karatsuba algorithm is done with m ( ' '/ 2 )km m n≤ = bit multiplicands. 
The number of AND gates required for k recursions of Simple Karatsuba 
multiplication is3k . The number of AND gates required for a 'm bit General 
Karatsuba multiplication is '( ' 1) / 2m m + [5].The upper bound for the total number 
of AND gates required for the n bit Hybrid Karatsuba Multiplication is given by 

#AND gates : 3 '( ' 1) / 2k m m +  

Similarly, k recursions of Simple Karatsuba multiplication require
0
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XOR gates, and 'm bit General Karatsuba multiplication require 
2(5/ 2) ' (7 / 2) ' 1m m− + gates [5]. The upper bound for the total number of 

XOR gates required for the n bit Hybrid Karatsuba multiplication is given by 
#XOR gates : 2
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4.1. Implementation results for 233 bit Karatsuba multiplier 

Table (1) compares the gate requirements for the 233 bit Karatsuba 
multiplication algorithms. The third and forth column shows the number of 
slices taken and the maximum delay on a Xilinx Vertex 4 FPGA. The Hybrid 
Karatsuba implementation requires minimum number of slices on the FPGA, 
however the delay is the maximum. One method of decreasing the delay of the 
implementation is to implement the Hybrid algorithm using a combination of the 
Binary Karatsuba algorithm along with the General Karatsuba algorithm. If the 
same algorithms were to be implemented on an ASIC instead of an FPGA where 
the granularity is much lower, then the Simple Karatsuba implementation would 
take the least amount of resources. However it will have a longer delay as 
compared to the Binary Karatsuba multiplier. This is because the number of 
recursions of the algorithm is more in case of the Simple   Karatsuba (8 
recursions) compared to a Binary Karatsuba (7 recursions). 

 
 
 
 
 
 

Table 1: Comparison of 233 bit Karatsuba Implementations 

 # AND  # XOR  Slices Delay 
Padded Karatsuba 6561 37320 13067 14.625ns 
Binary Karatsuba 6349 36028 12819 14.625ns 
Simple Karatsuba 6292 34952 12569 15.743ns 
General Karatsuba 9828 49832 11284 13.863ns 
Hybrid Karatsuba 9435 47350 10434 16.100ns 



5. Masked Karatsuba Multiplier 
The most common approach for a masked multiplier design to prevent DPA 
attacks is as shown in Figure (3). The multiplicands A  and B are masked with 

aM and bM respectively. The input to the masked multiplier is the masked value 

mA and mB , and the masks aM , bM  and qM . The output mQ is the product of 

unmasked multiplicands and the maskqM . If the length of A  and B is n bits, 

then 4 ( )AMUL n AND gates and 4 ( ) 4(2 1)XMUL n n+ − XOR gates are required, 

where ( )AMUL n and ( )xMUL n is the number of AND gates and XOR gates 

required for a n bit multiplication.  Our modified masked multiplier shown in 
Figure (4) splits the multiplicands into two as is done in the Karatsuba multiplier. 
We then use an / 2n bit mask aM to mask both thehA and lA terms. Similarly, an 

/ 2n bit mask bM is used to mask thehB and lB terms (Equation 6). The output 

mQ is the product of the two multiplicands masked with the mask qM  (Equation 

7).   It may be noted that each state in Equation (7) uses an additive mask, thus 
each computation masks the original values and hence the multiplier prevents 
attacks based on DPA. 

               h mh a

h mh b
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B B M
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The number of gates required reduces to 9 ( / 2)AMUL n AND gates 

and9 ( / 2) 9( 1)X ppMUL n n ADD+ − + .  ( / 2)AMUL n and ( / 2)XMUL n is the number of 

AND gates and XOR gates required for an / 2n bit multiplication respectively. 

PPADD is the number of XOR gates required for the final 2 1n − bit concatenation 

and .XOR This method of generating a masked multiplier can be incorporated 
with Karatsuba multipliers wherever the first recursion uses / 2n bit 
multiplications. For example, a 233 bit masked multiplier can use Padded, 
General, Simple or the proposed Hybrid Karatsuba multiplications. It cannot use 
the Binary Karatsuba multiplier because the first split in the multiplicands is not 
of same size (i.e 105 bits and 128 bits). Table (2) compares the gate 

( )
m q

Q AB M= +  

 n   n   n   n   n   n   n   n  

N Bit 
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N Bit 
Multiplier 

N Bit 
Multiplier 

N Bit 
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XOR 

mA  mA  mB  mB  bM  aM  aM  bM  qM  

Figure 3: Generic n bit Masked Multiplier 



Figure 4: Proposed n-bit Masked Multiplier 
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requirements for the generic masked multiplier with the proposed masked 
multiplier for various multiplication algorithms. Results show that the proposed 
masked multiplier requires lesser gates than the generic masked multiplier. It 
may be noted that the masked multiplier with the Hybrid Karatsuba 
implementation requires minimum number of slices. On a Virtex 4 FPGA, the 
Hybrid Generic Masked Multiplier required 41107 slices, while the Hybrid 
Proposed Masked Multiplier required 30435 slices. The delay of the two designs 
was almost equal (around 17ns). 
 

 Generic Masked Multiplier Proposed Masked Multiplier 
 # AND  # XOR  # AND  # XOR  

Padded Karatsuba 26244 151140 19683 112217 
Simple Karatsuba 25168 141668 18873 103937 
General Karatsuba 39312 201188 29484 149612 
Hybrid Karatsuba 37740 191940 28485 143937 

 

Table 2: Comparison of 233 bit Masked Multiplier Implementations 
 

6. Conclusion 
In this paper we proposed a novel Hybrid Karatsuba multiplier which uses the 
best of the Simple and the General Karatsuba algorithms. This resulted in lesser 
space requirements on a FPGA. We also proposed a new design for a masked 
multiplier based on the Karatsuba algorithm which requires lesser number of 
gates compared to the conventional masked multiplier. This implementation of 
finite field multiplication forms an ideal base for an elliptic curve cryptosystem 
over 233(2 )GF . 
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