léfit)n

Specman Elite ™

Tutorial

Version 4.0.1

Legal Notice

Copyright © 1999-2002 Verisity Design, Inc. All rights reserved. The contents of this
document constitute valuable proprietary and confidential property of Verisity Design, Inc.

Trademarks

Verisity® is a trademark of Verisity Ltd or its subsidiaries (Verisity), registered in the
United States and other jurisdictions. The Verisity I@8y%C, Invisible Specman, Lintrpt,
Pure IP, Specman, Specman Elite, Specview, SureCov, SurelLint, SureSight, and
Verification Advisor are trademarks of Verisity Design, Inc. All other trademarks are the
exclusive property of their respective owners.

Confidentiality Notice

No part of this information product may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise without prior
written permission from Verisity Design, Inc.

Information in this product is subject to change without notice and does not represent a
commitment on the part of Verisity. The information contained herein is the proprietary
and confidential information of Verisity or its licensors, and is supplied subject to, and may
be used only by Verisity’s customers in accordance with, a written agreement between
Verisity and its customers. Except as may be explicitly set forth in such agreement,
Verisity does not make, and expressly disclaims, any representations or warranties as to the
completeness, accuracy, or usefulness of the information contained in this document.
Verisity does not warrant that use of such information will not infringe any third party
rights, nor does Verisity assume any liability for damages or costs of any kind that may
result from use of such information.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Destination Control Statement

All technical data contained in this product is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Table of Contents

1 Introduction

OV BIVIBW . oo e 1-1
Tutorial Goals e 1-3
Setting up the Tutorial Environment 1-4
Document ConVeNtiONS 1-4

2 Understanding the Environment

Goals for this Chapter 2-1
What You Will Learn 2-1
The Design Specifications e 2-2
The Interface Specifications 2-3
The Functional TestPlan e e 2-3
Overview of the Verification Environment 2-5

3 Creating the CPU Instruction Structure

Goals for this Chapter e 3-1
What YouWill Learn 3-1

Capturing the Specifications i 3-2
Creating the List of Instructions 3-8

Specman Elite Tutorial © Verisity Design, Inc. ili

Generating the First Test

Goals for this Chapter 4-1
What You Will Learn 4-1
Defining the Test Constraints 4-3
Loading the Verification Environment 4-5
Generating the Test e e 4-7

Driving and Sampling the DUT

Goals forthis Chapter i e 5-1
What You Will Learn e 5-1

Defining the Protocols 5-2
Running the Simulation i 5-5

Generating Constraint-Driven Tests

Goals forthis Chapter i e 6-1
What You Will Learn 6-1
Defining Weights for Random Tests i 6-2
Generating Tests With a User-SpecifiedSeed 6-3
Generating Tests Witha Random Seed 6-6

Defining Coverage

Goals for this Chapter e 7-1
What YouWill Learn 7-1

Defining Coverage forthe FSM e 7-2
Defining Coverage for the Generated Instructions 7-4
Defining Coverage forthe CornerCase 7-5

Analyzing Coverage

Goals for this Chapter 8-1
What You Will Learn 8-1

Running Tests with Coverage Groups Defined 8-2
Viewing State Machine Coverage 8-4
Viewing Instruction Stream COVeragettt 8-9
Extending COVEerageo e 8-12
Viewing Coverage PeriInstancet 8-16
Viewing Corner Case COVEIaQEe . . . oottt ettt it e e e e 8-19

© Verisity Design, Inc. Specman Elite Tutorial

9 Writing a Corner Case Test

Goals for this Chapter 9-1
What You Will Learn 9-1
Increasing the Probability of Arithmetic Operations 9-2
Linking JMPC Generation to the Carry Signal 9-3

10 Creating Temporal and Data Checks

Goals for this Chapter 10-1
What You Will Learn 10-1

Creating the Temporal Checks 10-2
Creating Data Checks 10-4
Running the Simulation i 10-7

11 Analyzing and Bypassing Bugs

Goals forthis Chapter e e e 11-1
What You Will Learn 111

Displaying DUT Values e 11-2

Setting Breakpointst 11-5
Stepping the Simulation 11-6
Bypassingthe BUgt 11-8
Tutorial SUMMaANY e 11-9

A Setting up the Tutorial Environment

Downloading the Required Files A-1
Installing the Specman Elite Software A-3
Installing the Tutorial Files A-4

B Design Specifications for the CPU

CPU INStIUCLIONSot e e e e e B-1
CPU INterfaceo B-3
CPU RegISter Listo e e e e B-4

Specman Elite Tutorial © Verisity Design, Inc. v

1 Introduction

Overview
The Specmali Elite™ verification system provides benefits that result in:
* Reductions in the time and resources required for verification

* Improvements in product quality

The Specman Elite system automates verification processes, provides functional coverage
analysis, and raises the level of abstraction for functional coverage analysis from the RTL
to the architectural/specification level. This means that you can:

* Easily capture your design specifications to set up an accurate and appropriate
verification environment

* Quickly and effectively create as many tests as you need
* Create self-checking modules that include protocols checking
* Accurately identify when your verification cycle is complete

The Specman Elite system provides three main enabling technologies that enhance your
productivity:

* Constraint-driven test generation—You control automatic test generation by
capturing constraints from the interface specifications and the functional test plan.
Capturing the constraints is easy and straightforward.

Specman Elite Tutorial © Verisity Design, Inc. 1-1

Introduction Overview

» Data and temporal checking—You can create self-checking modules that ensure data
correctness and temporal conformance. For data checking, you can use a reference
model or a rule-based approach.

* Functional coverage analysis—¥ou avoid creating redundant tests that waste
simulation cycles, because you can measure the progress of your verification effort
against a functional test plan.

Figure 1-1 shows the main component technologies of the Specman Elite system and its
interface with an HDL simulator.

Figure 1-1 The Specman Elite System Automates Verification

Interface specification Functional test plan Legacy code
(e language) (e language) (C language)

Specman Elite verification system

Constraint-driven Data and temporal Functional coverage
test generation checking analysis

HDL simulator

HDL models Legacy code
(HDL)

1-2 © Verisity Design, Inc. Specman Elite Tutorial

Tutorial Goals Introduction

Tutorial Goals

This tutorial is for use with Specman Elite version 4.0 and higher.

The goal of this tutorial is to give you first-hand experience in how the Specman Elite
system effectively addresses functional verification challenges.

As you work through the tutorial, you follow the process described in Figure 1-2. The
tutorial uses the Specman Elite system to create a verification environment for a simple
CPU design.

Figure 1-2 Tutorial Verification Task Flow

Design the verification
environment

Define DUT interfaces

Generate a simple test

Drive and sample the
DUT

Generate constraint-
driven tests

Define and analyze test
coverage

Create corner-case
tests

Create temporal and
data checks

Analyze and bypass
bugs

Specman Elite Tutorial © Verisity Design, Inc. 1-3

Introduction Setting up the Tutorial Environment

Setting up the Tutorial Environment

Before starting the design verification task flow shown in Figure 1-2 on page 1-3, you must
set up the tutorial environment.

To set up the tutorial environment:

1. Download the Specman Elite software and tutorial files (see “Setting up the Tutorial
Environment” on page A-1).

2. Install the Specman Elite software.
3. Install the tutorial files.

See Appendix A, “Setting up the Tutorial Environment”, for detailed instructions.

Note Even if Specman Elite software is currently installed in your environment,
you still have to download and install the tutorial files.

Document Conventions

This tutorial uses the document conventions described in Table 1-1.

Table 1-1 Document Conventions

Visual Cue Meaning

courier Specman Elite or HDL code. For example,

keep opcode in [ADD, ADDI];

courier bold Text that you need to type exactly as it appears to complete a
procedure or modify a file.

bold In text, bold indicates Specman Elite keywords. For example, in the
phrase “theverilog trace statement,Verilog andtrace are
keywords.

% In examples that show commands being enteredsptsgmbol

indicates the UNIX prompt.

SN> In examples that show commands being entered in the Specman
Elite system, SN> indicates the Specman Elite prompt.

1-4 © Verisity Design, Inc. Specman Elite Tutorial

2 Understanding the
Environment

Goals for this Chapter

This tutorial uses a simple CPU design to illustrate the benefits of using the Specman Elite
system for functional verification. This chapter introduces the overall verification
environment for the tutorial CPU design, based on the design specifications, interface
specifications, and the functional test plan.

What You Will Learn

Part of the productivity gain provided by the Specman Elite system derives from the ease
with which you can capture the specifications and functional test plan in executable form.
In this chapter, you become familiar with the design specifications, the interface
specifications, and the functional test plan for the CPU design. You also become familiar
with the overall CPU verification environment.

The following sections provide brief descriptions of the:
* Design specifications
* Interface specifications
* Functional test plan

¢ Qverall verification environment

Specman Elite Tutorial © Verisity Design, Inc. 2-1

Understanding the Environment The Design Specifications

For more detailed information on the CPU instructions, the CPU interface, and the CPU’s
internal registers, see Appendix B, “Design Specifications for the CPU".

The Design Specifications

The device under test (DUT) is an 8-bit CPU with a reduced instruction set (Figure 2-1).

Figure 2-1 CPU Block-Level Diagram

CPU

clock —— b ALU

—
rst Fetch & Execute

8 State Machine
data ——F+—p ro
ri
r2 pc
r3 pcs

The state machine diagram for the CPU is shown in Figure 2-2. The second fetch cycle is
only forimmediateinstructions and for instructions that control execution flow.

Figure 2-2 CPU State Machine Diagram

opcode == {ADDI, SUBI, ANDI,
XORI, JMP, JMPC, CALL}

There is a 1-bit signal associated with each stxtes; fetch2 fetch] start. If no reset
occurs, thdetchlsignal must be asserted exactly one cycle after entering the execute state.

2-2 © Verisity Design, Inc. Specman Elite Tutorial

The Interface Specifications Understanding the Environment

The Interface Specifications

All instructions have a 4-bit opcode and two operands. The first operand is one of four
4-bit registers internal to the CPU. The second operand is determined by the type of
instruction:

* Register instructions—The second operand is another one of the four internal
registers.

Figure 2-3 Register Instruction

byte 1

bit 7 6 5 4 3 2 1 0

opcode opl op2

* Immediate instructions—The second operand is an 8-bit value. When the opcode is
of type JMP, JMPC, or CALL, this operand must be a 4-bit memory location.

Figure 2-4 Immediate Instruction

byte 1 ?
bt 47 6 § 4 3 2 1 o0 7 6| 5 4| 3| 2| 1] 0
opcode opl don't op2
care

The Functional Test Plan

We need to create a series of tests that will result in adequate test coverage for most aspects
of the design, including some rare corner cases. There will be three tests in this series.

Test 1

Test Objective

A simple go-no-go test to confirm that the verification environment is working properly.

Specman Elite Tutorial © Verisity Design, Inc. 2-3

Understanding the Environment The Functional Test Plan

Test Specifications
* Generate five instructions.
* Use either the ADD or ADDI opcode.
* Setopl to REGO.

* Set op2 either to REGL for a register instruction or to value 0x5 for an immediate
instruction.

Test 2

Test Objective

Multiple random variations on a test to gain high percentage coverage on commonly
executed instructions.

Test Specifications

* Use constraints to direct random testing towards the more common arithmetic and logic
operations rather than the control flow operations.

¢ Run the test 15 times, each time with a different random seed.

Test 3

Test Objective

Generation of a corner case test scenario that exercises JMPC opcode when carry bit is
asserted. Note that it is difficult to efficiently cover this scenario by purely random or
purely directed tests.

Test Specifications
* Generate many arithmetic opcodes to increase the chances of carry bit assertion.

* Monitor the DUT and use on-the-fly generation to generate many JMPC opcodes when
the carry signal is high.

2-4 © Verisity Design, Inc. Specman Elite Tutorial

Overview of the Verification Environment Understanding the Environment

Overview of the Verification Environment

The overall test strategy, shown in Figure 2-5, is to:
* Constrain the Specman Elite test generator to create valid CPU instructions.
* Compare the program counters in the CPU to those in a reference model.
* Define temporal rules to check the DUT behavior.

» Define coverage points for state machine transitions and instructions.

Figure 2-5 Design Verification Environment Block-Level Diagram

Reference Model

Test Generator

struct cpu {
ins: list of
instructions;
simulate(cpu:cpu_state)

is { |
case opcode {

Instructions - Checker
Device Under Test

1 oy

O ® Fai

Temporal
Rules

® Pass

Coverage » ———

Functional
Coverage
Points

Specman Elite Tutorial © Verisity Design, Inc. 2-5

Understanding the Environment Overview of the Verification Environment

Because the focus of this tutorial is the Specman Elite system, we do not include an HDL
simulator. Rather than instantiating an HDL DUT, we model the DU& amd simulate it

in Specman Elite. The process you use to drive and sample the [Eif @ractly the

same as a DUT in HDL.

Now you are ready to create the first piece of the verification environment, the CPU
instruction stream.

2-6 © Verisity Design, Inc. Specman Elite Tutorial

3 Creating the CPU
Instruction Structure

Goals for this Chapter

The first task in the verification process is to set up the verification environment. In this
chapter you start creating the environment by defining the inputs to the design, the CPU
instructions.

What You Will Learn

In this chapter you learn how to create a data structure and define specification constraints
that enable the Specman Elite system to generate a legal instruction stream. By the end of
this chapter, you will have created the core structure for the CPU instructions. This core
structure will be used and extended in subsequent chapters to create the tests.

As you work through this chapter, you gain experience with one of the Specman Elite
system’s enabling featureseasy specification captureUsing a few constructs from the
elanguage, you define the legal CPU instructions exactly as they are described in the
interface specifications.

Specman Elite Tutorial © Verisity Design, Inc. 3-1

Creating the CPU Instruction Structure Capturing the Specifications

This chapter introduces tleeconstructs shown in Table 3-1.

Table 3-1 New Constructs Used in this Chapter

Construct How the Construct is Used

<> Marks the beginning and end®tode.

struct Creates a data structure to hold the CPU instructions.

extend Adds the data structure for the CPU instructions to the Specman Elite
system of data structures.

list of Creates an array or list without having to keep track of pointers or
allocate memory.

type Defines an enumerated data type for the CPU instructions.

bits Defines the width of an enumerated type.

keep Specifies rules or constraints for the instruction fields.

when Implements conditional constraints on the possible values of the

instruction fields.

To create the CPU instruction structure, you must:
* Capture the interface specifications
* Create a list of instructions

The following sections explain how to perform these tasks.

Capturing the Specifications

In this task, you create the data structure for the instruction stream and constrain the test
generator to generate only legal CPU instructions. Individual tests that you create later can
constrain the generator even further to test some particular functionality of the CPU.

For a complete description of the legal CPU instructions, refer to Appendix B, “Design
Specifications for the CPU”.

3-2 © Verisity Design, Inc. Specman Elite Tutorial

Capturing the Specifications Creating the CPU Instruction Structure

Procedure

To capture the design specificationgin

1.

Make a new working directory and copy #1e/CPU_instr.€ile to the working
directory.

Open theCPU_instr.efile in an editor.

The first part of the file has a summary of the design specifications for the CPU
instructions.

CPU_instr.e: Basic structure of CPU instructions
This module defines the basic structure of CPU instructions,
according to the design and interface specifications.

* All instructions are defined as:
Opcode Operandl Operand2

* There are 2 types of instructions:

Register Instruction:
bit | 7654 |32] 10 |
| opcode | opl | op2 |
(reg)

Immediate Instruction:
byte | 1 | 2 |
bit | 7654|3210 |76543210|
| opcode | opl | don't | op2 |
| care |

* Register instructions are:
ADD, SUB, AND, XOR, RET, NOP

* Immediate instructions are:
ADDI, SUBI, ANDI, XORI, JMP, JMPC, CALL

* Registers are REG0, REG1, REG2, REG3

Specman Elite Tutorial © Verisity Design, Inc. 3-3

Creating the CPU Instruction Structure Capturing the Specifications

3. Find the portion of the file that starts with tHeecode delineator and review the

constructs:

defines the legal
opcodes as an
enumerated type

defines the
internal registers

when complete,
this structure
defines a valid
CPU instruction

// indicates that
rest of line is a
comment

when complete,
this construct
adds the CPU
instruction set to
the Specman Elite
system

<

type cpu_opcode: [// Opcodes
ADD, ADDI, SUB, SUBI,
AND, ANDI, XOR, XORl,
JMP, JMPC, CALL, RET,
NOP

] (bits: 4);

type reg: [// Register names
REGO, REG1, REG2, REG3
] (bits:2);
struct instr {
/I defines 2nd op of reg instruction
/I defines 2nd op of imm instruction
I/ defines legal opcodes for reg instr
/I defines legal opcodes for imm instr
/I ensures 4-bit addressing scheme
2

extend sys {
/I creates the stream of instructions

4. Define two fields in thenstr structure, one to hold the opcode and one to hold the first

operand.

Use the enumerated typepu_opcodandreg, to define the types of these fields. To
indicate that the Specman Elite system must drive the values generated for these fields
into the DUT, place &b character in front of the field name. You will see how

this % character facilitates packing automation in Chapter 5, “Driving and Sampling

the DUT".

© Verisity Design, Inc. Specman Elite Tutorial

Capturing the Specifications Creating the CPU Instruction Structure

The structure definition should now look like this:

struct instr {
add these two %opcode :cpu_opcode;
lines into the file %opl ‘reg;

/I defines 2nd op of reg instruction

5. Define a field for the second operand.

The second operand is either a 2-bit register or an 8-bit memory location, depending
on the kind of instruction, so you need to define a single fikitadj that specifies the

two kinds of instructions. Because the generated valudgridiare not driven into the
design, do not put % in front of the field name.

struct instr {

%opcode :cpu_opcode;
add this line to %opl ‘reg;
define the field kind :[imm, req];
‘kind’ and define
an enumerated /l defines 2nd op of reg instruction
type at the
same time

Specman Elite Tutorial © Verisity Design, Inc. 3-5

Creating the CPU Instruction Structure Capturing the Specifications

6. Define the conditions under which the second operand is a register and those under
which it is a byte of data.

You can use thevhen construct to do this.

struct instr {

%opcode :cpu_opcode;
%opl ‘reg;
kind [imm, req];

/I defines 2nd op of reg instruction
when reg instr {

%op2 ‘reg;
¥

/I defines 2nd op of imm instruction
when imm instr {

%op2 ‘byte;
3

7. Constrain the opcodes for immediate instructions and register instructions to the
proper values.

3-6 © Verisity Design, Inc. Specman Elite Tutorial

Capturing the Specifications Creating the CPU Instruction Structure

Whenever the opcode is one of the register opcodes, thkmthigeld must beeg.
Whenever the opcode is one of the immediate opcodes, thkimdHeeld must be
imm You can use thkeepconstruct with the implication operater to easily create
these complex constraints.

struct instr {

/I defines legal opcodes for reg instr
keep opcode in [ADD, SUB, AND, XOR, RET, NOP]
=> kind == reg;

/I defines legal opcodes for imm instr
keep opcode in [ADDI, SUBI, ANDI, XORI, JMP, JMPC, CALL]

=> kind == imm;

I/l ensures 4-bit addressing scheme

8. Constrain the second operand to a valid memory location (less than 16) when the
instruction is immediate.

You can use thevhen construct together witkeepand=> to create this constraint.

struct instr {

I/l ensures 4-bit addressing scheme
when imm instr {

keep opcode in [JMP, JMPC, CALL] => op2 < 16;
3

9. Save th&€PU _instr.efile.

Now you have finished defining a legal CPU instruction.

Specman Elite Tutorial © Verisity Design, Inc. 3-7

Creating the CPU Instruction Structure Creating the List of Instructions

Creating the List of Instructions

In this task, you create a CPU instruction structure by extending the Specman Elite system
(sy9 to include a list of CPU instructionsysis a built-in Specman Elite structure that
defines a generic verification environment.

Procedure

To create the list of instructions:

1. Within the sam&€PU _instr.€file, find the lines of code that extend the Specman Elite
system:

extend sys {
/I creates a stream of instructions

2. Create a field for the instruction data of tymer.

When defining a field that is an array or a list, you must precede the field type with the
keywordlist of.

extend sys {
/I creates a stream of instructions
linstrs: list of instr;

The exclamation point preceding the field naimgirstells the Specman Elite system

to create an empty data structure to hold the instructions. Then, each test tells the
system when to generate values for the list, either before simulation (pre-run
generation) or during simulation (on-the-fly generation). In this tutorial you use both
types of generation.

3. Save th&€PU _instr.efile.

Now you have created the core definition of the CPU instructions. You are ready to
extend this definition to create the first test.

3-8 © Verisity Design, Inc. Specman Elite Tutorial

4 Generating the First Test

Goals for this Chapter

In this chapter, you will generate the first test described in “The Functional Test Plan” on
page 2-3. This first test is a simple test to confirm that the verification environment is set up
correctly and that you can generate valid instructions for the CPU model.

What You Will Learn

In this chapter, you learn how to create different types of tests easily by specifying test
constraints in the Specman Elite system. Test constraints direct the Specman Elite
generator to a specific test described in the functional test plan. This chapter illustrates how
the Specman Elite system can quickly generate an instruction stream. In the next chapter,
you will learn how to drive this instruction stream to verify the DUT.

As you work through this chapter to create the first test, you gain experience with the
following enabling features of the Specman Elite system:

* Extensibility— This enables adding definitions, constraints, and methods to a struct in
order to change or extend its original behavior without altering the original definition.

* Constraint solver—This is the core technology that intelligently resolves all
specification constraints and test constraints and then generates the desired test.

Specman Elite Tutorial © Verisity Design, Inc. 4-1

Generating the First Test What You Will Learn

This chapter shows new uses of #eonstructs introduced in Chapter 3, “Creating the
CPU Instruction Structure”. It also introduces the Specview menu commands shown in
Table 4-1.

Table 4-1 New Constructs and Specview Menu Commands Used in this
Chapter

Construct How the Construct is Used

extend Adds constraints to theysandinstr structs defined in Chapter 3,
“Creating the CPU Instruction Structure”.

keep Limits the possible values of the instruction fields and the number
of instructions generated for this test.

when Defines conditional constraints.

Command How the Command is Used

File>>Load Loads uncompile@ modules into the Specman Elite system.

File>>Modules Lists thee modules you have loaded into the Specman Elite

system.
Test>>Test Generates a test based on the constraints you specify.
Tools>>Data Opens the Data Browser GUI, in which you view the hierarchy of
Browser generated objects and their values.

Tip In most cases, the Specview menu commands presented in this tutorial can be
issued by clicking a button. For example, clicking the Load button in the
Specview main window is the same as choosing Load from the File menu.
Similarly, you can click the Modules button instead of choosing Modules from
the File menu or click Test instead of choosing Test from the Test menu.

The steps required to generate the first test for the CPU model are:

1. Defining the test constraints.

2. Loading the verification environment into the Specman Elite system.
3. Generating the test.

The following sections explain how to perform these steps.

4-2 © Verisity Design, Inc. Specman Elite Tutorial

Defining the Test Constraints Generating the First Test

Defining the Test Constraints

The Functional Test Plan for the CPU design (see “The Functional Test Plan” on page 2-3)
describes the objectives and specifications for this first test.

Test Objective

The objective is to confirm that the verification environment is working properly.

Test Specifications
To meet the test objective, the test should:
* Generate five instructions.
* Use either the ADD or ADDI opcode.
* Setopl to REGO.
* Set op2 either to REGL for a register instruction or to value 0x5 for an immediate
instruction.
Procedure

To capture the test constraintsein

1. Copy thesrc/CPU_tstl.¢o0 the working directory and open t8&®U _tstl.dile in an
editor.

Specman Elite Tutorial © Verisity Design, Inc. 4-3

Generating the First Test Defining the Test Constraints

2. Find the portion of the file that looks like this:

<
import CPU_top;

extend instr {
/I test constraints

h

extend sys {
/I generate 5 instructions

3. Add lines below the comments as follows to constrain the opcode, operands, and
number of instructions:

<
extend instr {
/ltest constraints

constrains the keep opcode in [ADD, ADDI];
opcode and keep opl == REGO;
operands when reg instr { keep op2 == REGL1,; };
when imm instr { keep op2 == 0x5; };
h
extend sys {
constrains the /lgenerate 5 instructions
number of keep instrs.size() == 5;

instructions %

4. Save th&€PU _tstl.file.

4-4 © Verisity Design, Inc. Specman Elite Tutorial

Loading the Verification Environment Generating the First Test

Loading the Verification Environment
To run the first test, you need the following files:

* CPU_tstl.e—mports (includesCPU_top.eand contains the test constraints for the
first test.

e CPU_top.e—mportsCPU_instr.eandCPU_misc.e

* CPU_instr.e—contains the definitions and specification constraints for CPU
instructions.

e CPU_misc.e—onfigures settings for print and coverage display.

These files are called modules in the Specman Elite system. Before the system can
generate the test, you must load all the modules.

Procedure

To load all modules:

1. Copy thesrc/CPU_top.dile to the working directory.
2. Copy thesrc/CPU_misc.édile to the working directory.

The working directory should now contain four fil&PU_instr.e CPU_misc.e
CPU_top.eandCPU tstl.e

3. From the working directory, type the following command at the UNIX prompt to
invoke Specman Elite’s graphical user interface, Spectiew

% specview &
Tip If the Specview main window (Figure 4-1) does not appear, make sure that you

have defined the Specman Elite environment variables correctly. You can source
theinstall_dir/release_numbéenv.csHile to set these variables.

Specman Elite Tutorial © Verisity Design, Inc. 4-5

Generating the First Test Loading the Verification Environment

Figure 4-1 Specview Main Window

=] Specman Elite ==
File Edit ‘iew Test Debug Tools User Help suppor‘tl }ﬁrisorl %sityl
[
Bl @& D @ v @ B
Interrupt | Load Reload Restore Modules | Test | Sys Coverage Source Config | Threads
Uelcone to Specman Elite (4.0c2.0} - Linked on Thu Dec 27 17:01:01 2001
Checking license ... OK

4. Choose Load from the File menu or click the Load button.
The Select A File dialog box appears.
5. Inthe Select A File dialog box, double-clickU _tstl.an the list of files.

Specview automatically loads all four files contained in your working directory. In the
Specview main window, you should see a message that looks as follows:

Loading CPU _instr.e (imported by CPU_top.e) ...
Loading CPU_misc.e (imported by CPU_top.e) ...
Loading CPU_top.e (imported by CPU_tstl.e) ...

Loading /tutorial/CPU_tstl.e ...

Tip Ifthe CPU_tstl.dile name does not appear in the dialog box, you probably did
not invoke Specview from the working directory. Use the list of directories in the
dialog box to navigate to the working directory.

Tip Ifthe CPU_tstl.dile does notload completely because of a syntax error, use the
UNIX diff utility to compare your version dEPU_tstl.€0
tutorial/gold/CPU _tstl.eFix the error and click the Reload button.
Alternatively, you can click the blue hypertext link in the Specview main
window, and the error location will be displayed in the Debugger window.

To see a list of loaded modules, choose Modules from the File menu or click the Modules
button.

There should be four modules loaded:

CPU_instr
CPU_misc
CPU_top
CPU_tstl

4-6 © Verisity Design, Inc. Specman Elite Tutorial

G

enerating the Test

Generating the Test

To generate the test:

1.

Generating the First Test

In the Specview main window, click the Test button.

You should see the following output in the Specview main window.

= Specman Elite

(=

File Edit Wiew Test Debuz Tools Uzer Help

suppott

Afisorl l’eﬁsity |

® g2 @B 9 @ |V @ B
Interrupt | Load Reload Restore Modules | Test

Sysz Coverage Source Config

Threads

Loading CPU_instr.e {imported by CPU_top.e} ...
Loading CPU_nisc.e {inported by CPU_top.e} ...
Loading CPU_top.e {inported by CPU_tstl.e} ...
Loading CPU_tstl.e ...

Doing setup ...

Generating the test using seed 1...

Starting the test ...

Running the test ...

HNo actual running requested.

Checking the test ...

Checking is complete — 0 DUT errors, 0 DUT warnings.
Urote 1 cover_struct to CPU_tstl_1.ecov

Specman > |

Y

|

1 | CPU_tst1 | Hornal

I Ready |

2.

Specman Elite Tutorial

© Verisity Design, Inc.

In the Tools menu, choose Data Browser, and then choose Show Data Sys.

Generating the First Test

The Data Browser GUI appears.

Generating the Test

Data Browser — sys [T
File View Tools |
B E O = Jd & 8

Mew Window | Source Edit | Modify | config Lock | Close
Expression: 5YS 7| : sys: sys (like any_unif) = sys—@0
Data Content Data Detajls
(3 Fislds | 5 £ m]
vents Methods | 0 List i=ms
- Diinstrs = & items
@[y |% Mame Valus Module
@ 1 time 0 Intsrral
@ 1 instrs A itzrns CPU_instr
e _—
Source Viewer

oot expression does not have

[

1 as

declaration sonrce ref

5 2 Fietas Ready

3. Click the bludnstrs = 5 itemdink in the left panel.

4-8 © Verisity Design, Inc.

Specman Elite Tutorial

Generating the Test

The list of five generated instructions appears in the top right panel.

Generating the First Test

= Data Browser — sys ==
File WView Tools
E = d | & @
“rev dext | Mew Window | Source Edit | Modify | config Lock | Clo=e
Expression: S¥s /| : B cys.instrs: list ofinstr = 5 items
rData Content [Data Detail
@ Fleldsw F Events] ()Methods] (2 List iten'sl
#+ | Yalue | opoode | opl kind
0 reginstr—-@1 ADD REGO reg
1 reg instr—@2 ADD REGO reg
2 i instr—E0 3 ADDI REGD irnm
3 irnrm instr—E4 ADDI REGO irnm
4 reginstr-@35 ADD REGO reg
|
~Source File: CPU_instr.
29
30
31’
32
-] :
lleys.instr’s Q & Listiterres I Ready
4. Double-click the blueeg instr-@1link in the top right panel.
Specman Elite Tutorial © Verisity Design, Inc. 4-9

Generating the First Test Generating the Test

The generated values for the fields of the first instruction object appear in the right

panel.
~| Data Browsar — sys | a |J|
File View Tools |
] B =2 g | & a8
Prev HMext | Mew MWindow | Source Edit | Modify | config Lock | Close
Expression: SYS !l :
Data Content [pata Details
= 8 -5 o
sys. ys-@o O F‘E‘dsl F Evemsw [y Methads] ey [IiErrsw
B Dinsts = § items =
B M incisi)] - reg instr—@1 =)= = | el | il
~ Oinsts[f] = reg instr@e @ - ¥ opoode ADD CPU_instr
L@ instrsfZ] = Imm inslr~@8 @ % opi REGD CPU_instr
= S @ © kind reg CPU_instr
o instisld] = @ @ % opl REG CPU_instr
“ O instsp) = reg instr—@s
"
Source File: CPU_instr.e
T
€ // creates the stream of instructions
31 . . .
12 linstrs: list of instr;
33 b
i g = I [
(3 sys.instrs[0] B 4 Fieics Ready

Tip Ifthe results you see are significantly different from the results shown here, use

the UNIX diff utility to compare your version of tlefiles to the files in
tutorial/gold/.

5. Click each of the otheanstrs[n] lines in the left panel and review their contents in the
right panel to confirm that the instructions follow both the general constraints for CPU
instructions and the constraints for this particular test.

Based on the definition, specification constraints, and test constraints that you have
provided, the Specman Elite generator quickly generated the desired instruction stream.
Now you are ready to drive this instruction stream into the DUT and run simulation.

4-10 © Verisity Design, Inc. Specman Elite Tutorial

5 Driving and Sampling
the DUT

Goals for this Chapter

In this chapter, you will drive the DUT with the instruction stream you generated in the last
chapter.

In a typical verification environment, where the DUT is modeled in an HDL, you need to
link the Specman Elite system with an HDL simulator before running simulation. To
streamline this tutorial, we have modeled the DU®.in

What You Will Learn

In this chapter, you learn how to describeeithe protocols used to drive test data into the
DUT. Although this tutorial does not use an HDL simulator, the process of driving and
sampling a DUT written in HDL is the same as the process for a DUT writeen in

As you work through this chapter, you gain experience with these features of the Specman
Elite verification system:

* DUT signal access—You can easily access signals and variables in the DUT, either for
driving and sampling test data or for synchronizing TCMs.

* Simulator interface automation—You can drive and sample a DUT without having
to write PLI (Verilog simulators) or FLI/CLI (VHDL simulators) code. The Specman
Elite system automatically creates the necessary PLI/FLI calls for you.

Specman Elite Tutorial © Verisity Design, Inc. 5-1

Driving and Sampling the DUT Defining the Protocols

e Time consuming methods (TCMs)—You can write procedures @that are
synchronized to other TCMs or to an HDL clock. You can use these procedures to drive
and sample test data.

This chapter introduces tleeconstructs shown in Table 5-1.

Table 5-1 New Constructs Used in this Chapter

Construct How the Construct is Used

emit Triggers a named event from within a TCM.

@ Synchronizes the TCMs with an event.

event Creates a temporal object, in this case a clock, that is used to

synchronize the TCMs.

'hdl_signal_nam'e Accesses a signal in the DUT.

method() is... Creates a procedure (method) that is a member of a struct and
manipulates the fields of that struct. Methods can execute in a
single point of time, or they can be time consuming methods
(TCMs).

pack () Converts data from higher levektructs and fields into the bit or
byte representation expected by the DUT.

wait Suspends action in a TCM until the expression is true.

The steps for driving and sampling the DUT are:
1. Defining the protocols.
2. Running the simulation.

The following sections describe how to perform these steps.

Defining the Protocols
There are two protocols to define for the CPU:
* Reset protocol—drives therst signal in the DUT.

* Driveinstructions protocol—drives instructions into the DUT according to the correct
protocol indicated bjetchlandfetch2signals.

5-2 © Verisity Design, Inc. Specman Elite Tutorial

Defining the Protocols Driving and Sampling the DUT

Drive instructions protocol has one TCM fare-run generationwhere the complete list

of instructions is generated and then simulation starts. There is another T©@kHbe-fly
generationwhere signals in the DUT are sampled before the instruction is generated. The
test in this chapter uses the simple methodology of pre-run generation, while subsequent
tests in this tutorial use the more powerful on-the-fly generation.

All the TCMs required to drive the CPU are described briefly in Table 5-2. A complete
description of one of the TCMs follows the table. You can also vieWC g _drive.€file
in thesrc directory, if you want to see the complete description of the other TC#Is in

Table 5-2 TCMs Required to Drive the CPU

Name Function

drive_cpu() Callgeset_cpu ()Then, depending on whether the list of
CPU instructions is empty or not, calls
gen_and_drive_instrs Qr drive_pregen_instrs ()

reset_cpu() Drives thest signal in the DUT to low for one cycle, to high
for five cycles, and then to low.

gen_and_drive_instrs() Generates the next instruction andidaks one_instr ()

drive_pregen_instrs() Caltlrive_one_instr (for each generated instruction.

drive_one_instr() Sends the instruction to the DUT. If the instruction is an
immediate instruction, also waits for thetch2signal to rise
and sends the second byte of data. Then waits faxg®e
signal to rise.

Figure 5-1 shows thecode for thadrive_one_instr JTCM. The CPU architecture
requires that tests drive and sample the DUT on the falling edge of the clock. Therefore, all
TCMs are synchronized tpuclk which is defined as follows:

extend sys {
event cpuclk is (fall (top.clk’) @ys.any);

h

Specman Elite Tutorial © Verisity Design, Inc. 5-3

Driving and Sampling the DUT Defining the Protocols

Figure 5-1 The drive_one_instr () TCM

drive_one_instr(instr: instr) @sys.cpuclk is {
var fill0 : uint(bits : 2) = 0b0O0;

wait until rise('top.fetchl’);
emit instr.start_drv_DUT;

if instr.kind == reg then {
‘top.data’ = pack(packing.high, instr);
}else {
/I immediate instruction
'top.data’ = pack(packing.high, instr.opcode,
instr.op1, fill0);
wait until rise('top.fetch2");
‘top.data’ = pack(packing.high, instr.imm'op2);
2

wait until rise('top.exec");

/I execute instr in refmodel
/Isys.cpu_refmodel.execute(instr, sys.cpu_dut);

The assignment statements in Figure 5-1 show how to drive and sample signals in an HDL
model. Each pair of single quotation marks identifies an object as an HDL signal.

Thestart_drv_DUTevent emitted byrive_one_instis not used by any of the TCMs that
drive the CPU. You will use it in a later chapter to trigger functional coverage analysis.

The last line shown in Figure 5-1 executes the reference model and is commented out at
the moment. You will use it in a later chapter to trigger data checking.

Thepack() function is a Specman Elite built-in function that facilitates the conversion
from higher level data structure to the bit stream required by the DUT. In Chapter 3,
“Creating the CPU Instruction Structure”, you used%heharacter to identify the fields
that should be driven into the DUT. Thack() function intelligently and automatically
performs the conversion, as shown in Figure 5-2.

5-4 © Verisity Design, Inc. Specman Elite Tutorial

Running the Simulation Driving and Sampling the DUT

Figure 5-2 A Register Instruction as Received by the DUT

The instruction struct with three fields:
opcode == ADD 0 | 0 | 0,0
opl == REGO m
op2 == REG1

The instruction packed into a bit stream, using the packing.high ordering

i

opcode opl op2

ol lolTo !
0IOIO|0IOIOI0I1|

list of bit [7] 4 list of bit [0]

Running the Simulation

This procedure, which involves loading the appropriate files and clicking the Test button,
is very similar to the procedure you used in the last chapter to generate the first test.

The difference is that this time you are including the DUT (contain&dPla_dut.¢ and
TCMs that drive it (contained iBPU_drive.g.

Procedure

To run the simulation:

1. Copy thesrc/CPU_dut.do the working directory.

2. Copy thesrc/CPU_drive.go the working directory.

3. Open the working directory’s copy of th#U _top.€file in an editor.

Specman Elite Tutorial © Verisity Design, Inc. 5-5

Driving and Sampling the DUT Running the Simulation

4. Find the lines in the file that look like this:

/I Add dut and drive:
/limport CPU_dut, CPU_drive;

5. Remove the comment characters in front ofitiy@ort line so the lines look like this:

// Add dut and drive:
import CPU_dut, CPU_drive;

6. Save th&€PU_top.dfile.

7. Click the Reload button to reload the files for test 1.

Tip If you have exited Specview, you must reinvoke it and OBU_tstl.eagain.
To do so, enter thepecviewcommand at the UNIX prompt, click on the Load
button, and choosgPU_tstl.e

Tip If you see a message such as

*** Error: No match for 'CPU_dut.e'

you need to check whether the working directory contains the following files:

CPU_instr.e CPU_drive.e
CPU_misc.e CPU_top.e
CPU_dut.e CPU _tstl.e

Add the missing file and then click the Reload button.

8. Click the Modules button to confirm that six modules are loaded:

CPU_instr CPU_drive
CPU_misc CPU_top
CPU_dut CPU tstl

Tip If some of the modules are missing, first check whether you are loading the
CPU_top.€ile that you just modified. The modifiedPU_top.€file must be in
the working directory. Once the modifi€PU_top.€file is in the working

5-6 © Verisity Design, Inc. Specman Elite Tutorial

Running the Simulation Driving and Sampling the DUT

directory, click the Restore button. This action should remove all the currently
loaded modules from the session. Then click Load and choB&g tstl.en the
Select A File dialog box.

9. Click Test to run the simulation.

You should see the following messages (or something similar) in the Specview main
window.

Doing setup...

Generating the test using seed Ox1...
Starting the test...

Running the test...

DUT executing instr 0 : ADD REGOx0, REGOx1
DUT executing instr 1 : ADD REGOx0, REGOx1
DUT executing instr 2 : ADDI REGOx0, @0x05
DUT executing instr 3 : ADDI REGOx0, @0x05
DUT executing instr 4 : ADD REGOx0, REGOx1

Last specman tick - stop_run() was called

Normal stop - stop_run() is completed

Checking the test...

Checking is complete - 0 DUT errors, 0 DUT warnings.
Wrote 1 cover_struct to CPU_tstl_1.ecov

You can see from the output that five instructions were executed and no errors were found.
It looks like the verification environment is working properly, so you are ready to generate
a large number of tests.

Specman Elite Tutorial © Verisity Design, Inc. 5-7

6 Generating
Constraint-Driven Tests

Goals for this Chapter

In this chapter, you will run the second test described in “The Functional Test Plan” on
page 2-3. To meet the objective of the second test, you must run the same test multiple
times using constraints to direct random testing towards the more common operations of
the CPU. Through this automatic test generation, we hope to gain high test coverage for
the CPU instruction inputs.

What You Will Learn

In this chapter, you learn how to quickly generate different sets of tests by simply changing
the seed used for constraint-driven test generation. You also learn how to use weights to
control the distribution of the generated values to focus the testing on the common CPU
instructions.

As you work through this chapter, you gain experience with two of the Specman Elite
verification system’s enabling features:

* Directed-random test generation— his feature lets you apply constraints to focus
random test generation on areas of the design that need to be exercised the most.

* Random seed generation-€hanging the seed used for random generation enables
the Specman Elite system to quickly generate a whole new set of tests.

Specman Elite Tutorial © Verisity Design, Inc. 6-1

Generating Constraint-Driven Tests Defining Weights for Random Tests

This chapter introduces tleeconstructs and Specview menu commands shown in
Table 6-1.

Table 6-1 New Constructs and Specview Menu Commands Used in this
Chapter

Construct How the Construct is Used

keep soft Specifies a soft constraint that is kept only if it does not conflict
with other hardkeep constraints.

select Used withkeep softto control the distribution of the generated
values.

Command How the Command is Used

Tools>>Config Used to access the Generation tab of the Specman Elite

Configuration Options window for creating a user-defined seed
for random test generation.

File>>Save Saves the current test environment, including the random seed, to
a .esv file. You can load this file with the File>>Restore
command.

Test>>Test with Generates a set of tests with a new random seed.

Random Seed

The steps for generating random tests are:

1. Defining weights for random tests.

2. Generating and running tests with a user-specified seed.
3. Generating and running tests with a random seed.

The following sections describe these tasks in detail.

Defining Weights for Random Tests

Because of the way that CPUs are typically used, arithmetic and logical operations
comprise a high percentage of the CPU instructions. You can useletconstruct with
keep softto require the Specman Elite system to generate a higher percentage of
instructions for arithmetic and logical operations than for control flow.

6-2 © Verisity Design, Inc. Specman Elite Tutorial

Generating Tests With a User-Specified Seed Generating Constraint-Driven Tests

Procedure

To see how weighted constraints are createx in

1. Copy thesrc/CPU_tst2.dile to the working directory.
2. Open theCPU_tst2.dile in an editor.

3. Find the portion of the file that looks as follows and revievkéep softconstraint.

puts equal weight <
on arithmetic and
logical operations extend instr {

and less weight keep soft opcode == select {
on control flow 30 : [ADD, ADDI, SUB, SUBI];
operations 30 : [AND, ANDI, XOR, XORIJ;

10 :[JMP, JMPC, CALL, RET, NOP];

Generating Tests With a User-Specified Seed

You can specify the random seed that the Specman Elite system uses to generate tests.

Procedure

This procedure shows how to create a random seed:

1. Inthe Specview main window, click Restore to remove alkethedules from the
current session.

2. Click Load. Then double-click tHePU _tst2.dfile.
The Specman Elite system loads tbRU _tst2.€file along with its imported modules.

3. Click Modules and confirm that the following modules are loaded:

CPU_instr CPU_drive
CPU_misc CPU_top
CPU_dut CPU_tst2

Specman Elite Tutorial © Verisity Design, Inc. 6-3

Generating Constraint-Driven Tests Generating Tests With a User-Specified Seed

4.

6-4

Click the Config button or choose Config from the Tools menu.
The Specman Elite Configuration Options window opens.

Choose the Generation tab and then enter a number of your choice in the text box under
Seed.

Click OK to save the settings and close the window.

Click the Test button on the Specview main window.

The Specman Elite system runs the test with the your seed and reports the results.
In the Tools menu, choose Data Browser and then choose Show Data Sys.

The Data Browser GUI appears.

Click the bluanstrs = 59 itemdink in the left panel.

Instructions are listed in the top right panel. By default, only the first 25 instructions
are listed. You can click the Config button in the Data Browser, and then change the
number of list items to 59 to list all of the instructions.

© Verisity Design, Inc. Specman Elite Tutorial

Generating Tests With a User-Specified Seed Generating Constraint-Driven Tests

You should see an approximately equal distribution of arithmetic and logical
operations, and about one-third as many control flow operations as there are either
arithmetic or logical operations.

= Data Erowser — sus =)
File View Tools |

B E O B =2 & | &]
Mew Window | Source Edit | Modify | config Lock | Close
Expression: Sys /| : ys.instrs: list of instr =59 items (lirst 25 items)
Data Content |[Foata Details
B as - sys-@t @ Fieus] 4 Evemsl 0 Methnds] 1 List msrrsl
= 59 items
-3 gou_env = CPU_env—{ze # | Walue | opoode | opl | kindl |
L. 3 cpu_dut = cpu_dul-@0 1} imm instr—g 3 ADD| REG3 imm =
1 imm instr—@4 HOR| REG imm
2 teg instr—E@ 5 ADD REGT teg
a reg instr—E@6 ADD REG2 reg
4 irnm instr—@7 ADD| REG3 irnm
5 reg instr—@8 ADD REG2 (=]
& imm instr—@g HORI REGO imm
7 imm instr—@10 sUBI REG0 imm
g reg instr—@ 11 RET REG2 reg
9 irnm instr—@12 ANDI REG2 irnm
10 irmminstr—-@13 ADD| REG2 irnm I
11 irmminstr-@14 ANDI REG3 irnm
12 imminstr—@15 HOR| REG0 imm
13 reginstr—@18 ADD REG2 teg
14 irminstr=@17 CALL REG2 irnm
158 irmminstr—@18 ANDI REG2 irnm ;
e L [—
Source File; CPU_instre
29 =
30
31’
32
33type cpn_opoode: [74 Opoodes -
34 ADD, ADDI, 5UB, SUBI,
35 AND, ANDI, XCR, XORI,
36 JMP, JUPC, CALL, BET,
37 wop
38]1 (bits: 4);
39
40
4ltype reg @ [/¢ Begister names
42 REGO, REG1, REG2, REG3
43(] (bits: Z);
a4
2]] I C
2 sys.instrs [@ 59 Listiterne(fiest 25 terrs) I Ready

Specman Elite Tutorial © Verisity Design, Inc. 6-5

Generating Tests With a Random Seed Generating Constraint-Driven Tests

Generating Tests With a Random Seed

You can require the Specman Elite system to generate a random seed.

Procedure

To run a test using a Specman Elite-generated random seed:
1. Inthe Specview main window, click the Reload button.

2. Choose Test>>Test With Random Seed.

The Specman Elite system runs the test with the random seed shown in the Specview
main window and reports the results.

3. Review the results in the Data Browser, as in the previous procedure.

You should again see an approximately equal distribution of arithmetic and logical
operations, and about one-third as many control flow operations as there are either
arithmetic or logical operations. The results should be different from the previous run.

4. Optionally you can repeat steps 1-3 several times to confirm that you see different
results each time.

Tip Ifyou see similar results in subsequent runs, it is likely that you forgot to reload
the design before running the test. If you do not reload the design, the test is run
with the current seed.

You can see that using different random seeds lets you easily generate many tests. Quickly
analyzing the results of all these tests would be difficult without Specman Elite’s coverage
analysis technology. The next two chapters show how to use coverage analysis to
accurately measure the progress of your verification effort.

Specman Elite Tutorial © Verisity Design, Inc. 6-6

4 Defining Coverage

Goals for this Chapter

You can avoid redundant testing by measuring the progress of the verification effort with
coverage statistics for your tests. This chapter explains how to define the test coverage
statistics you want to collect.

What You Will Learn

In this chapter, you learn how to define which coverage information you want to collect for
the DUT internal states, for the instruction stream, and for an intersection of DUT states
and the instruction stream.

As you work through this chapter, you gain experience with another one of the Specman
Elite verification system’s enabling features—ctional Coverage Analyzer The
Specman Elite coverage analysis feature lets you define exactly what functionality of the
device you want to monitor and report. With coverage analysis, you can see whether
generated tests meet the goals set in the functional test plan and whether these tests
continue to be sufficient as the design develops, the design specifications change, and bug
fixes are implemented.

Specman Elite Tutorial © Verisity Design, Inc. 7-1

Defining Coverage Defining Coverage for the FSM

This chapter introduces tleeconstructs shown in Table 7-1.

Table 7-1 New Constructs Used in this Chapter

Construct How the Construct is Used

event Defines a condition that triggers sampling of coverage data.
cover Defines a group of data collection items.

item Identifies an object to be sampled.

transition Identifies an object whose current and previous values are to

be collected when the sampling event occurs.

The three types of coverage data that you might want to collect are:
* Coverage data for the finite state machine (FSM).
* Coverage data for the generated instructions.
* Coverage data for the corner case.

The following sections describe how to define coverage for these three types of data.

Defining Coverage for the FSM
You can use the constructs shown in Table 7-1 to define coverage for the FSM:
* State machine register

¢ State machine transition

Procedure
To define coverage for the FSM:

1. Copy thesrc/CPU_cover.dile to the working directory and op&PU_cover.@n an
editor.

7-2 © Verisity Design, Inc. Specman Elite Tutorial

Defining Coverage for the FSM Defining Coverage

2. Find the portion of the file that looks like the excerpt below and review the declaration
that defines the sampling event for the FSM:

extend cpu_env {

defines FSM event cpu_fsm is @sys.cpuclk;
sampling event

3. Add the coverage group and coverage items for state machine coverage.

The coverage group namep(_fsm must be the same as the event name defined in
Step 2 above. Thieem statement declares the name of the coverage ity {ts

data type FSM_typ¢, and the object in the DUT to be sampled. frhasition
statement says that the current and previous valdsmofiust be collected. This
means that whenever thgs.cpuclisignal changes, the Specman Elite system collects
the current and previous valuestop.cpu.curr_FSM

extend cpu_env {
event cpu_fsm is @sys.cpuclk;

/I DUT Coverage: State Machine and State

defines the /I Machine transition coverage
coverage group cover cpu_fsmis {
cpu_fsm item fsm: FSM_type = 'top.cpu.curr_FSM’;

transition fsm;

h

4. Save th&€PU_cover.dile.

Specman Elite Tutorial © Verisity Design, Inc. 7-3

Defining Coverage Defining Coverage for the Generated Instructions

Defining Coverage for the Generated
Instructions

You can use the constructs shown in Table 7-1 on page 7-2 to define coverage collection
for the CPU instruction stream:

* opcode
* opl

This coverage group uses a sampling event that is declared and triggered in the
CPU_drive.file.

drive_one_instr(instr: instr) @sys.cpuclk is {

emit instr.start_drv_DUT;

Thus data collection for the instruction stream occurs each time an instruction is driven
into the DUT.

Procedure

To extend thénstr struct to define coverage for the generated instructions:

1. Find the portion of th€PU_cover.dile that looks like the excerpt below and review
the coverage group declaration.

extend instr {

defines cover start_drv_DUT is {
coverage group

h

7-4 © Verisity Design, Inc. Specman Elite Tutorial

Defining Coverage for the Corner Case Defining Coverage

2. Addopcodeandoplitems to thestart_drv_DUTcoverage group.

extend instr {

cover start_drv_DUT is {
item opcode;
item op1;

3. Save th&€PU_cover.dile.

Defining Coverage for the Corner Case

Test 3 of the functional test plan (see “Test 3" on page 2-4) specifies the corner case that
you want to cover. To test the behavior of the DUT when the JMPC (jump on carry)
instruction opcode is issued, you need to be sure that the JIMPC opcode is issued only when
the carry signal is high. Here, you define a coverage group so you can determine how often
that combination of conditions occurs.

Procedure
To define coverage data for the designated corner case:

1. Add acarry item to thestart_drv_DUTcoverage group.

extend instr {

cover start_drv_DUT is {
item opcode;
item op1l;
item carry: bit = 'top.carry';

Specman Elite Tutorial © Verisity Design, Inc. 7-5

Defining Coverage Defining Coverage for the Corner Case

2. Define a cross item between opcode and carry.

Cross coverage lets you define the intersections of two or more coverage items,
generating a more informative report. The cross coverage item defined here shows
every combination ofarry value ancdpcodethat is generated in the test.

extend instr {

cover start_drv_DUT is {
item opcode;
item op1l;
item carry: bit = 'top.carry";
cross opcode, carry;

3. Save th&€PU_cover.dile.

Now that you have defined the coverage groups, you are ready to simulate and view the
coverage reports.

7-6 © Verisity Design, Inc. Specman Elite Tutorial

3 Analyzing Coverage

Goals for this Chapter

The goals for this chapter are to determine whether the tests you have generated meet the
specifications in the functional test plan and use that information to decide whether
additional tests must be created to complete design verification.

What You Will Learn

In this chapter, you learn how to display coverage reports for individual coverage items,
exactly as you have defined them, and to merge reports for individual items so that you can
easily analyze the progress of your design verification.

As you work through this chapter, you gain experience with these Specman Elite features:
* Cross Coverage—TFhis lets you view the intersections of two or more coverage items.

* Help—This helps you find the information you need in the Specman Elite Online
Documentation.

* Coverage Extensibility—This allows you to change coverage group and coverage item
definitions.

Specman Elite Tutorial © Verisity Design, Inc. 8-1

Analyzing Coverage Running Tests with Coverage Groups Defined

This chapter introduces the Specview menu commands shown in Table 8-1.

Table 8-1 New Specview Menu Commands Used in this Chapter

Command How the Command is Used

Tools>>Coverage Displays coverage reports and creates cross-coverage reports.

Help>>Help Browser Invokes the Specman Elite Online Documentation browser.

The steps required to analyze test coverage for the CPU design are:
1. Running tests with coverage groups defined.

2. Viewing state machine coverage.

3. Viewing instruction stream coverage.

4. \Viewing corner case coverage.

The following sections describe these tasks in detail.

Running Tests with Coverage Groups Defined

This procedure is similar to the procedure you have already used to run tests without
coverage.

Procedure

To run tests with coverage groups defined:
1. Open the working directory’s copy of ta#U_top.€file in an editor.
2. Find the lines in the file that look like this:

/I Add Coverage:
/limport CPU_cover;

8-2 © Verisity Design, Inc. Specman Elite Tutorial

Running Tests with Coverage Groups Defined Analyzing Coverage

3. Remove the comment characters in front ofithport line so the lines look like this:

// Add Coverage:
import CPU_cover;

4. Click Reload to reload the files for test 2.

Tip If you have exited Specview, you must reinvoke it and OBU_tst2.eagain.
To do so, enter thepecviewcommand at the UNIX prompt, click on the Load
button, and choosePU _tst2.e

5. Click Modules to confirm that seven modules are loaded:

CPU_instr
CPU_misc
CPU_dut
CPU_drive
CPU_cover
CPU_top
CPU_tst2

6. Click Test.

You should see something similar to the following in the Specview main window. The
last line indicates that coverage data was written to an .ecov file (a coverage data file).

test

Doing setup...
Generating the test using seed 0x1
Starting the test...
Running the test...
DUT executing instr
DUT executing instr
DUT executing instr
DUT executing instr
DUT executing instr

ADD REGOx3, REGOx0
ANDI REGOx3, @0x20
XOR REGOx3, REGOx2
ADD REGOx3, REGOx1
SUBI REGO0x3, @0x9f

A wWNPEFEO

Last specman tick - stop_run() was called

Normal stop - stop_run() is completed

Checking the test ...

Checking is complete - 0 DUT errors, 0 DUT warnings.
Wrote 1 cover_struct to CPU_tst2_1.ecov

Specman Elite Tutorial © Verisity Design, Inc. 8-3

Analyzing Coverage Viewing State Machine Coverage

Viewing State Machine Coverage

You have two reports to look at, the state machine register report and the state machine
transition report.

If you are using a different seed or a version of the Specman Elite verification system other
than 4.0, you may see different results in your coverage reports.

Procedure

1. Click the Coverage button in the Specview main window.

The Coverage window appears.

~i Coverage K

File Wiew Tools Help

= HHHH (== Ty
= > 8 & & & B Gii T &
Mew Window | Read MWrite Clear Refresh || All Holes Full | Source | “e=cale | Cross | Config | Details Report

Location: |Qera|l

e Wl Overall
@I:I B session.stn_of test

@I:I B sessionend_of_test i oo
[.
L session.events
[
B cpu_envopu_tsm Grade | © |Name |Description
13
[222] B instrstart_dre_DUT @ I:I session.stan_of_test Specrran: star of test
@ I:I sessionend_of_test Specrman: end of test
@ session.events Autorratic Coverage of User Eve
o cpu_env.cpu_fsm
"

(2]
ﬁ

[instrstart dee DUT

2. Inthe Group frame on the left, click theo the left ofcpu_env.cpu_fsmand then
choosdsm

E—Om ﬁ&eraﬂ

#-@ [| Bl sessionstant_of test

L] |:| Bl session end_aof_test

@ [1.00] [l sescionevents

C‘ cpu_env.cpu_fsm
Bl fsm

O transitin:\n_fsm
C‘ instr.smrt_drv_DUT

The state machine register report appears in the right-hand frames.

8-4 © Verisity Design, Inc. Specman Elite Tutorial

Viewing State Machine Coverage Analyzing Coverage

From the report it is easy to see that, for examplefébehlstate was entered 88 times
in the 227 times sampled.

& ism

mt

Grade |« |Name |Tests |Hits |Goal [Hits / Goal |
a0 100

@ 10 strt_st 1 & 1

@ [fetehi_st 1 a 1

@ [0 fetch2_st 1 42 1

o] 10 exec_st i 83 1

@ 0 udef_st 1 3 1

3. Inthe Group frame on the left, chodsmnsition_fsm.

The state machine transition report appears in the right-hand frames.

Specman Elite Tutorial © Verisity Design, Inc. 8-5

Analyzing Coverage Viewing State Machine Coverage

As you scroll down the display, perhaps the first thing you notice about the state
machine transition report is that there are a number of transitions that never occurred.
This is because these transitions are illegal.

- B2 transition__fsm
; Hits frorm 1 tests

Grade |+ |Name |Te.. |Hits [Goal [Hits / Goal

25 50
@ @ sttst o st st 1 5 1]
@ [sttst ¥ fotchd st o 1 1

@[o | [sttst oFfetchz st
[+] lII @_ stt st f® exec st
[+] III @_ stt st ¥ udef st
@0 | [fetehi_st P st st
@ [100] [fetchi_st o® fetchi st 1 44 1
@[109] [fetchi_st P fetchz st 1 21 1
@ m fetchi st ¥ exec st 1 23 1
@[0 |1 fetchi st ¢ udefst D

@[0 | [fetchz_st P stist O 0 1
@[0 | 1f fetchz_st o fotchi_st 0

@[100] & fetchZ_st o fetchZ_st 1 21 1
(] @_ fetch? st ¥ exec st 1 21 1
@[0 | 1 fetchz st ¢ udefst O 0 1

v e e e

8-6 © Verisity Design, Inc. Specman Elite Tutorial

Viewing State Machine Coverage Analyzing Coverage

You can change the display to show data for transitions that have occurred only by
clicking the Full button at the top of the coverage window. (The All button shows data
for all transitions, and the Holes button shows data for transitions that have not

occurred.)

~i Coverage

File Wiew Tools Help

e e —
= > B & & & i
Mew Mindow | Read Write Clear Refresh | ALl Holes |Full | Source | Rescale | Cross | Config | Details
Location: |Overa||.-’q:||.| env.cpu fsmdmnsition fsm
Full button

You can also define transitions as illegal so that they do not appear in the coverage
report, as described in the following steps.

4. To see how to define transitions as illegal so that they do not appear in the coverage
report, choose Help Browser from the Help menu in the Specview main window (or
you can click the large Verisity button).

The Specman Elite Online Documentation browser appears.

= Netscape: Specman Elite Online Documentation 4.0 C2
File Edit Yiew Go Window

<« ¥ A @& 2 W @ & @

Back Foread Reload Home Search Netscape Pt Security atop

(il Contents %4 Help |

H Search |

Installation Guide *

e Language Reference er]slty@
Command Reference

Usage and Concepts Guide
Generation Guide

Release Notes

Index Copyright @1909 - 2002 by Verising Lud ot its subsidiaties { Verisity), egistered in the United States and other jurisdictions. A1 rights

Specman Elite Online Documentation for Version 4.0 C2

This manwal includes proprietazy infozmation. It is fuznished under a License and may be used and copied only in accordance of the teers of
with the inclusion of the abose copyEight ntice.

5. Enter the wordiansition cover item syntar the Search field and press Return.

Thetransition construct is a coverage item, so this search will find the description of
the correct syntax for this construct.

Specman Elite Tutorial © Verisity Design, Inc. 8-7

Analyzing Coverage Viewing State Machine Coverage

6. When the list of topics that describe coverage item options appears, choose the first
item in the listeref: transition cover item syntax

a\ MNetscape: Specman Elite Online Documentation 4.0 C2
File Edit Yiew Go Window

?“E&\B A P R A

Back Forvard Reload Home Search Netscape Prirt Security &top
(Contents %4 Help |
‘ H Search |
Installation Guide *
@
e Language Reference QI‘ISIt]/
Command Reference
Usage and Concepts Guide
Generation Guide Specman Elite Online Documentation for Version 4.0 C2
Release Notes
Index Copyright 1999 — 2002 by Verisity Ltd ot its subsidiaries { Verisity), registeeed in the United States and other jurisdictions. ALL ¥igh
This tnanwal fncludes propietary inforoation. It is furnished undet a License and may be used and copted only in accordance of the 12ecs ¢
with the inclusion of the abowe copyright notice
=] Search results... ==

eref: transition coverage item syntax
eref: transition__item—name coverage syntax
eref: transition__item—name coverage syntax

| Display || Close |

@] Signed by: Unsigned classes from local hard disk

The tagerefindicates that this document is part of thbanguage Reference Manual

7. When thdransition construct description appears, scroll down the page tdldyal
coverage item option description.

8. Continue scrolling down to the Examples section, and you will find an example
showing the use of thlegal option:

cover state_change is {
item st;
transition st using illegal =
not ((prev_st == START and st == FETCH1)

or (prev_st == FETCH1 and st == FETCH?2)
or (prev_st == FETCH1 and st == EXEC)
or (prev_st == FETCH2 and st == EXEC)
or (prev_st == EXEC and st == START));

h

If you like, you can follow this example to enhancetth@sition statement in
CPU_cover.do ignore the illegal transitions.

8-8 © Verisity Design, Inc. Specman Elite Tutorial

Viewing Instruction Stream Coverage Analyzing Coverage

Viewing Instruction Stream Coverage

We now look at the coverage for the CPU instruction stream. To provide more interesting
results for examination, we will load the results of a set of regression tests. These
regression tests were run with the second test and many different seeds.

Procedure

To view instruction stream coverage:

1.
2.

Copysrc/regression_4.0.ecdile to the working directory.
Click Coverage in the Specview main window.
The Coverage window appears.

In the File menu in the Coverage window, choose Clear Data to remove the coverage
data from the previous test.

In the Coverage window, click Read to open the Read Files dialog box. Select
regression_4.0.ecothen click Read in the Read Files dialog box to read in the file.

In the Group frame on the left, click theto the left ofinstr.start_drv_DUTand then
chooseopcode

Specman Elite Tutorial © Verisity Design, Inc. 8-9

Analyzing Coverage Viewing Instruction Stream Coverage

The opcode coverage report appears in the right-hand frames. These results show that
the current set of tests fulfill the requirement in the functional test plan to focus on
arithmetic and logic operations rather than control flow operations.

Grade |« |Wame |Tests |Hits |Goal |Hits / Goal |
a0 100

@[10] [0 apo 13 75 N e

(<} 1 Apoi 13 70 1 eeee——

(+] 10 =ue 13 58 I

o 1 susl 13 69 1 e

o [AnD 13 72 1)

@ 1L AmDI 13 63 1 e

@ 1 xor 13 80 1 |

4] 0 xoR 18 95 1

(<} 0 Jmp 11 16 1 =

(+] 0 Jurc 5 12 1 =

5] 0 caLL g 15 1 =

@ [o0] [RET 9 23 -

+] 10 moP 12 22 T

6. Inthe Group frame on the left, choagelL

Theoplcoverage report appears in the right-hand frames. All posgitilealues
appear to be well covered.

Grade [+ |[Name |Tests [Hits |Goal |Hits / Goal |
&0 100 150 200

@ [100] [ReEGOD 13 126 1

@ [oo] [REG 13 184 1

@ [oo] [REGE 13 152 e

@ [1oo] [REGE 13 148 e

7. On the Coverage window toolbar, click Cross.

8-10 © Verisity Design, Inc. Specman Elite Tutorial

Viewing Instruction Stream Coverage Analyzing Coverage
8. When the Define Interactive Coverage dialog box appears, click on the + next to
instr.start_drv_DUTto expand it.

9. UnderSelect Items to Ad@¢hooseopcodeand click the Add button. Then choospl
and click Add again.

= Define Interactive Coverage ==
- Cross Itermn Definition
Select Items to Add Iterns to be Crossed n|
E-O (3 Ooverll] instrstart_drv_DUT.opcode
@[| Bl sessionstar_of_test @ instr.start_drv_DUT.op1

o l:l B session.end_of_test
o

EE .
L session.events

1] opu_env.opu_fsm
- = -
(_J] instrstart_dre DUT add
@ opoode
a]
Remaove
o [550] (@ cry fomoe_|

) cross_opoode_ carry

~ Interval Definition

_| Limit Cross To Interval

_ | @nly Simultaneeus
Start Event: | ;|
End Event: | {|

Ok Cancel

Specman Elite Tutorial © Verisity Design, Inc. 8-11

Analyzing Coverage Extending Coverage

10. Click OK to display a coverage report of the reess_opcode_opitem.

This coverage report shows whether the tests have covered every possible
combination of opcode and register.

= Interactive Coverage =)=
File View Tools Help
& & & Ui B B
All Holes Full | Scurce | Rescale | Edit Definition | Details Report Lock | Close
[+
Crade |+ |opcode |op1 | Tasts |Hlts |Geal |Hits / Goal
25 50 |

@ S abD REGD & 15 1 =
@ |2 ACD REG1 10 24 i =]
@ & ADD REG2 11 17 1 =
@ S ADD REG3 10 19 1 =

REGD 10 21 1 =
] 1S ~pDI REG 9 14 1 =
] | LeYale] REG2 12 23 1 =
] 1S ~pDI REGE 11 12 1 =
4] SUB REGO 10 23 1 =
] 1T sue REG 9 11 1 =

REG2 & 13 1 =
@ S sue REG3 5 11 1 =
4] SUBI REGO 9 18 1 =
@ 1S suBl REG 11 2% 1 —
<] 1S suBl REG2 5] 1 =
@ 1S suBl REGE 11 17 1 =]
ool 1TF anc, = i C “

| I% All ITEsts: 13 ICDntams: 52 Bucksts IHeady

Extending Coverage

The coverage group is extended by the addition of a new item, and by making an existing
item a per-instance item, which allows us to see coverage separately for different subtypes.

Procedure
To extend a coverage group:

1. Copy thesrc/CPU_cover_extendfée to the working directory and open the
CPU_cover_extendfde in an editor.

8-12 © Verisity Design, Inc. Specman Elite Tutorial

Extending Coverage Analyzing Coverage

2. Find the lines in the file that look like this:

extend instr {
/I Extend the start_drv_DUT cover group with "is also"
/I Add the kind field to the cover group as a new item

I/l Extend the opl item to make it a per_instance item

3. Add the coverage group extension struct member. Do not forget the closing bracket.

The syntax for a coverage group extension is the same as for the original coverage
group definition, buis alsoinstead of jusis.

extend instr {

/I Extend the start_drv_DUT cover group with "is also"
cover start_drv_DUT is also {

/I Add the kind field to the cover group as a new item

/I Extend the opl item to make it a per_instance item

3

Specman Elite Tutorial © Verisity Design, Inc. 8-13

Analyzing Coverage Extending Coverage

4. Add a new coverage item to cover the kind field of the instr struct.

extend instr {

/I Extend the start_drv_DUT cover group with "is also"
cover start_drv_DUT is also {

/l Add the kind field to the cover group as a new item
item kind;

// Extend the opl item to make it a per_instance item
h
2

5. Extend the opl item witlsing alsq to make it a per_instance item.

Since the opl item can have one of the enumerated types REGO, REG1, REG2, or
REGS3, making this item a per_instance item will provide separate coverage for each
of those four subtypes.

extend instr {

/I Extend the start_drv_DUT cover group with "is also"
cover start_drv_DUT is also {

/I Add the kind field to the cover group as a new item
item kind;

/l Extend the opl item to make it a per_instance item
item opl using also per_instance;

6. Save th€€PU_cover_extendfie.

7. Open the working directoryGPU_top.€file in an editor.

8-14 © Verisity Design, Inc. Specman Elite Tutorial

Extending Coverage Analyzing Coverage

8. Find the lines in the file that look like this:

/I Extend Coverage:
/limport CPU_cover_extend;

9. Remove the comment characters in front ofitiy@ort line so the lines look like this:

/I Extend Coverage:
import CPU_cover_extend;

10. Save th€PU_top.€file.

11. Click the Reload button to reload the files for test 2.

Tip If you have exited Specview, you must reinvoke it and OBU_tst2.eagain.
To do so, enter thepecviewcommand at the UNIX prompt, click on the Load
button, and choosePU_tst2.e

12. Click Modules to confirm that eight modules are loaded:

CPU _instr
CPU_misc
CPU_dut
CPU_drive
CPU_cover
CPU_cover_extend
CPU_top

CPU_tst2

13. Click Test.

You should see something similar to the following in the Specview main window. The
last line indicates that coverage data was written to an .ecov file (a coverage data file).

test

Doing setup...

Generating the test using seed 0x1

Starting the test...

Running the test...

DUT executing instr 0 : ADD REGO0x3, REGOx0
DUT executing instr 1 : ANDI REGOx3, @0x20
DUT executing instr 2 : XOR REGO0x3, REGOx2

Specman Elite Tutorial © Verisity Design, Inc. 8-15

Analyzing Coverage Viewing Coverage Per Instance

DUT executing instr 3 : ADD REGOx3, REGOx1
DUT executing instr 4 : SUBI REGOx3, @0x9f

Last specman tick - stop_run() was called

Normal stop - stop_run() is completed

Checking the test ...

Checking is complete - 0 DUT errors, 0 DUT warnings.
Wrote 1 cover_struct to CPU_tst2_1.ecov

The coverage data now includes information about the number of samples of each subtype
(REGO, REG1, REG2, REG3) of threstr type. Each sample also includes information
about the newind item. In the next procedure, we view this new information for a series

of tests run previously using different seeds.

Viewing Coverage Per Instance

We now look at the per-instance coverage for the opl subtypes. As in ““Viewing
Instruction Stream Coverage” on page 8-9, we will load the results of a set of regression
tests. These regression tests were run with many different seeds. The results of each test
were merged into a file nameshression_4.0.ecoin the following procedure, we load
theregression_4.0.ecdile into the Coverage GUI and view the merged coverage data.

Procedure
To view coverage by opl subtype of the instr instances:
1. Click Coverage in the Specview main window.

The Coverage window appears.

2. Inthe File menu in the Coverage window, choose Clear Data to remove the coverage
data from the previous test.

3. Inthe Coverage window, click Read to open the Read Files dialog box. Select
regression_4.0.ecothen click OK in the Read Files dialog box to read in the file.

8-16 © Verisity Design, Inc. Specman Elite Tutorial

Viewing Coverage Per Instance Analyzing Coverage

In the left panel, we now see that the instr.start_drv_DUT data has four additional
entries: instr.start_drv_DUT(op1l==REGO) to instr.start_drv_DUT(opl==REG3).

= Coverage]
File View Tools Help

o |2 = @ (& & & Wi |© & &= =5 &
Mew Window | Read Write Clear Refresh || ALl Holes Full | Source | descsle | Cross | Config | Details Report Rank S2ent | L
Location: IOJeraII ll

E-D (3 ol

@ \:l sessionstan_of_test
L] \:I sessionend_of_test
@ B sessionsvents
o

-
B pu_env.cpu_fsm |Description

R
2| B instrstart_dne_DUT @ :l session.star_of_test Specman: siarof test
/@
0 instrstart_drs_DUT{opl ==REGD) @ :l session.end_of_test Specrran: end of test
0
O instrstart_dre DUT{opd ==REGH) @1 session.events Autormatic Coverage of User Events

O instr start_cdre_DUT{op1 ==REG2)

cpu_env.cpu_fsm
O instrstant_dry_DUT{opl ==REG3)

instrstart dre DUT
instr.stan_drs_DUT(op1==REG0)
instrstart_drv_DUT(op1==REG1)
a7 instrstart_drv_DUT({op1 ==REGZ)
[os3] instrstart_dry_DUT(op1==REGS)

[spsNsNsReNa]
H

TR
% Crerall Ia) All ITests: 13 ICamams 9 Groups IHeady

4. In the Group frame on the left, click thdo the left of
instr.start_drv_DUT(op1==REGO0)

We see that the kind item now appears in the instr.start_drv_DUT group.

5. Choosekind.

Specman Elite Tutorial © Verisity Design, Inc. 8-17

Analyzing Coverage Viewing Coverage Per Instance

The coverage data for tiramandreg values of kind appears in the right panels.
These are the coverage results for kind when the op1 value is REGO, since we selected
theinstr.start_drv_DUT(op1==REGO0instance in the left panel.

= Coverage ==
File View Toolz Help
& r I = & 1
M 2R > @ (68 & B bt & & B = =&
Mew Window | Read Write Clear Refresh || All Holes Full | Source | Rescale | Cross | Config | Details Report Rank Jzent | L
Location: IOveraII.ﬁnslr_siart dre DUT{op1 ==REGOkind ,rl
=0 053] B overal
0:' Bl sessionstart_of_test
O:I B sessionand_of_test
° SESS\DH events
Grade [+ |Mame |Te.. [Hits [Goal |[Hits /Geal |
50 100
nstrstart_dre_DUT(opl ==REGD)) D- e 13 a7 1k
[0] Bopence -
@[] [1 r= 13 99 1 ey
o [52] Femny Cl U =
O[077] B orose__opoode__carmy
0
O instr.start_dry_DUT(opd ==REG)
O instrstart_dry_DUT(opd ==REG2)
O [08%] B instrstrnt_dn_DUT(opl ==REG3)
[
kmd I%AII ITests 13 ICuntams. 2 Buckets IHeady

6. Inthe Group frame on the left, click theto the left ofinstr.start_drv_DUTand each
of the instances (opl==REG1), (op1==REG2), (op1==REG3) to expand the top
instance and all of the subtypes.

We see that theross___opcode__ cariiyem has a different grade for each instance.

7. Choose eactross__opcode__cartifem in turn to see which crosses of opcode and
carry never occurred at all (shown ungrestr.start_drv_DUTJ, and which additional
crosses never occurred under each particular subtype.

8. In the Coverage window, click Close to close the window.

In the next chapter, we see how to modify the test files to push the test into a corner that is
not being covered well by the current test, as shown by the results above and by the
following procedure.

8-18 © Verisity Design, Inc. Specman Elite Tutorial

Viewing Corner Case Coverage Analyzing Coverage

Viewing Corner Case Coverage

Our corner case coverage shows how many times the JMPC opcode was issued when the
carry bit was high.

Procedure

To view corner case coverage of the JIMPC opcode:

1. Click Coverage in the Specview main window.
The Coverage window appears.

2. Inthe Group frame on the left, click theto the left ofinstr.start_drv_DUTand then
choosecross__opcode__carry

The cross-coverage report for opcode and carry appears in the right-hand frames.

3. Scroll down to the JIMPC opcode.

You can see that the IMPC code was issued 12 times, and that carry was low each
time.

Grade |+ |opcode |carry |Tests |Hits |Goal |Hits / Goal
S0 100

= T—J = ;

@ 15 AnD 0 iz 52 1

@ AIDI 1 4 5 1 ;|

o HOR 0 13 70 1

@ G xoR 1 7 10 1 ;

@ HORI 0 13 g4 1

[HORI 1 8 11 1=

@ JUP 0 10 14 1 =

@ JuP 1 2 2 1

@ 2 mPc 0 5 12 1 e

@[o | @ .umrPC 1 0 0 1 e

The ability to cross test input with the DUT’s internal state yields the valuable information
that the tests created so far do not truly test the IMPC opcode. You could raise the weight
on JMPC and hope to achieve the goal. However, many simulation cycles would be wasted
to cover this corner case. The Specman Elite system lets you attack this type of corner case
scenario much more efficiently. In the next chapter you learn how to do this.

Specman Elite Tutorial © Verisity Design, Inc. 8-19

9 Writing a Corner Case Test

Goals for this Chapter

As described in the Functional Test Plan, you want to create one corner case test that
generates the JMPC opcode when the carry signal is high.

What You Will Learn

As you work through this chapter, you learn an effective methodology for addressing
corner case scenario testing. With Specman Ebite'the-fly test generation you can

direct the test to constantly monitor the state of signals in the DUT and to generate the right
test data—at the right time—to reach a corner case scenario. This feature spares you the
time-consuming effort required to write deterministic tests to reach the same result.

This chapter introduces tleeconstructs shown in Table 9-1.

Table 9-1 New Constructs Used in this Chapter

Construct How the Construct is Used
'signal * weight: Used as an expression containing a DUT signal within the
value selectblock of akeep softconstraint that controls the

distribution of generated values.

Specman Elite Tutorial © Verisity Design, Inc. 9-1

Writing a Corner Case Test Increasing the Probability of Arithmetic Operations

The steps required to create the corner case test are:
* Increasing the probability of arithmetic operations.
e Linking JMPC generation to the DUT’s carry signal.

The following section describes these tasks in detail.

Increasing the Probability of Arithmetic
Operations

The goal of this test is to generate the JIMPC opcode only when the carry signal is high.
The carry signal can only be high when arithmetic operations are performed. Therefore,
the test should favor generation of arithmetic operations over other types of operations.

Procedure

To increase the probability of arithmetic operations:

1. Copy thesrc/CPU _tst3.dile to the working directory and open tigPU _tst3.ile in
an editor.

2. Find the portion of the file that contains Keep softconstraint.

extend instr {
keep soft opcode == select {
/I high weights on arithmetic

/I generation of JMPC controlled by the carry
// signal value

9-2 © Verisity Design, Inc. Specman Elite Tutorial

Linking JMPC Generation to the Carry Signal Writing a Corner Case Test

3. Put a high weight on arithmetic operations and low weights on the others.

extend instr {
keep soft opcode == select {
/I high weights on arithmetic

keeps high weight 40 : [ADD, ADDI, SUB, SUBIJ;
on arithmetic 20 : [AND, ANDI, XOR, XORIJ;
operations 10 : [JMP, CALL, RET, NOPJ;

/I generation of JMPC controlled
I/l by the carry signal value

4. Save th&€PU_tst3.dile.

Linking IMPC Generation to the Carry Signal

If you generate the list of instructions before simulation, there is only a low probability of
driving a JMPC instruction into the DUT when the carry signal is asserted. A better
approach is to monitor the carry signal and generate the JMPC instruction when the carry

signal is known to be high.

This methodology lets you reach the corner case from multiple paths, in other words, from
different opcodes issued prior to the JIMPC opcode. This test shows how the DUT behaves
under various sequences of opcodes.

Specman Elite Tutorial © Verisity Design, Inc. 9-3

Writing a Corner Case Test Linking JMPC Generation to the Carry Signal

Procedure

1. Find the portion of th€PU_tst3.dile that looks like this:

extend instr {
keep soft opcode == select {
/I high weights on arithmetic
40 : [ADD, ADDI, SUB, SUBIJ;
20 : [AND, ANDI, XOR, XORIJ;
10 : [JMP, CALL, RET, NOP];

/I generation of JIMPC controlled by the
/I carry signal value

2. On a separate line within thelectblock, enter a weight for the JMPC opcode, as a
function of the carry signal (weight is 0 when carry = 0, or 90 when carry = 1).

extend instr {
keep soft opcode == select {
/I high weights on arithmetic
40 : [ADD, ADDI, SUB, SUBIJ;
20 : [AND, ANDI, XOR, XORIJ;
10 : [JMP, CALL, RET, NOP];

/I generation of JIMPC controlled by the
/I carry signal value
‘top.carry' * 90 :JMPC,;

3. Save th&€PU _tst3.dile.

You are now ready to run this test to create the corner case test scenario. Before running
this test, however, you want to address another important part of functional verification:
self-checking module creation. In the next chapter, you learn easy self-checking module
creation, another powerful feature provided by the Specman Elite system.

9-4 © Verisity Design, Inc. Specman Elite Tutorial

10 Creating Temporal and
Data Checks

Goals for this Chapter

In this chapter, you check timing-related dependencies and automate the detection of
unexpected DUT behavior by adding a self-checking module to the verification
environment.

What You Will Learn

In this chapter, you learn how to create temporal checks for the state machine control
signals. You also learn how to implement data checks using a reference model.

As you work through this chapter, you gain experience with two of the Specman Elite
verification system’s enabling features:

* Specman Elite temporal constructs—Fhese powerful constructs let you easily
capture the DUT interface specifications, verify the protocols of the interfaces, and
efficiently debug them. The temporal constructs minimize the size of complex
self-checking modules and significantly reduce the time it takes to implement
self-checking.

Specman Elite Tutorial © Verisity Design, Inc. 10-1

Creating Temporal and Data Checks Creating the Temporal Checks

* Specman Elite data checking—Bata checking methodology can be flexibly
implemented in the Specman Elite system. For data-mover applications like switches
or routers, you can use powerful built-in constructs for rule-based checking. For
processor-type applications like the application used in this tutorial, reference model
methodology is commonly implemented.

This chapter introduces tleeconstructs shown in Table 10-1.

Table 10-1 New Constructs Used in this Chapter

Construct How the Construct is Used
expect Checks that a temporal expression is true and if not, reports an error.
check Checks that a Boolean expression is true and if not, reports an error.

The steps required to implement these checks are:
1. Creating the temporal checks.

2. Creating the data checks.

3. Running the test with checks.

The following sections describe these tasks in detail.

Creating the Temporal Checks

The design specifications for the CPU require that after enterirexéloatestate, the
fetchlsignal must be asserted in the following cycle. This is a temporal check because it
specifies the correct behavior of DUT signals across multiple cycles.

Procedure

To create the temporal check:

1. Copythesrc/CPU_checkerfle to the working directory and open t#U_checker.e
file in an editor.

10-2 © Verisity Design, Inc. Specman Elite Tutorial

Creating the Temporal Checks Creating Temporal and Data Checks

2. Find the portion of the file that looks like this:

defines start of
exec state

defines rise of
fetchl

/I Temporal (Protocol) Checker

event enter_exec_st is
(change('top.cpu.curr_FSM"and
true('top.cpu.curr_FSM' == exec_st))
@sys.cpuclk;

event fetchl assert is
(change('top.fetch1l’)and
true('top.fetchl' == 1)) @sys.cpuclk;

llInterface Spec: After entering instruction
/lexecution state, fetchl1 signal must be
/lasserted in the following cycle.

3. Define a temporal check for thater_exec_stvent by creating aexpectstatement.

issues an error
message if fetchl
does not rise
exactly one cycle
after entering
execute state

/I Temporal (Protocol) Checker

event enter_exec_st is
(change('top.cpu.curr_FSM"and
true('top.cpu.curr_FSM' == exec_st))
@sys.cpuclk;

event fetchl_assert is
(change('top.fetch1l")and
true(‘top.fetchl' == 1)) @sys.cpuclk;

/llinterface Spec: After entering instruction

/lexecution state, fetchl1 signal must be

/lasserted in the following cycle.

expect @enter_exec_st => {@fetchl_assert}
@sys.cpuclk else
dut_error("PROTOCOL ERROR");

4, Save th&€€PU_checker.dile.

Specman Elite Tutorial

© Verisity Design, Inc. 10-3

Creating Temporal and Data Checks Creating Data Checks

Creating Data Checks

To determine whether the CPU instructions are executing properly, you need to monitor
the program counter, which is updated by many of the control flow operations.

Reference models are not required for data checking. You could use a rule-based
methodology. However, reference models are part of a typical strategy for verifying CPU
designs. The Specman Elite system supports reference models written in Verilog, VHDL,
C, or, as in this tutoriake. All you need to do is to create checks that compare the program
counter in the DUT to their counterparts in the reference model.

Procedure
Creating data checks has two parts:
* Adding the data checks

e Synchronizing the reference model execution with the DUT

Adding the Data Checks

To add the data checks:
1. Find the portion of th€PU_checker.dile where theexec_donevent is defined.

Notice that there is an eveekec_dongeand associated methauh_exec_donélhe
Specman Elite system automatically creates an associated method for every event you
define. The method is empty until you extend it. The method executes every time the
event occurs.

/I Data Checker
event definition event exec_done is (fall('top.exec’) and
true('top.rst' == 0))@sys.cpuclk;

method on_exec_done() is {
associated with /l Compare PC - program counter
event }

10-4 © Verisity Design, Inc. Specman Elite Tutorial

Creating Data Checks Creating Temporal and Data Checks

2. Add a check for the program counter by creatinheck statement.

/I Data Checker
event exec_done is (fall('top.exec’) and

issues an error if true(‘top.rst' == 0))@sys.cpuclk;
there is a
mismatch in the on_exec_done() is {
program counters /I Compare PC - program counter
of the DUT and check that sys.cpu_dut.pc ==
the reference sys.cpu_refmodel.pc else
model dut_error("DATA MISMATCH(pc)™);
2

3. Save th&€PU_checker.dile.

Synchronizing the Reference Model with the DUT

To synchronize the reference model with the DUT:
1. Open theCcPU_drive.dfile in the working directory.

2. At the top of the file find the line that imports the CPU reference model and remove
the comment characters from ftihgortline.

<
imports the import CPU_refmodel;
reference model
extend sys {
event cpuclk is
(fall('top.clk) @tick_end);

cpu_env : cpu_env;
cpu_dut : cpu_dut;
/lcpu_refmodel : cpu_refmodel;

—

Specman Elite Tutorial © Verisity Design, Inc. 10-5

Creating Temporal and Data Checks Creating Data Checks

3. Findthe line that extends the Specman Elite system by creating an instance of the CPU
reference model and remove the comment characters.

<
import CPU_refmodel;

extend sys {
event cpuclk is
(fall('top.clk’) @tick_end);

cpu_env : cpu_env;
cpu_dut : cpu_dut;
cpu_refmodel : cpu_refmodel;

creates an
instance of the
reference model }

4. Find the line in theeset_cpulCM that resets the reference model and remove the
comment characters.

reset_cpu() @sys.cpuclk is {

‘top.rst' = 0;
wait [1] * cycle;
‘top.rst' = 1,

wait [5] * cycle;
sys.cpu_refmodel.reset();
‘top.rst' = 0;

resets the
reference model

5. Find the line in thelrive_one_instTCM that executes the reference model when the
DUT is in the execute state and remove the comment characters.

I/l execute instr in refmodel
sys.cpu_refmodel.execute(instr,sys.cpu_dut);

6. Save theCPU_drive.dfile.

10-6 © Verisity Design, Inc. Specman Elite Tutorial

Running the Simulation Creating Temporal and Data Checks

Running the Simulation

This procedure, which involves loading the appropriate files and then executing the test, is
very similar to the procedure you used in previous chapters to generate other tests.

The only difference is that this time you include the reference model and checks.

Procedure
To run the simulation:
1. Open the working directory’s copy of ta#U_top.€file in an editor.

2. Find the lines in the file that look like this:

/I Add Checking:
/limport CPU_checker;

3. Remove the comment characters in front ofirtigort line so the lines look like this:

/I Add Checking:
import CPU_checker;

4. Save the€PU_top.€file.
5. Copy thesrc/CPU_refmodel.éle to the working directory.
6. Invoke Specview, if it is not already running:
% specview &
7. Click Restore to remove any loaded modules from the current session.
8. Click Load and loa€PU _tst3.e

Remember that this is the test that you wrote in Chapter 9, “Writing a Corner Case
Test”.

9. Click Test to run the simulation.

Specman Elite Tutorial © Verisity Design, Inc. 10-7

Creating Temporal and Data Checks Running the Simulation

It looks like we hit a bug here. The Specman Elite system is reporting a protocol
violation.

test

Doing setup ...
Generating the test using seed 7...
Starting the test ...
Running the test ...
DUT executing instr
DUT executing instr
DUT executing instr
DUT executing instr

XOR REGOx0, REGOx2
ADD REGOx2, REGOx3
CALL REGOx1, @0x09
ANDI REGOx1, @0x65

DUT executing instr AND REGOx1, REGOx0
DUT executing instr ADD REGO0x0, REGOx2
DUT executing instr SUB REGOx0, REGOx1

XORI REGO0x3, @0xca
ADDI REGO0x3, @0xch
ADDI REGO0x1, @0xc0
ANDI REGOx1, @0xd6
SUB REGOx0, REGOx2

DUT executing instr
DUT executing instr
DUT executing instr
DUT executing instr
DUT executing instr

=
PoOX@NOOTRONEO

*** Dut error at time 2246
Checked at line 42 in @CPU_checker
In cpu_env-@0:
PROTOCOL ERROR
Will stop execution immediately (check effect is ERROR)

*** Error: A Dut error has occurred

*** Error: Error during tick command

Tip If you are using a version of Specman Elite that is not 4.0, it is possible that the
DUT error will not occur on the first test or that it will occur at a different time.
If it does not occur, reload the test and specify a seed other than the default (1).
When the error occurs, note the exact time when it occurred. You will use this
information in the next chapter to debug the error.

10-8 © Verisity Design, Inc. Specman Elite Tutorial

Running the Simulation Creating Temporal and Data Checks

10. Click the error hyperlink to view the line in the source that generated this message.

This message comes from the checker module that you just created.

=] File CPU_checker.e ==
File Edit WView Breskpoint Hatch Tools Help
@] & kel il @
Break Br If...| Del Br Del ALl | Print Hatch Line# | Lock | Close
sys.cpu_refnodel.pc else 'S
3 dut_error ("DATA HISHATCH{pc)>");
¥
// Temporal {Protocol} Checker
event enter_exec_st is {change(’top.cpu.curr_F5H*} and
true{’top.cpu.curr_FSH* == exec_st))Bsys.cpuclk;
event fetchl_assert is {change(’top.fetchl’) and
true{’top.fetchl’ == 1))@sys.cpuclk;
/7 Interface Spec: After entering instruction execution state, fetchl
Id4d signal nust be asserted in the following cycle.
expect @enter_exec_st => {@Fetchl_assert}
esys.cpuclk else
dut_error ("PROTOCOL ERROR")3
3s
4 ,> /‘

In the next chapter, you learn how to identify the conditions under which this bug occurs
and how to bypass the bug until it can be fixed.

Specman Elite Tutorial © Verisity Design, Inc. 10-9

11 Analyzing and Bypassing
Bugs

Goals for this Chapter

The main goal for this chapter is to debug the temporal error generated during your
previous tutorial session (Chapter 10, “Creating Temporal and Data Checks”). At the end
of this chapter, you also learn how to direct the generator to bypass a test scenario that
causes an error.

What You Will Learn

As you work through this chapter, you gain experience with two of the Specman Elite
system’s enabling features:

* The Specman Elite debugger-Rrovides powerful debugging capability with
visibility into the HDL design.

* The Specman Elite bypass feature-kets you temporarily prevent the Specman Elite
system from generating test data that reveals a bug in the design. With this feature you
can continue testing while the bug is being fixed.

Specman Elite Tutorial © Verisity Design, Inc. 11-1

Analyzing and Bypassing Bugs Displaying DUT Values

This chapter introduces the Specview menu commands shown in Table 11-1.

Table 11-1 New Specview Menu Commands Used in this Chapter

Command How the Command is Used

Debug>>Thread Browser Opens the Thread Browser, which displays all the
TCMs (threads) that are currently active.

Debug>>0Open Debug Opens the Debugger window, which displays the

Window source for the current thread with the current line
highlighted.

Debugger: View>>Print Displays the current value of a&variable.

Debugger: Breakpoint>> Sets a breakpoint on the currently highlighted line of

Set Breakpoint>>Break ecode.

Debugger: Run>>Step Any Advances simulation to the next lineetode
executed in any thread.

Debugger: Run>>Step Advances simulation to the next lineefode
executed in the current thread.

The steps for debugging the temporal error are:
1. Displaying DUT values.

2. Setting breakpoints.

3. Stepping the simulation.

4. Bypassing bugs.

The following sections describe how to perform these tasks.

Displaying DUT Values

If you have just completed Chapter 10, “Creating Temporal and Data Checks”, the
PROTOCOL ERROR message is still displayed on the Main Specman window. If you
exited Specview, you will have to reinvoke Specview and run the simulation again, as
described in “Running the Simulation” on page 10-7. Then continue with the procedure
below.

11-2 © Verisity Design, Inc. Specman Elite Tutorial

Displaying DUT Values

Procedure

To display DUT values:

Analyzing and Bypassing Bugs

1. Inthe Specview main window, click the Threads button or choose Thread Browser

from the Debug menu.

The Thread Browser appears.

[=]=

Thread Browser
File Edit Wiew Tools Help
Prew HMext | Find | Refresh Lock | Close
Legend S
ST : stopped thread
==> : current thread
id status source tree struct.method
#0 ==> -—- ———— Ho Call
#1 Src Tree sys-23.clkgen
#2 Src Tree cpu_env-20.drive_cpu
#3 Src Tree cpu_dut-22.run_DUT
ri

The Thread Browser indicates the status of each TCM that is currently active in the

Specman Elite system:

* Clock generation

* Drive and Sample CPU

e DUT

To debug the error, look first at the TCM that drives the DUT.

2. On the line focpu_env-@0.drive_cpuelick onSrcto bring up the corresponding
source file for this thread.

The Debugger window appears, showigU_drive.e

Specman Elite Tutorial

© Verisity Design, Inc.

11-3

Analyzing and Bypassing Bugs Displaying DUT Values

3. Click the Line # button in the Debugger window to display line numbers.

The highlighted line (line 56) shows that tiéve _one_instiTCM is waiting for the
top.execsignal to rise.

= Debug CPU_drive.e - Thread #2 =)D
File Edit Wiew Breakpoint HWHatch PBun Stack Tools Help
gl el & &l]
Find | Break Br If,,.| Del Br Del All | Print Hstch | Refresh Threads Lock | Close
= -
il =
Step Hext Finish - Abort. Line# || Stack
For 47 » if instr.kind == reg then { N
step 3 48 *top.data’ = pack{packing.high, instr};
p 49 3 else {
a0 /7 imnediate instruction
51 *top.data’ = pack{packing.high, instr.opcode, instr.opl, fill0};
52 wait until rise(”top.Fetch2”};
For gi ? ’top.data’ = pack{packing.high, instr.as_a(imm instr).op2);
step 5 55 ’
56 wait until rise{’top.exec’); J
a7
fali] /¢ execute instr in refmodel
o9 sys.cpu_refnodel .execute(instr, sys.cpu_dut);
60 3
61 ’
62
63 Inext_instr : instrs;
b4 nun_instrs : uintj
gg keep soft num_instrs in [40..601s
&7 man an wld Ariin inckro) Acne cnoell io 8 /
| | drive_one_instr{} 2246 Uait fict ive |
0. #2 T:cpu_env-@0.drive_cpui{me = cpu_env-@0) line 101 eCPU_drive K
1. #2 Ticpu_env-e0.gen_and_drive_instrs{me = cpu_enu-20} line 75 eCPU_driv
2. ==>#2 T:cpu_env-@0.drive_one_instr{me = cpu_env—@0, inskr = instr-21} line
£
! I =

4. To find out the current instruction type, highlight the phriastér.kind located 9 lines
above (line 47) the highlightedait statement and click Print.

11-4 © Verisity Design, Inc. Specman Elite Tutorial

Setting Breakpoints

Analyzing and Bypassing Bugs

The Data Browser opens and shows thatrikekindis an immediate instruction.

Data Browser — instr

[EE

File View Tools

B E| O B2 d &]
Mew Window | Source Edit | Modify | config Lock | Close
Expression: instr.kind /| : M instr: imm instr (like any_struct) = imm instr-@1
Data Content _I[FData Details
M s - imminsir-@1)
et 55 - F'B‘dsl & Eventsw iy I\.ﬂethads] I (L5t nErrs]
& | g | K | Marrz | Walue | Maciule
@ - H opoode JUPC CPU_instr
@ W opd REG3 CPU_instr
@ - . knd i CPU_instr
@ W opz? 0l CPU_instr
A CI—
Seurce File: CPU_instr.e
L o
2 |CPU_instr.e: Basic structure of CPU instructions
3
4 |This modnle defines the basic structure of CPOU instructions, g
=]] I

3 instr

5 4 Fiekes

[Feady

5. Inasimilar fashion, highlight the phrasestr.opcoden the line four lines above (line

51) thewait statement and click Print.

In the Data Browser, you can see that the value of opcode is IMPC.

6. Optionally you can find out the value of any HDL signals. For example, to display the

value oftop.data highlight the phrasdcdp.data and click Print.

Setting Breakpoints

You have determined that the bug appears on an immediate instruction when the opcode is
JMPC. It may be possible to narrow down even further the conditions under which the bug
occurs. You can set a breakpoint on the statement that drives the immediate instruction

data into the DUT to see what the operands of the instruction are.

Specman Elite Tutorial © Verisity Design, Inc.

11-5

Analyzing and Bypassing Bugs Stepping the Simulation

Procedure
To set a breakpoint:
1. Highlight any portion of the line:
‘top.data’ = pack(packing.high, instr.as_a(imm instr).op2);
2. On the Breakpoint menu, choose Set Breakpoint and then choose Break.
The line should now be red and underlined to indicate a breakpoint has been set.

3. On the Breakpoint menu, choose Show All Breakpoints to activate the breakpoint just
before the error occurs (at system time 2246).

The Breakpoints window appears.

~i Breakpoints E |J|
Add/Change Breakpoint

Edit Y 1. break on line 53 in @CPU_drive

Box
for

step 4

Add | Change | Enable | Disable | Delete | Delete all | Close |

4. In the edit box at the top of the window, modify the current breakpoint by adding the
condition “if (sys.time > 2200)”", as follows:

break on line 53 in @CPU_drive if (sys.time > 2200)
Tip If the error occurred at a simulation time other than 2246, choose a different
value for the sys.time expression that is at least 46 time units before the error
occurred.

5. Click Changeto save the changes.

Stepping the Simulation

You can trace the exact execution order ofehede by stepping the simulation.

11-6 © Verisity Design, Inc. Specman Elite Tutorial

Stepping the Simulation Analyzing and Bypassing Bugs

Procedure

To step the simulation:

1. Click Reload in the Specview main window to run the simulation in debug mode.
The Debugger window closes when you reload the design.

2. Click Test.

The simulation stops at the breakpoint.

= Debug CPU_drive.e — Thread #2 =)=
File Edit Wiew Breakpoint MWatch Bun Stack Tools Help
& g e 6]
Break Br If...| Del Br Del ALl | Print Watch | Refresh Threads Lock | Close
= 5 9 s 1= =
Step Hext Finish Step Any | Abort | Up Down Line# || Stack
Ttop.data” = pack{packing.high, instr}; S
3 else §
/7 immediate instruction
*top.data® = pack{packing.high, instr.opcode, instr.opl, fill0};
wait until rise{’top.fetch2”};
I *top.data’ = pack{packing.high, instr.as a{inn instr).op2};
¥
wait until rise{’top.exec”);
/7 execute instr in refmodel J
. sys.cpu_refmnodel .execute{instr, sys.cpu_dut);
¥
Inext_instr : instrs
nun_instrs : uint;
keep soft num_instrs in [40..60]1;3
gen_and_drive_instrs{(} @sys.cpuclk is § Z
| |dr‘iue_one_in3tr‘() 186 5T fctive |
0. #2 T:cpu_env—@0.drive_cpui{me = cpu_env-20} line 101 @CPU_drive -S
1. #2 T:cpu_env-20.gen_and_drive_instrs{me = cpu_env-20} line 75 eCPU_driv
2. ST==>#2 T:cpu_env-20.drive_one_instr{me = cpu_env-20, instr = instr-el} line
£
=T | L

3. From the Run menu in the Debugger window, choose Step Any (or click the Step Any
button) to advance to the next source line in any subsequent thread.

4. Continue clicking Step Any until the current thread is Thread #3 in the CPU_DUT.e
file, as indicated in the title bar at the top of the window.

Note If the current thread switches to Thread #0 (the Specman tick thread), the
source file is not visible. You should continue clicking Step Any.

Specman Elite Tutorial © Verisity Design, Inc. 11-7

Analyzing and Bypassing Bugs Bypassing the Bug

5. In the Debugger window, click the Step button to step through the simulation within
the current thread, Thread #3.

6. Continue clicking Step for about 35 to 40 steps until you hit the PROTOCOL error.

The Step button is greyed out, and the PROTOCOL error is displayed in the Specview
main window.

For the purpose of simplifying this tutorial, we planted an obvious bug in the DUT.
Whenever a JMPC instruction jumps to a location greater than 10, execution requires
two extra cycles to complete.

Bypassing the Bug

A common problem in traditional test generation methodology is that when there is a bug
in the design, verification cannot continue until the bug is fixed. There is no way to prevent
the generator from creating tests that hit the bug.

The Specman Elite system’s extensibility feature, however, lets you temporarily prevent
generation of the conditions that cause the bug to be revealed.

This particular bug seems to surface when the JMPC operation is performed using a
memory location greater than 10. To continue testing other scenarios, you simply extend
the test constraints to prevent the Specman Elite system from generating this combination.
Procedure

To bypass the IMPC bug:

1. Copy thesrc/CPU_bypass.fle to the working directory.

2. Open theCPU_bypass.éle in the editor.

3. Review the&keep constraint.

<
extend imm instr {

keep (opcode == JMPC) =>0p2< 10 ;

11-8 © Verisity Design, Inc. Specman Elite Tutorial

Tutorial Summary Analyzing and Bypassing Bugs

4. In the Specview main window, choose Debug>>All Breakpoints>>Delete All
Breakpoints.

5. Click Reload.

6. Click Load and load thePU_bypass.éle.

7. Click Test.

This time the test runs to completion.

Tutorial Summary

Congratulations! You have successfully completed the major steps required to verify a
device with the Specman Elite verification system.

In this tutorial:

* You captured the interface specifications for the CPU instructioasird created the
instruction stream.

* You used specification constraints to ensure that only legal instructions were generated.
You used test constraints to create a simple go-no-go test.

* You created a Specman Elite TCM (time consuming method) to define the driver
protocol and then drove the generated CPU instruction stream into the DUT. The results
confirmed that you had generated the first test and driven it correctly into the design.

* Using Specman Elite’s powerful constraint-driven generator, you generated 15 sets of
instructions. Using weight to control the generation value distribution, you effectively
focused these sets of instructions on the commonly executed portion of the CPU DUT.

* Using Specman Elite’s unique Functional Coverage Analyzer, you accurately measured
the effectiveness of the coverage of the regression tests. You identified a corner case
“hole” by viewing the graphical coverage reports.

* To address the corner case scenario, you used Specman Elite’'s powerful on-the-fly
generation capability to generate a test based on the internal state of the design during
simulation. Compared to the traditional deterministic test approach, this approach tests
the corner case much more effectively from multiple paths.

* You then used the unique temporal constructs provided by the Specman Elite system
to create a self-checking monitor for verifying protocol conformance.

* When the self-checking monitor revealed a bug, the Specview debugger provided
extensive features to debug the design efficiently.

Specman Elite Tutorial © Verisity Design, Inc. 11-9

Analyzing and Bypassing Bugs Tutorial Summary

Note that you have created this verification environment, including self-checking modules
and functional coverage analysis, in a short period of time. Once the environment is
established, creating a large number of effective tests is merely one click away. The
ultimate advantage of using the Specman Elite system is a tremendous reduction in
verification time and resources.

11-10 © Verisity Design, Inc. Specman Elite Tutorial

A Setting up the Tutorial
Environment

To set up the tutorial environment, you need a Specman Elite license. You can get one by
sending an email tmfo@verisity.conor by calling Verisity customer support at
(650) 934-6890.

There are three procedures involved in setting up the tutorial environment:
* Downloading the Specman Elite software and tutorial files
* Installing the Specman Elite software
* Installing the tutorial files

These procedures are described in this appendix.

Note that even if Specman Elite software has already been installed in your environment,
you still have to download and install the tutorial files.

Downloading the Required Files

To download the Specman Elite software and the tutorial files from the Vétpssiye:

1. Change directory to the directory where you want to store the downloaded files.
2. Log in to the Verisityitp site in the United States or Israel.

United States:

Specman Elite Tutorial © Verisity Design, Inc. A-1

Setting up the Tutorial Environment Downloading the Required Files

% ftp ftp.verisity.com

Connected to ftp.verisity.com...

Name (ftp.verisity.com: your_name): anonymous
331 Guest login ok, send ident as password

Password: your-complete-email-address

230 Guest login ok, access restrictions apply.

Israel:

% ftp ftp-il.verisity.com

Connected to ftp.verisity.com...

Name (ftp.verisity.com: your_name). anonymous
331 Guest login ok, send ident as password

Password: your-complete-email-address

230 Guest login ok, access restrictions apply.

3. Change directory to the private/tutors directory.

ftp> cd private/tutors
250 CWD command successful

Note The private/tutors directory contains a README file that describes the
contents of the directory.

4. Change the format type inary.

ftp> bin
200 Type set to I.

5. Get the Specman Elite software.

ftp> get install_specman release_number .sh
200 PORT command successful.

150 Opening BINARY mode data connection for
install_specman release_number .sh

226 Transfer complete...

ftp> getsn_rel release_number .main.tar.gz
200 PORT command successful.

150 Opening BINARY mode data connection for
sn_rel release_number .main.tar.gz...

226 Transfer complete...

ftp> get sn_rel release_number . OStar.gz
150 Opening BINARY mode data connection for
sn_rel release_number . OStar.gz...

226 Transfer complete...

ftp> get sn_rel release_number .docs.tar.gz
150 Opening BINARY mode data connection for
sn_rel release_number .docs.tar.gz...

A-2 © Verisity Design, Inc. Specman Elite Tutorial

Installing the Specman Elite Software Setting up the Tutorial Environment

226 Transfer complete...
whereOSis one of the platforms that Specman Elite supports, eitharis or hpux.

6. Getthe tutorial files. For Specman Elite version 3.3.x, use 31@kease_numbeFor
Specman Elite version 4.x, use 4.0rf@lease_number

ftp> getse_tutor release_number .tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for se_tutor.tar.gz...
226 Transfer complete...

ftp>

7. Log out of ftp.

ftp> quit
221 Goodbye.

Installing the Specman Elite Software

To set the environment variables, install the files, and start up the license manager:
1. Log in to the machine where you want to install the Specman Elite software.

% rlogin solaris-machine | hpux-machine
2. Run the installation script.

% sh ./install_specman release_number .sh

3. When the Specman Elite Install Script Menu appears, choose option 1, “Complete
installation”.

After you have installed the machine-independent files and the machine-dependent
files, the script will ask you to choose a license installation step.

4. Choose option 1, “Install license server” from the “License handling” menu.

The script creates a new license file based on the license file you obtained via e-mail,
activates the license server, updates the SPECMAN_LICENSE_FILE environment
variable, and optionally creates the “rc.specman’” file.

5. After the license handling procedure is completed, install the online docs.
After you have installed the online docs, exit the installation script.
6. Source the Specman Elite environment file (env.csh or env.sh), for example:

% source install_dir/release_number/ env.csh

Specman Elite Tutorial © Verisity Design, Inc. A-3

Setting up the Tutorial Environment Installing the Tutorial Files

7. Make sure the Specman Elite object in your PATH is the one you have just installed.

% which specman
install_dir / O8specman
%

8. To check the installation, start the Specman Elite graphical interface.

% specview &

Tip If you have difficulty starting Specview or obtaining a license, call Verisity
customer support at (650) 934-6890.

Installing the Tutorial Files
To install the tutorial files.

1. Change directory to the directory where you want to install the tutorial files.

% cd tutor_dir
%

2. Unzip and untar the se_tutor.tar.gz file.

% gunzip se_tutor release_number .tar.gz
% tar -xvf se_tutor.tar

3. List the directory contents to see the file structure.

% Is *

gold:

CPU_bypass.e CPU_dut.e CPU tstl.e
CPU_checker.e CPU_instr.e CPU _tst2.e
CPU_cover.e CPU_misc.e CPU_tst3.e
CPU_cover_extend.e CPU_refmodel.e regression_4.0.ecov
CPU_drive.e CPU_top.e

src:

CPU_bypass.e CPU_dut.e CPU _tstl.e
CPU_checker.e CPU_instr.e CPU _tst2.e
CPU_cover.e CPU_misc.e CPU_tst3.e
CPU_cover_extend.e CPU_refmodel.e regression_4.0.ecov
CPU_drive.e CPU_top.e

%

A-4 © Verisity Design, Inc. Specman Elite Tutorial

Installing the Tutorial Files Setting up the Tutorial Environment

You can see that there are two sets of files. As you work through this tutorial, you will
be modifying the files in therc directory. If you have trouble making the
modifications correctly, you can view or use the files ingéd directory. The files in
thegold directory are complete and correct.

Now that the files are installed, you are ready to proceed with the design verification task
flow shown in Figure 1-2 on page 1-3. To start the first step in that flow, turn to Chapter 2,
“Understanding the Environment”. In this chapter, you review the DUT specifications and
functional test plan for the CPU design and define the overall verification environment.

Specman Elite Tutorial © Verisity Design, Inc. A-5

B Design Specifications for
the CPU

This document contains the following specifications:
* CPU instructions
* CPU interface

* CPU register list

CPU Instructions
The instructions are from three main categories:
* Arithmetic instructions— ADD, ADDI, SUB, SUBI
* Logic instructions—AND, ANDI, XOR, XORI
e Control flow instructions—JIMP, JMPC, CALL, RET
* No-operation instructions—NOP

All instructions have a 4-bit opcode and two operands. The first operand is one of four
4-bit registers internal to the CPU. This same register stores the result of the operation, in
the case of arithmetic and logic instructions.

Specman Elite Tutorial © Verisity Design, Inc. B-1

Design Specifications for the CPU CPU Instructions

Based on the second operand, there are two categories of instructions:

* Register instructions—The second operand is another one of the four internal
registers.

* Immediate instructions—The second operand is an 8-bit value contained in the next
instruction. When the opcode is of type JMP, IMPC, or CALL, this operand must be a
4-bit memory location.

Figure B-1 Register Instruction

byte 1

bit 7 q 5 4 3 2 1 0

opcode opl op2

Figure B-2 Immediate Instruction

byte 1 2
bt 7 6 § 4 3 2 1 0 7| 6/ 5/ 4| 3| 2| 1| O
opcode opl don’t op2
care

Table B-1 shows a summary description of the CPU instructions.

Table B-1 Summary of Instructions

Name Opcode Operands Comments

ADD 0000 register, register ADD; PC<-PC+1

ADDI 0001 register, immediate ADD immediate; PC <- PC + 2
SUB 0010 register, register SUB; PC<-PC+1

SUBI 0011 register, immediate SUB immediate; PC <- PC + 2
AND 0100 register, register AND; PC<-PC +1

ANDI 0101 register, immediate AND immediate; PC <- PC + 2
XOR 0110 register, register XOR; PC<-PC+1

B-2 © Verisity Design, Inc. Specman Elite Tutorial

CPU Interface Design Specifications for the CPU

Table B-1 Summary of Instructions (continued)

Name Opcode Operands Comments

XORI 0111 register, immediate XOR immediate; PC <- PC + 2
JMP 1000 immediate JUMP; PC <- immediate value
JVPC 1001 immediate JUMP on carry;

if carry = 1 PC <- immediate value
else PC<-PC +2

CALL 1010 immediate Call subroutine;
PC <- immediate value;
PCS<-PC+2
RET 1011 Return from call; PC <- PCS
NOP 1100 Undefined command

CPU Interface

The CPU has three inputs and no outputs, as shown in Table B-2.

Table B-2 Interface List

Function Direction Width Signal Name
CPU instruction input 8 bits data
clock input 1 bit clock
reset input 1 bit rst

When the CPU is reset by thst signal,rst must return to its inactive value no sooner than
min_reset_duratiomnd no later thamax_reset_duratian

Specman Elite Tutorial © Verisity Design, Inc. B-3

Design Specifications for the CPU CPU Register List

CPU Regqister List

The CPU has six 8-bit registers and one 4-bit register, as shown in Table B-3.

Table B-3 Register List

Function Width Register Name
state machine 4 bits curr_FSM
register

program counter 8 bits pc

program counter 8 bits pcs

stack

register 0 8 bits r0

register 1 8 bits rl

register 2 8 bits r2

register 3 8 bits r3

B-4 © Verisity Design, Inc. Specman Elite Tutorial

	Table of Contents
	1 Introduction
	Overview
	Tutorial Goals
	Setting up the Tutorial Environment
	Document Conventions

	2 Understanding the Environment
	Goals for this Chapter
	What You Will Learn
	The Design Specifications
	The Interface Specifications
	The Functional Test Plan
	Test 1
	Test 2
	Test 3

	Overview of the Verification Environment

	3 Creating the CPU Instruction Structure
	Goals for this Chapter
	What You Will Learn
	Capturing the Specifications
	Procedure

	Creating the List of Instructions
	Procedure

	4 Generating the First Test
	Goals for this Chapter
	What You Will Learn
	Defining the Test Constraints
	Test Objective
	Test Specifications
	Procedure

	Loading the Verification Environment
	Procedure

	Generating the Test

	5 Driving and Sampling the�DUT
	Goals for this Chapter
	What You Will Learn
	Defining the Protocols
	Running the Simulation
	Procedure

	6 Generating Constraint-Driven Tests
	Goals for this Chapter
	What You Will Learn
	Defining Weights for Random Tests
	Procedure

	Generating Tests With a User-Specified Seed
	Procedure

	Generating Tests With a Random Seed
	Procedure

	7 Defining Coverage
	Goals for this Chapter
	What You Will Learn
	Defining Coverage for the FSM
	Procedure

	Defining Coverage for the Generated Instructions
	Procedure

	Defining Coverage for the Corner Case
	Procedure

	8 Analyzing Coverage
	Goals for this Chapter
	What You Will Learn
	Running Tests with Coverage Groups Defined
	Procedure

	Viewing State Machine Coverage
	Procedure

	Viewing Instruction Stream Coverage
	Procedure

	Extending Coverage
	Procedure

	Viewing Coverage Per Instance
	Procedure

	Viewing Corner Case Coverage
	Procedure

	9 Writing a Corner Case Test
	Goals for this Chapter
	What You Will Learn
	Increasing the Probability of Arithmetic Operations
	Procedure

	Linking JMPC Generation to the Carry Signal
	Procedure

	10 Creating Temporal and Data Checks
	Goals for this Chapter
	What You Will Learn
	Creating the Temporal Checks
	Procedure

	Creating Data Checks
	Procedure
	Adding the Data Checks
	Synchronizing the Reference Model with the DUT

	Running the Simulation
	Procedure

	11 Analyzing and Bypassing Bugs
	Goals for this Chapter
	What You Will Learn
	Displaying DUT Values
	Procedure

	Setting Breakpoints
	Procedure

	Stepping the Simulation
	Procedure

	Bypassing the Bug
	Procedure

	Tutorial Summary

	A Setting up the Tutorial Environment
	Downloading the Required Files
	Installing the Specman Elite Software
	Installing the Tutorial Files

	B Design Specifications for the CPU
	CPU Instructions
	CPU Interface
	CPU Register List

