INCISIVE VERIFICATION ARTICLE
MAY 2006

USING WHEN-SUBTYPING EFFECTIVELY IN
SPECMAN ELITE VERIFICATION ENVIRONMENTS

cadence

DEAN D'MELLO AND DAN ROMAINE, VERIFICATION DIVISION, CADENCE DESIGN SYSTEMS

INTRODUCTION

Developers and users of today’s verification
environments face huge challenges. The code for
these environments must be reusable in multiple
simulations for the same or for different designs;
adaptable for creating the numerous simulation
scenarios required to verify these designs; and easy
to use without knowing low-level details of the
verification environment. When-subtyping, also
known as when-inheritance, is a unique feature

of the e language that helps verification engineers
address these issues and maximize the benefits

of Incisive® Enterprise Specman Elite® generation,
checking, and coverage engines.

This article will briefly describe when-subtyping and
its uses and benefits; offer tips and guidelines for
developers and users of Specman Elite environments
to help them maximize the benefits of when-
subtyping; and address some common pitfalls
associated with using this feature.

OVERVIEW OF WHEN-SUBTYPING

Objects in an e verification environment are built out
of structs and units. Structs and units allow developers

to model data structures for generating stimulus and
checking the behavior of the design, and are similar

to classes in C** or modules in Verilog®.

When-subtyping provides a means to model different
behaviors of these objects without creating new
types. A struct or unit can have different struct-
members (fields, methods, events; and so on) based
on the value of a Boolean or enumerated-type field,
known as the “when-determinant” field.

08I07I08Y0910AYD

. — —— . ————— . ————

struct vehicle_s {
kind: [AUTOMOBILE, BIKE];
when AUTOMOBILE vehicle_s {
num_doors : uint [2..5];
}i
}

In this example, the vehicle_s object is defined. Based
on the value of the when-determinant kind field, it
can conditionally have a data field num_doors. If the
kind field has a value of AUTOMOBILE, then the
num_doors field exists and can be accessed. When an
object of type vehicle_s is instantiated, it can be
generated to be any possible subtype of vehicle_s. In
other words, it can be an AUTOMOBILE, BIKE, or one
of any additional subtypes defined in code extensions
after creating the instance.

WHEN-SUBTYPING IN VERIFICATION
ENVIRONMENTS

In verification environments, dynamic objects such
as stimulus data items (packets, bus transactions,
instructions) are implemented as structs, while the
static components that comprise the environment
(such as agents, bus functional models (BFMs),
stimulus sequence drivers, and monitors) are built
from units. In this article, we give examples of how
when-subtyping can be useful for modeling with
structs and units in the verification environment.

To provide context for the discussions that follow, the
figure below shows a block diagram of an example
verification environment designed according to the e
Reuse Methodology (eRM), in which the simulation
verification environment (SVE) is the highest-level unit

that encapsulates the verification components used in
simulations for the design under verification (DUV).

SVE serial_env

Static components | Config: |
(envy, sve, a}gent) RX agent
are units

Co| TX agent

module_evc Sij
checker seqiis!
dri

seq
E driver

Dynamics objects
(data items) are
structs

DUV R

MODELING VARIATIONS OF DATA ITEMS

One of the most common uses of when-subtyping in
Specman Elite environments is to model variations of
data items. This provides high-level control knobs to
simplify the tasks of test writers as they create code
to vary stimulus.

extend vehicle_s {
speed_cap :[SLOW, AVERAGE, FAST];
top_speed :uint;

when SLOW vehicle s { keep top_speed in [20..50]; };

when AVERAGE vehicle s { keep top speed in [40..90]1; };

when FAST vehicle s { keep top speed in [60..150]; };
}i

Continuing the vehicle code example presented
earlier, in the code example above, the speed_cap
field is a control knob for the top_speed field. In
this case, the knowledge of top_speed has been
abstracted away for easy use of the vehicle_s object.
The code below shows how the speed_cap knob is
used to get SLOW or FAST vehicles only in a specific
simulation.

extend vehicle_s {
keep speed_cap in [SLOW, FAST];
}i

An additional note on syntax: the code below shows
an alternate way of specifying subtypes. You will

often see when-subtyping coded as shown below; it
is the recommended way to code conditional struct

Using when-subtyping effectively

members when a reader’s understanding of the code
does not require viewing code for different subtypes
together. Use the when-block style shown above in
cases where keeping together code for different
subtypes will help readers of the code (for physical
fields and method extensions).

extend vehicle_s {
speed_cap :[SLOW, AVERAGE, FAST];
top_speed :uint;

Y

extend SLOW vehicle s {
keep top_speed in [20..50];
Yi

// Similar extensions for AVERAGE, FAST vehicles

CONFIGURING VERIFICATION
ENVIRONMENTS

When-subtyping also provides a way of modeling
verification environment components that are required
to behave differently in different simulations. For
example, a verification environment might require
an active driving component or a passive monitor
for differing device architectures. By building in
when-subtypes, the same code can be used for both
cases, reducing duplication of code. (The eRM
architecture standard requires that e verification
components (eVCs) provide an ACTIVE/PASSIVE
when-determinant field.)

This same concept can be applied to enable/disable
checking or coverage in all or some of the
environment, or to configure individual instances of
an eVC to behave differently. The benefit of this
approach is that a user of the eVC can choose the
environment they would like to simulate by
controlling these when-determinant fields.

In the code example below, several uses of subtyped
verification environment components are
demonstrated.

// provided in an earlier file
extend vr_pcie_env_name : [LINK 0, LINK 1];

extend sys {
link 0 : vr_pcie_single link env is instance;
keep link_0.name == LINK O0;

link_1 : vr_pcie_single link_env is instance;
keep link_1.name == LINK 1;
}i

// Simulation config code

extend LINK 0 vr_pcie_single_link _env {
keep has_active_rc;
keep has_passive_ep;

keep env_config.has_pl;

keep env_config.has_dl1l;
keep env_config.has_tl;

Incisive Newsletter —May 2006 | 2

First, the basic environments—instantiated under
sys—are subtyped using appropriate names. This
enables instantiating multiple vr_pcie_single_link_env
units under sys and controlling them independently,
as well as implementing different constraint blocks or
procedural code unique to each of the subtypes.

A user can extend the LINK_0 vr_pcie_single_link_env
and write code that applies only to instances of that
subtype. This is demonstrated with the constraints in
the subtype extension.

Second, several Boolean when-determinant fields are
constrained to affect the verification component
being built inside this vr_pcie_single_link_env
through when-subtypes of other components of the
environment. Note that no inheritance tree is
developed (just descriptions of when-inherited
functionality) and the types of the instances are not
being changed; rather, through when-subtyping, the
behavior of existing instances is being modified.

DEFINING AND USING STIMULUS
SEQUENCES

Another common use of when-subtyping in verification
environments is in the creation and use of sequences
of stimulus using eRM sequences. An environment
developer uses the sequence capability of the eRM
evc_util library to create a sequence struct with a
when-determinant field and a few pre-defined
subtypes. Sequences of stimuli are created by
implementing additional subtypes of the sequence
struct. The pre-defined and user-defined subtypes
are then used to implement stimulus scenarios that
use the power of the Specman generator with a
standard user interface for specifying constraints
as well as sequential behavior. This is an example of
an eRM sequence:

extend vr_pcie tl_seq kind: [SMALL_PACKET];

extend SMALL_PACKET vr_pcie_tl_seq {
!reqg pkt : MWR MEM REQ vr_pcie_tl_pkt;

body () @driver.clock is {
do reqg pkt keeping {
.tlp_data.size() == 1;
.first_addr == 0xff;

Y
}i

In this example, we have created a new when-
subtype of the existing sequence struct vr_pcie_tl_seq
called SMALL_PACKET. The body() time-consuming
method (TCM) of this new sequence sends a single
packet by activating a data-item field. To use this
subtype, any sequence field can be generated to be
a SMALL_PACKET sequence. Sequence fields in pre-
existing code will not need any additional modification
to use the new sequence, as traditional object-oriented
inheritance would require. Subtyping enables the

Using when-subtyping effectively

eRM sequence implementation to provide a standard
user interface for creating stimulus for all interfaces
of the DUV.

A COMMON PITFALL: ACCESSING
CONDITIONAL STRUCT-MEMBERS

As seen in the previous sections, when-subtyping
provides a powerful means to model and use stimulus
objects as well as verification environment components.

New and advanced users of Specman Elite
occasionally run into difficulties when coding and
using when-subtypes. In this section, we look at the
most common pitfall—accessing conditional struct
members—and recommend some techniques for
avoiding and addressing the issue. The code example
below continues the vehicle example presented
earlier and shows the error resulting from an attempt
to access the conditional field num_doors.

extend sys {
vehicle : vehicle_s;
keep vehicle.kind == AUTOMOBILE;
keep vehicle.num_doors == 3;

}i
Loading vehicle.e ...

x Error: ‘vehicle’ (of type ‘vehicle_s’)
does not have ‘num _doors’ field though its
subtypes do.

To access the field use ‘is a’ or ‘as_a’:
For example: vehicle.as a(AUTOMOBILE vehicle s).num doors
at line 63 in vehicle.e

keep vehicle.num doors == 3;

Here are a couple of ways to address this issue,
depending on the user’s intent:

a) Whenever possible, declare fields (or variables) as a

specific subtype, as shown in the code below. This
allows accessing conditional fields without additional
code and is likely the most appropriate solution when
the when-determinant field is constrained to be a
single value, as in the code presented above.

extend sys {
vehicle : AUTOMOBILE vehicle_s;
keep vehicle.num doors == 3;

Y

b) If you want the generator to select other values for

the when-determinant field (resulting in different
subtypes each time the field is generated), then other
solutions might be preferable. In the alternate code
example below, extending the specific subtype of the
struct allows accessing its conditional fields without
additional code. In this case the vehicle field of sys
can be either AUTOMOBILE or BIKE, but all
AUTOMOBILE vehicles will be generated with
num_doors = 3.

Incisive Newsletter —May 2006 | 3

extend sys {
vehicle : vehicle s; // can be AUTOMOBILE or BIKE
}i

extend AUTOMOBILE vehicle_s {
keep num doors == 3;

T

In the next section, we look at some additional
techniques for addressing the issue of accessing
conditional struct members for cases where the
above solutions might not apply.

SOME GENERAL GUIDELINES FOR
ADDRESSING THE ISSUE

. To minimize the likelihood of issues with accessing
conditional struct members, it is recommended to
implement as conditional struct members only those
fields, methods, and events that are truly specific to
each subtype. Note that partial or default definitions
can be placed in the base struct or unit definition and
modified appropriately in subtype-specific extensions,
allowing subtype-specific behavior without conditional
struct members, as shown below for the sound_horn()
method, which can be invoked for any field of type
vehicle_s, regardless of its subtype.

struct vehicle_s {
kind : [AUTOMOBILE, BIKE];

sound_horn() is empty; // default definition

when AUTOMOBILE vehicle s {
sound_horn() is only { // subtype-specific
extension
out (“BEEP, BEEP!”);
Y
Y

when BIKE vehicle_ s {
sound_horn() is only {
out (“RING, RING!”);

2. When using sequences, a special capability is
provided to alleviate the issue of accessing
conditional fields. It allows declaring a single field of
the base sequence or data-item struct, then activating
the same field as one of its subtypes using the “do”
action, and freely constraining the conditional fields
in the keeping block. So, the sequence example
introduced earlier could be rewritten as:

extend vr_pcie_tl_seq kind: [SMALL_PACKET] ;

extend SMALI_PACKET vr_pcie_tl_seq {
!req pkt : vr_pcie_tl_pkt;

body () @driver.clock is {
do MWR MEM REQ reqg pkt keeping {
.tlp_data.size() == 1;
.first_addr == O0xff;

Using when-subtyping effectively

Specifying the subtype (MWR MEM REQ) in the “do”
action allows the conditional field first_addr to be
accessed in the keeping block even though the field
being activated is of the base struct type. The ability
to specify the subtype in the “do” action allows
activating any subtype of the sequence (or its data
item) without needing to pre-declare fields of every
subtype or adding typecasting code. Without the
subtype name (when-determinant values) after the
"do" action, this code would produce the same “Does
not have field...” error message as above.

. The techniques described above can help in

many cases, but several cases remain where it is
advantageous to have an instance or variable of the
base type and generate it as the required subtype
using constraints. A classic example is the
instantiation of an agent unit in a verification
environment, which is generated as ACTIVE or
PASSIVE according to constraints in a configuration
file. In such cases, some form of typecasting is
required to access conditional struct members in
constraints and procedural code, and it is here that
Specman users often run into difficulty.

The e language provides two constructs to help
with typecasting of subtypes: “is a” and “as_a().”
The "is @a” construct can be used to create a Boolean
expression to test the subtype of a struct expression
and optionally perform an automatic typecast to
access conditional struct members. The “as_a()”
pseudo-method attempts to perform a typecast of

a struct expression and returns NULL if the struct
expression does not match the requested subtype.

The "as_a()"” pseudo-method will affect generation
order when used in constraints, causing unintended
issues when simply trying to access conditional struct
members. Additionally, there is a need to test its
return value to ensure that it is not NULL, or other
runtime errors might result. For these reasons it is
recommended to use “is a” for handling when-
subtypes whenever possible, and “as_a()" for type
conversions between scalar and list types. The
generation order is not affected by “is a” and
procedural code implemented using “is a” will
typically be more elegant and maintainable than the
equivalent functionality implemented using “as_a().”

Here is an example of how to use the “is a” construct
in both a constraint and in procedural code:

Incisive Newsletter —May 2006 | 4

unit bfm u {

interface : [MII, GMII];
rerun() is {
/] ...

Yi
Y

unit agent_u {
active_passive :
[ACTIVE, PASSIVE];
when ACTIVE agent_u { // bfm is in the
active-subtype
bfm : bfm u is instance;
Y
}i

erm_active_passive_t //

unit env_u like any env {
agent : agent_u is instance;

// Constraint Example using “is a” to access

conditional-field

keep agent is a ACTIVE agent_u (a) =>
a.bfm.interface == GMII;

event reset;
on reset { // rerun the BFM at each reset

// Procedural Example using “is a” to access

cond field
if agent is a ACTIVE agent_u (active_agent)

active_agent.bfm.rerun() ;
Y
Yi

In this example, at the env_u level of hierarchy, a
constraint has been written for the bfm_u interface

field. Since the BFM is only instantiated in the ACTIVE

subtype of the agent_u, and for reuse purposes the
agent field cannot be declared as a specific subtype,
we need some additional syntax to get access to the
BFM. Using the “is a” construct in an implication
constraint and specifying an identifier (a) provides
a typecasted identifier, allowing conditional struct
members of the ACTIVE subtype to be accessed
within the scope of the constraint.

Upon detecting a reset at the env level, we want to
call the BFM’s predefined rerun() method. Again, we
need to access a conditional struct member of the
ACTIVE subtype, this time from procedural code. The
use of the “is a” construct with the automatic
typecast allows this to be implemented in a manner
that is elegant and easier to maintain than “as_a(),”
especially if there is a need for multiple accesses to
conditional struct members. This style also allows the
handling of exceptions in an optional else block (not
shown in this example).

CONCLUSION

When-subtyping helps implement powerful
verification environments that are adaptable for
creating different simulation scenarios and usable
with minimal knowledge of the low-level
implementation details of the code.

Using when-subtyping effectively

This article described the unique capability of when-
subtyping in the e language, discussed the benefits it
provides for verification in the modeling and use of
Specman environments, and provided some tips for
using when-subtyping effectively. There are several
other aspects of when-subtyping that might be
interesting to readers. The section below identifies
some sources of additional information in Specman
Elite documentation.

We invite readers to provide feedback on this article
and initiate follow-up discussions on the e discussion
forum on the Cadence user website: cdnusers.org

WHERE TO GET MORE INFORMATION

The following sections of Specman Elite
documentation might be interesting to users and
developers of Specman environments who would like
to learn more about when-subtyping. Section
numbers refer to the documentation provided with
the Specman Elite 5.0.2 release.

In the e Language Reference Version 5.0.2:
2.14.1is [not] a

3.1.5 Struct Subtypes

3.1.5.1 Referring to a Struct Subtype

3.1.5.2 Using Extend, When, and Like with Struct
Subtypes

3.1.5.3 Referring to Conditional Fields in When-
Constructs

3.8.2 as_a()

4.7 Creating Subtypes with When

4.8 Extending When-Subtypes

4.8.1 Coverage and When-Subtypes

4.8.2 Extending Methods in When-Subtypes

4.10 Comparison of When and Like Inheritance

IN THE ¢ REUSE METHODOLOGY (eRM)
DEVELOPER MANUAL, VERSION 2.1:

5.8.1 Specifying Subtype in Do Actions

Incisive Newsletter —May 2006 | 5

http://www.cdnusers.org/
http://www.cdnusers.org/Forums/tabid/52/view/topics/forumid/68/Default.aspx
http://www.cdnusers.org/Forums/tabid/52/view/topics/forumid/68/Default.aspx

