
1

1/12/2007
IIT Madras, Even Semester

Course No: CS 676
1

Digital Design Verification

Course Instructor:
Debdeep Mukhopadhyay

Dept of Computer Sc. and Engg.

Indian Institute of Technology Madras

1/12/2007
IIT Madras

CS 676 2

Verification ???

• What is meant by

“Formal Property Verification”?

• Options :

1. Formal method of verifying a
property

2. Verifying of Formal Properties

• Ambiguity of English (natural)
Language

• Formal Specifications

• Bugs are more costly than
transistors !!!

2

1/12/2007
IIT Madras

CS 676 3

Verification??

Process used to demonstrate that the intent
of design is preserved in its implementation
70% of design effort goes behind verification

DESIGN UNDER
VERIFICATION

Verification Environment

1/12/2007
IIT Madras

CS 676 4

Testing vs Verification

Testing verifies that the design was
manufactured properly
Verification ensures that a design meets
its functional intent

Spec.

HW Design

verification

Manufacturing

Testing
Netlist Silicon

Reconvergence Model: Conceptual representation of the verification process

3

1/12/2007
IIT Madras

CS 676 5

Types of Verification

Formal Property Verification
Formal Technique to verify formal properties
Verifies all properties of the design satisfy the
properties
Static Property Verification

Assertion Based Verification
Properties checked during simulation
Verification confined to those areas that are
encountered during simulation
Dynamic Property Verification

1/12/2007
IIT Madras

CS 676 6

What is being verified?

Equivalence Checking
Mathematically proves that the origin and
output of a transformation of a netlist are
logically equivalent

Synthesis

Equivalence

Checking

RTL

Or

netlist

RTL

Or

netlist

4

1/12/2007
IIT Madras

CS 676 7

Property Checking

RTL coding

Interpretation Property

Checking

assertions

Specifications RTL

Assertions: Characteristics of a design

1/12/2007
IIT Madras

CS 676 8

Functional Verification

Ensures that a design implements
intended functionality
Can show but not prove

RTL coding

Functional

Verification

Specification
RTL

5

1/12/2007
IIT Madras

CS 676 9

What is a test-bench?

Simulation code used to create a pre-
determined input sequence to a design
and check the output response
Verification Challenge:

What input patterns are to be applied to the
DUV
What is the expected output response of a
proper design under the applied stimuli

1/12/2007
IIT Madras

CS 676 10

Types of mistakes

Type I
(False
negative)

Type II
(False
Positive)

Bad

Design

Good

Design

Fail Pass

6

1/12/2007
IIT Madras

CS 676 11

Verification Methodolgies

Linting

Simulation: Most common tool for
verification
Approximation of reality: 0, 1, x, z
Requires stimulus
Responses are validated against design
intends

1/12/2007
IIT Madras

CS 676 12

Event Driven Simulation

Simulators are always slow
Outputs change only when an input
changes

1..1

0..0

1..1

7

1/12/2007
IIT Madras

CS 676 13

1..1

0..1 1..0

The simulator could execute only when one of the inputs change

assign out = in1 ^ in2; //verilog code snipet

1/12/2007
IIT Madras

CS 676 14

What if both the inputs change?

Logical world vs physical world
Unknown or ‘x’ state
Black box simulation

8

1/12/2007
IIT Madras

CS 676 15

Cycle Based Simulation

DFF

Q1

AND

S1

OR

S2

XOR

S3

DFF

Q2

1 0 0

•Assume Q1 holds a zero and Q2 holds a 1 initially

•An Event Driven simulation requires 6 events and 7 models

•If we are interested only in the final states of Q1 and Q2, the
simulation could be optimized by acting only on the events for Q1
and Q2

•Simulation is based on clock cycles

1/12/2007
IIT Madras

CS 676 16

CBS

When the circuit description is compiled
all combinatorial functions are collapsed
into a single expression that can be used
to determine all the ff values depending
on the current state of the fan-in flops

Ex: S3 = Q1 (check)

9

1/12/2007
IIT Madras

CS 676 17

During simulation, whenever the clock
input rises the value of the ff-s are
updated using the input value returned
by the pre-compiled combinatorial input
functions
CBS requires generation of 2 events and
execution of one model
The number of logical computations
does not change

1/12/2007
IIT Madras

CS 676 18

Gain when time required to perform logic
computations are smaller than that required to
schedule intermediate events
Thumb rule: Large number of registers
changing state at every clock cycle
Loss: All timing and delay information is lost
Assumes that setup and hold time are met
Use a static timing analyzer
Dynamic and static timing analysis

10

1/12/2007
IIT Madras

CS 676 19

Synchronous
Asynchronous inputs, latches or multiple-
clock domains cannot be simulated
accurately

1/12/2007
IIT Madras

CS 676 20

Few other points about simulators

Co-simulators

Avoid wave-form viewers

Use assertions

11

1/12/2007
IIT Madras

CS 676 21

Coverage

Code Coverage
Statement Coverage
Path Coverage

1/12/2007
IIT Madras

CS 676 22

Tasks of a Verification Engineer

Development of the formal property
specification

Check the consistency and
completeness of the specifications

Verifying the implementation against the
formal property specifications

12

1/12/2007
IIT Madras

CS 676 23

Example of a priority arbiter

mem-arbiter(input r1,r2,clk,output g1,g2)
Design Intent:

1. Request r1 has a higher priority. When r1
goes high, grant g1 goes high for the next
two clock cycles

2. When none of the request lines are high,
g2 is high in the next clock cycle

3. The grant lines g1 and g2 are mutually
exclusive

1/12/2007
IIT Madras

CS 676 24

Writing Formal Specifications

Lots of languages

Temporal Languages
Propositional logic
Temporal Operators: truth of propositions
over time
Concept of time

13

1/12/2007
IIT Madras

CS 676 25

Linear Temporal Language (LTL)

X: The Next Time Operator
The property Xφ is true at a state if φ is true
in the next cycle, where φ may be another
temporal property or boolean property.

F: The Future Operator
The property Fφ is true at a state if φ is true
at some time in the future

1/12/2007
IIT Madras

CS 676 26

LTL (contd.)

G: Global Operator
The property Gφ is true at a state if the
property φ is always true

U: Until Operator
The property φUΨ is true at a state, if Ψ is
true at some future state t, and φ is true at
all states leading to t.

14

1/12/2007
IIT Madras

CS 676 27

Property 1 in LTL

1. Request r1 has a higher priority.
When r1 goes high, grant g1 goes
high for the next two clock cycles

LTL Spec:
G[r1 => Xg1 Λ XXg1]
G : The property must hold at all states

1/12/2007
IIT Madras

CS 676 28

Property 2 & 3 in LTL

2. When none of the request lines are high,
g2 is high in the next clock cycle:

3. The grant lines g1 and g2 are mutually
exclusive:

1 2 2[]G r r Xg¬ ∧¬ ⇒

1 2[]G g g¬ ∨¬

15

1/12/2007
IIT Madras

CS 676 29

Specification of correctness?

Very difficult to check.

No formal property to check against

However we may check for contradiction
among the properties

1/12/2007
IIT Madras

CS 676 30

In-consistencies

G[r1 => Xg1 Λ XXg1]

1 2 2[]G r r Xg¬ ∧¬ ⇒

Environment: r1 is high at time t but low at time (t+1), r2 is low

at time t and (t+1)

Hence, g1 should be high at time (t+2), by property 1

g2 should be high at time (t+2), by property 2

Contradicts property 3.

Model:

GAME

Environment Wins

1 2[]G g g¬ ∨¬

16

1/12/2007
IIT Madras

CS 676 31

Removing the In-consistency

G[r1 => Xg1 Λ XXg1]

Environment: r1 is high at time t but low at time (t+1), r2 is low

at time t and (t+1)

Hence, g1 should be high at time (t+2), by property 1

g2 should be low at time (t+2), by property 2

Does not contradict property 3.

Model:

GAME

Environment Does not
Win

1 2[]G g g¬ ⇒

1 2[]G g g¬ ∨¬

1/12/2007
IIT Madras

CS 676 32

Is the specification complete?

Chicken and egg
problem
Formal vs structural
coverage
Look back at:

G[r1 => Xg1 Λ XXg1]

1 2[]G g g¬ ⇒

Ask the following questions

1. Is g1 ever high?

2. Is g2 ever high?

3. Is r1 required?

4. Is r2 required?

1 1 1[]G r X r XX g¬ ∧ ¬ ⇒ ¬

1 2[]G g g¬ ∨¬

17

1/12/2007
IIT Madras

CS 676 33

Design under verification

g1

g2

FF

FF

r1

r2

1/12/2007
IIT Madras

CS 676 34

Verilog Code Snipet

module arbiter(r1,r2,g1,g2,clk);
input clk, r1, r2;
output g1, g2;
reg g1, g2;
always @(posedge clk)
begin

g2<=r2 & ~r1 & ~g1;
g1<=r1;

end
endmodule

18

1/12/2007
IIT Madras

CS 676 35

How do you verify??

Assertion based verification (ABV)
1. Simulation based verification
2. More close to the designer (as he has to learn less new

techniques)
3. More close to the old simulation framework

Formal based verification (FBV)
1. Formal techniques to verify properties
2. Mathematical Techniques involved

1/12/2007
IIT Madras

CS 676 36

ABV

DUV

r1

g2

g1

r2

Master 1

Master 2

Clk gen

DUT
interface

Test Bench

Test Generation
Engine

Property
Checker

Simulation
Platform

Property
Specs

19

1/12/2007
IIT Madras

CS 676 37

Design under verification

FF

FF

g1=0

g2=0

r1=0

r2=0

Contradicts the second
property that g2 is default grant!!!

1/12/2007
IIT Madras

CS 676 38

Hurdles of ABV

Generating the test cases which lead to
all the scenarios

Directed Testing vs Randomized Testing

We shall see one such language, called
“e” in this course

20

1/12/2007
IIT Madras

CS 676 39

FBV (FSM Extraction)

FF

FF

r1

r2

g1

g2

1x

00 01

00 01

10 11

1x
0x

0x

01

00
1x

1x

State labels : g1, g2
Input Labels: r1, r2

DUV FSM models

1/12/2007
IIT Madras

CS 676 40

FBV (contd.)

00 01

10 11

1x
0x

0x

01

00
1x

1x

Formal
Properties

Model Checker 00

State labels : g1, g2
Input Labels: r1, r2

