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Verification ???

• What is meant by 

“Formal Property Verification”?

• Options :

1. Formal method of verifying a 
property

2. Verifying of Formal Properties

• Ambiguity of English (natural) 
Language

• Formal Specifications

• Bugs are more costly than 
transistors !!!
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Verification??

Process used to demonstrate that the intent 
of design is preserved in its implementation
70% of design effort goes behind verification

DESIGN UNDER
VERIFICATION

Verification Environment
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Testing vs Verification

Testing verifies that the design was 
manufactured properly
Verification ensures that a design meets 
its functional intent

Spec.

HW Design

verification

Manufacturing

Testing 
Netlist Silicon

Reconvergence Model: Conceptual representation of the verification process
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Types of Verification 

Formal Property Verification
Formal Technique to verify formal properties
Verifies all properties of the design satisfy the 
properties
Static Property Verification

Assertion Based Verification
Properties checked during simulation
Verification confined to those areas that are 
encountered during simulation
Dynamic Property Verification
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What is being verified?

Equivalence Checking
Mathematically proves that the origin and 
output of a transformation of a netlist are 
logically equivalent 

Synthesis 

Equivalence 

Checking

RTL 

Or 

netlist

RTL 

Or 

netlist
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Property Checking

RTL coding

Interpretation Property 

Checking

assertions

Specifications RTL

Assertions: Characteristics of a design
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Functional Verification

Ensures that a design implements 
intended functionality
Can show but not prove

RTL coding

Functional 

Verification

Specification
RTL
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What is a test-bench?

Simulation code used to create a pre-
determined input sequence to a design 
and check the output response
Verification Challenge: 

What input patterns are to be applied to the 
DUV
What is the expected output response of a 
proper design under the applied stimuli
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Types of mistakes

Type I
(False 
negative)

Type II
(False 
Positive)

Bad

Design

Good

Design

Fail Pass
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Verification Methodolgies

Linting

Simulation: Most common tool for 
verification
Approximation of reality: 0, 1, x, z
Requires stimulus
Responses are validated against design 
intends
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Event Driven Simulation

Simulators are always slow
Outputs change only when an input 
changes

1..1

0..0

1..1
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1..1

0..1 1..0

The simulator could execute only when one of the inputs change

assign out = in1 ^ in2;                //verilog code snipet
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What if both the inputs change?

Logical world vs physical world
Unknown or ‘x’ state
Black box simulation
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Cycle Based Simulation

DFF

Q1

AND

S1

OR

S2

XOR

S3

DFF

Q2

1 0 0

•Assume Q1 holds a zero and Q2 holds a 1 initially

•An Event Driven simulation requires 6 events and 7 models

•If we are interested only in the final states of Q1 and Q2, the 
simulation could be optimized by acting only on the events for Q1 
and Q2

•Simulation is based on clock cycles
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CBS

When  the circuit description is compiled 
all combinatorial functions are collapsed 
into a single expression that can be used 
to determine all the ff values depending 
on the current state of the fan-in flops

Ex:  S3 = Q1 (check)
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During simulation, whenever the clock 
input rises the value of the ff-s are 
updated using the input value returned 
by the pre-compiled combinatorial input 
functions
CBS requires generation of 2 events and 
execution of one model
The number of logical computations 
does not change
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Gain when time required to perform logic 
computations are smaller than that required to 
schedule intermediate events
Thumb rule: Large number of registers 
changing state at every clock cycle
Loss: All timing and delay information is lost
Assumes that setup and hold time are met
Use a static timing analyzer
Dynamic and static timing analysis
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Synchronous
Asynchronous inputs, latches or multiple-
clock domains cannot be simulated 
accurately
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Few other points about simulators

Co-simulators

Avoid wave-form viewers

Use assertions
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Coverage

Code Coverage
Statement Coverage
Path Coverage
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Tasks of a Verification Engineer

Development of the formal property 
specification

Check the consistency and 
completeness of the specifications

Verifying the implementation against the 
formal property specifications
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Example of a priority arbiter

mem-arbiter(input r1,r2,clk,output g1,g2)
Design Intent:

1. Request r1 has a higher priority. When r1 
goes high, grant g1 goes high for the next 
two clock cycles

2. When none of the request lines are high, 
g2 is high in the next clock cycle

3. The grant lines g1 and g2 are mutually 
exclusive 
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Writing Formal Specifications

Lots of languages

Temporal Languages
Propositional logic
Temporal Operators: truth of propositions 
over time
Concept of time 
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Linear Temporal Language (LTL)

X: The Next Time Operator
The property Xφ is true at a state if φ is true 
in the next cycle, where φ may be another 
temporal property or boolean property.

F: The Future Operator
The property Fφ is true at a state if φ is true 
at some time in the future
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LTL (contd.)

G: Global Operator
The property Gφ is true at a state if the 
property φ is always true

U: Until Operator
The property φUΨ is true at a state, if Ψ is 
true at some future state t, and φ is true at 
all states leading to t.
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Property 1 in LTL

1. Request r1 has a higher priority. 
When r1 goes high, grant g1 goes 
high for the next two clock cycles

LTL Spec:
G[ r1 => Xg1 Λ XXg1]
G : The property must hold at all states
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Property 2 & 3 in LTL

2. When none of the request lines are high, 
g2 is high in the next clock cycle:

3. The grant lines g1 and g2 are mutually 
exclusive:

1 2 2[ ]G r r Xg¬ ∧¬ ⇒

1 2[ ]G g g¬ ∨¬
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Specification of correctness?

Very difficult to check.

No formal property to check against

However we may check for contradiction 
among the properties
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In-consistencies

G[ r1 => Xg1 Λ XXg1]

1 2 2[ ]G r r Xg¬ ∧¬ ⇒

Environment: r1 is high at time t but low at time (t+1), r2 is low    

at time t and (t+1) 

Hence, g1 should be high at time (t+2), by property 1

g2 should be high at time (t+2), by property 2

Contradicts property 3.

Model:

GAME

Environment Wins

1 2[ ]G g g¬ ∨¬
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Removing the In-consistency

G[ r1 => Xg1 Λ XXg1]

Environment: r1 is high at time t but low at time (t+1), r2 is low    

at time t and (t+1) 

Hence, g1 should be high at time (t+2), by property 1

g2 should be low at time (t+2), by property 2

Does not contradict property 3.

Model:

GAME

Environment Does not 
Win

1 2[ ]G g g¬ ⇒

1 2[ ]G g g¬ ∨¬
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Is the specification complete?

Chicken and egg 
problem
Formal vs structural 
coverage
Look back at:

G[ r1 => Xg1 Λ XXg1]

1 2[ ]G g g¬ ⇒

Ask the following questions

1. Is g1 ever high?

2. Is g2 ever high?

3. Is r1 required?

4. Is r2 required?

1 1 1[ ]G r X r XX g¬ ∧ ¬ ⇒ ¬

1 2[ ]G g g¬ ∨¬
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Design under verification

g1

g2

FF

FF

r1

r2
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Verilog Code Snipet

module arbiter(r1,r2,g1,g2,clk);
input clk, r1, r2;
output g1, g2;
reg g1, g2;
always @(posedge clk)
begin  

g2<=r2 & ~r1 & ~g1;
g1<=r1;

end
endmodule
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How do you verify??

Assertion based verification (ABV)
1. Simulation based verification
2. More close to the designer (as he has to learn less new 

techniques)
3. More close to the old simulation framework         

Formal based verification (FBV)
1. Formal techniques to verify properties
2. Mathematical Techniques involved

1/12/2007
IIT Madras

CS 676 36

ABV

DUV

r1

g2

g1

r2

Master 1

Master 2

Clk gen

DUT 
interface

Test Bench

Test Generation 
Engine

Property 
Checker

Simulation 
Platform

Property 
Specs
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Design under verification

FF

FF

g1=0

g2=0

r1=0

r2=0

Contradicts the second 
property that g2 is default grant!!!
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Hurdles of ABV

Generating the test cases which lead to 
all the scenarios

Directed Testing vs Randomized Testing

We shall see one such language, called 
“e” in this course
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FBV  (FSM Extraction)

FF

FF

r1

r2

g1

g2

1x

00 01

00 01

10 11

1x
0x

0x

01

00
1x

1x

State  labels : g1, g2
Input Labels: r1, r2

DUV FSM models
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FBV (contd.)

00 01

10 11

1x
0x

0x

01

00
1x

1x

Formal 
Properties

Model Checker 00

State  labels : g1, g2
Input Labels: r1, r2


