Shared Memory Parallel Programming

Abhishek Somani, Debdeep Mukhopadhyay

Mentor Graphics, IIT Kharagpur

August 2, 2015

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 1/ 46

@ Introduction
© Programming with pthreads

© Programming with OpenMP

August 2, 2015 2 /46

Abhishek, Debdeep (IIT Kgp) Parallel Programming

Outline

@ Introduction

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

Programming Model

P1 P2 P3
Y
Memory
1
P4 P5 P6

@ CREW (Concurrent Read Exclusive Write) PRAM (Parallel Random
Access Machine)

@ Shared Memory Address Space

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 4 /46

Requirements for Shared Address Programming

@ Concurrency : Constructs to allow executing parallel streams of
instructions

@ Synchronization : Constructs to ensure program correctness

o Mutual exclusion for shared variables
e Barriers

@ Software Portability : Across architectural platforms and number of
processors

@ Scheduling and Load balance : Efficiency

o Ease of programming : OpenMP versus pthreads

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 5/ 46

Fork-Join Mechanism

sequential | parallel |sequential | parallel |
| | | |
L N\ R
AN — 7
<

Figure : Courtesy of Victor Eijkhout

@ Threads are dynamic

@ Master thread is always active

@ Other threads created by thread spawning
@ Threads share data

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

process and thread

thread

process

separate address space

heavyweight; context
switching is expensive

can consist of multiple
threads

independent of other
processes

not very different from serial

programming

shared address space

lightweight; hyperthreading
support in modern hardware

belongs to a process

all threads of a process are
interdependent

requires careful programming
for correctness and efficiency

Abhishek, Debdeep (IIT Kgp)

Parallel Programming

August 2, 2015 7 /46

Outline

© Programming with pthreads

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 8 /46

POSIX threads or pthreads

// Necessary header

#include "pthread.h"

// Function to be called by each thread

void * thread_function(void * arg);

// Start Thread

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*thread_function) (void %),
void *arg);

// Stop Thread
int pthread_join(pthread_t thread,
void **retval);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 9 /46

pthread example 1

#include <stdlib.h>
#include <stdio.h>
#include "pthread.h"

int sum=0; //Global variable touched by all threads

//Function to be called by each thread
void adder() {

sum = sum+1;

return;

}

int main() {
const int numThreads=24;
int i;
pthread_t threads[numThreads];
for (i=0; i<numThreads; i++) //Start threads
if (pthread_create(threads+i, NULL, (void *)&adder, NULL) != 0)
return i+1;
for (i=0; i<numThreads; i++) //Stop threads
if (pthread_join(threads[i], NULL) != 0)
return numThreads+i+1;
printf("Sum computed: %d\n",sum);
return O;

Abhishek, Debdeep (IIT Kgp) rallel Programmin

pthread example 1 while sleeping

//Function to be called by each thread
void adder() {

int t = sum;

sleep(1);

sum = t + 1;

return;

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 11 / 46

pthread example 1 while sleeping ...

//Function to be called by each thread
void adder() {

sleep(1);

sum = sum + 1;

return;

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 12 / 46

Critical Region

111

Critical Region

il

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 13 / 46

Lock and Key

Mutual Exclusion Locks <= mutex locks

//The Lock
int pthread_mutex_lock (pthread_mutex_t *mutex_lock);

//The Key
int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);

//Initialization of Lock
int pthread_mutex_init (pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

pthread example 1 with locks

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "pthread.h"

int sum=0; //Global variable touched by all threads
pthread_mutex_t lock; //Mutex lock

//Function to be called by each thread
void adder() {
pthread_mutex_lock(&lock);
int t = sum; sleep(1); sum = t + 1;
pthread_mutex_unlock(&lock) ;
return;

}

int main() {
const int numThreads=24;
int i;
pthread_mutex_init (&lock, NULL);
pthread_t threads[numThreads];
for (i=0; i<numThreads; i++) //Start threads
if (pthread_create(threads+i, NULL, (void *)&adder, NULL)
return i+1;
for (i=0; i<numThreads; i++) //Stop threads
if (pthread_join(threads[i], NULL) != 0)
return numThreads+i+1;
printf("Sum computed: %d\n",sum);
return 0;

'=0)

Abhishek, Debdeep (IIT Kgp) rallel Programmin

Producer-Consumer work queues

pthread_mutex_t task_queue_lock; // Initialized in main
int task_available; //Initialized to O in main

producer consumer

while (!done()) {
inserted = 0;
create_task(&my_task) ;
while (inserted == 0) {

while (!done()) {
extracted = 0;
while (extracted == 0) {
pthread_mutex_lock(&task_queue_lock);

pthread_mutex_lock(&task_queue_lock) ;
if (task_available == 0) {
insert_into_queue(my_task);
task_available = 1;
inserted = 1;
}
pthread_mutex_unlock(&task_queue_lock) ;

if (task_available == 1) {
extract_from_queue (&my_task) ;
task_available = 0;
extracted = 1;
¥
pthread_mutex_unlock(&task_queue_lock);
s

process_task(my_task) ;

Abhishek, Debdeep (IIT Kgp)

allel Programming

Types of mutexes

//Initialization of Mutex Attribute
int pthread_mutexattr_init (pthread_mutexattr_t *attr);

//Set type of Mutex
int pthread_mutexattr_settype_np (pthread_mutexattr_t *attr,
int type);

o PTHREAD_MUTEX_NORMAL_NP : default, deadlocks on trying a second
lock

o PTHREAD_MUTEX_RECURSIVE_NP : allows locking multiple times

o PTHREAD_MUTEX_ERRORCHECK_NP : reports an error on trying a
second lock

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 17 /

Mutex Efficiency

@ pthread_mutex_trylock

o Faster than pthread_mutex_lock
e Allows thread to do other work if already locked

@ Condition Variables
o Allows a thread to block itself until a pre-specified condition is satisfied
e Thread performing condition wait does not use any CPU cycles

@ Read-Write Locks

e More frequent reads than writes on a data-structure
o Multiple simultaneous reads can be allowed but only one write

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 18 / 46

Barriers

T TR| T3] T4) ,
@ Can be implemented using a

counter, mutex or condition

variable

Barrier based sgtichronization @ Threads wait at the barrier
till all threads have reached

@ Last thread to reach barrier
wakes up all the threads

19 / 46

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

Famous words

A good way to stay flexible is to write less code — Pragmatic
Programmer

Simplicity is prerequisite for reliability — Dijkstra

Any fool can write code that a computer can understand. Good
programmers write code that humans can understand — Martin Fowler

Programming can be fun, so can be cryptography; however they
should not be combined — Kreitzberg and Shneiderman

KISS - Keep It Simple, Stupid — Anonymous

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 20 / 46

Outline

© Programming with OpenMP

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 21 / 46

MP Example 1

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <omp.h>

int sum=0; //Global variable touched by all threads

//Function to be called by each thread
void adder() {
#pragma omp critical

int t = sum; sleep(1); sum = t + 1;
¥
return;

}

int main() {
const int numThreads=24;
int i;
omp_set_num_threads (numThreads) ;
#pragma omp parallel for shared(sum)
for(i = 0; i < numThreads; ++i)
adder();
printf("Sum computed: %d\n",sum);
return O;

Abhishek, Debdeep (IIT Kgp) rallel Programmin

OpenMP Programming in C/C++

@ Based on #pragma compiler directive
@ Code added by compiler, NOT preprocessor

@ Directive name followed by clauses

#pragma omp directive [clause list]

#pragma omp parallel [clause list]

@ Serial execution till parallel directive is encountered.

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 23 / 46

OpenMP clauses

@ Conditional Parallelization

bool doParallel = true;
#pragma omp parallel if(doParallel)

@ Degree of Concurrency

#pragma omp parallel num_threads(8)

o Data Handling

#pragma omp parallel default(none) private(x) shared(y)

#pragma omp parallel private(x) lastprivate(y)

#pragma omp parallel default(shared) firstprivate(x)

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

More about Data Handling

@ Most variables are shared by default
e Functions called from parallel regions are private; Think about
thread-safety of functions
o Automatic variables within statement block are private

@ Default attributes

#pragma omp parallel default(private|shared|none)

@ firstprivate : private variables initialized to value at the end of the
previous serial region

@ lastprivate : Final value of a private variable inside a parallel loop
transmitted outside the loop to the serial variable

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 25 / 46

omp_set_num_threads(8);
int x = -1;
#pragma omp parallel
{
sleep(1);
//Get thread number
x = omp_get_thread_num();
}
printf ("The value of x = %d\n", x);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

omp_set_num_threads(8);
int x = -1;
#pragma omp parallel
{
sleep(1);
int x = 6;
}
printf ("The value of x = %d\n", x);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 27 / 46

omp_set_num_threads(8);
int x = -1;
#pragma omp parallel private(x)
{
sleep(1);
x = 6;
}
printf ("The value of x = %d\n", x);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 28 / 46

omp_set_num_threads(8);
int x = 0;
#pragma omp parallel
{
sleep(1);
X =x+ 1;
}
printf ("The value of x = %d\n", x);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 29 / 46

omp_set_num_threads(8);
int x = 2;

#pragma omp parallel private(x)
{

sleep(1);
const int threadId = omp_get_thread_num();

X += threadld;
printf ("Thread %d : x %d\n", threadId, x);
}

printf("Final value of x = %d\n", x);

August 2, 2015 30 / 46

Abhishek, Debdeep (IIT Kgp) Parallel Programming

omp_set_num_threads(8);
int x = 2;

#pragma omp parallel firstprivate(x)
{

sleep(1);
const int threadId = omp_get_thread_num();

X += threadld;
printf ("Thread %d : x %d\n", threadId, x);
}

printf("Final value of x = %d\n", x);

August 2, 2015 31/ 46

Abhishek, Debdeep (IIT Kgp) Parallel Programming

const int numThreads = 8;
omp_set_num_threads (numThreads) ;
int x = 2;
#pragma omp parallel for firstprivate(x) lastprivate(x)
for(int 1 = 0; i < numThreads; ++i)

{
sleep(1);
const int threadId = omp_get_thread_num();
x += threadld;
printf ("Thread %d : x %d\n", threadId, x);
}

printf("Final value of x = %d\n", x);

August 2, 2015

Abhishek, Debdeep (IIT Kgp) Parallel Programming

4
TR Z T XI2AX
i=0
1
where, Ax =
n+1
1
and x; =(i + =)Ax

2

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

Serial program for 7

#include <stdio.h>

int main() {
const int numPoints = 10000000;
const double deltaX 1.0/ (double)numPoints;
double pi = 0.0;
for(int i 0; i < numPoints; ++i)

{

double xi = (i + 0.5) * deltaX;
pi += 4.0/(1 + xi * xi);

}

pi *= deltaX;

printf ("Value of pi: %.10g\n", pi);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

Parallel program for 7w : Attempt 1

#include <stdio.h>
#include <omp.h>

int main() {
const int numThreads = 24;
const int numPoints = 10000000;
const double deltaX = 1.0/(double)numPoints;
double pi = 0.0;
omp_set_num_threads (numThreads) ;
double components [numThreads];
#pragma omp parallel shared(components)

const int nt = omp_get_num_threads();
const int pointsPerThread = numPoints/nt;
const int threadId = omp_get_thread_num();
components [threadId] = 0.0;
double xi = (0.5 + pointsPerThread * threadId) * deltaX;
for(int i = 0; i < pointsPerThread; ++i)
{
components [threadId] += 4.0/(1 + xi * xi);
xi += deltaX;
}
s
for(int i = 0; i < numThreads; ++i)
pi += components[il;
pi *= deltaX;
printf("Value of pi: %.10g\n", pi);
return 0;

Abhishek, Debdeep (IIT Kgp) rallel Programmin

Parallel program for 7w : Attempt 1 ...

double components[numThreads];
#pragma omp parallel shared(components)
{

const int nt = omp_get_num_threads();
const int pointsPerThread = numPoints/nt;
const int threadId = omp_get_thread_num();
components [threadId] = 0.0;
double xi = (0.5 + pointsPerThread * threadId) * deltaX;
for(int i = 0; i < pointsPerThread; ++i)
{
components [threadId] += 4.0/(1 + xi * xi);
xi += deltaX;
}
}
for(int i = 0; i < numThreads; ++i)
pi += components[i];

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 36 / 46

Synchronization directives

@ critical : Only one thread can enter a critical region at any time
@ atomic : Provides mutual exclusion in updates to a memory location

o Applicable to a single variable at a time
o Limited to binary, increment, decrement operations

@ barrier : Each thread waits at a barrier until all threads arrive

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 37 / 46

Parallel program for 7 : Attempt 2

#pragma omp parallel
{

const int nt = omp_get_num_threads();

const int pointsPerThread = numPoints/nt;

const int threadId = omp_get_thread_num();

double xi = (0.5 + pointsPerThread * threadId) * deltaX;
double component 0.0;

for(int i = 0; i < pointsPerThread; ++i)

{

component += 4.0/(1 + xi * xi);
xi += deltaX;
X
#pragma omp critical
{
pi += component;

}

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

Loop worksharing

0 Static N-1
e 0 e e D
Static,n
]| ene o |[ene 2 |[[ehr 2 | ARG [eor o |[ehr 1 [ehr 2 | JERRIRN [e o |[e 2 |@\
Dynamic
| thr o |[thr 1 |[thr 2 |-| thr 1 |[thr o |[the 2 | nr 1 |-| thr 1 |E ‘
Guided N-1
| thr 0 || thr 1 || thr 2 |-| to || t1 || t2 |-|t0||t1||t2|. |t0|t1|t2|

Figure : Courtesy of Victor Eijkhout

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 39 / 46

Parallel program for 7 : Attempt 3

#pragma omp parallel
{

double component = 0.0;
#pragma omp for schedule(static)
for(int i = 0; i < numPoints; ++i)
{
double xi = (0.5 + i) * deltaX;
component += 4.0/(1 + xi * xi);
3

#pragma omp critical
{

pi += component;

3

Abhishek, Debdeep (IIT Kgp)

Parallel Programming

August 2, 2015

Reduction clause

#pragma omp parallel for reduction(op:list)

@ In each thread, local copy of each variable in list is made and
initialized

@ Local copy is updated in each thread

o Operators supported : +, —, %, min, max, boolean operators

@ All local copies are then reduced to a single value for the operator op

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 41 / 46

Parallel program for 7 : Attempt 4

#pragma omp parallel for schedule(static) reduction(+: pi)
for(int i = 0; i < numPoints; ++i)
{
double xi = (0.5 + i) * deltaX;
pi += 4.0/(1 + xi * xi);

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 42 / 46

single and master

#pragma omp single
{

//Executed by a single thread
//Implicit barrier for other threads

#pragma omp master
{
//Executed by master thread
//A1l other threads bypass this section

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015

omp_set_num_threads(8) ;
int x = 2;
#pragma omp parallel

{
#pragma omp single
{
sleep(1);
x = 12;
}
const int threadId = omp_get_thread_num();
printf("Thread %d : x %d\n", threadId, x);
}

August 2, 2015 44 / 46

Abhishek, Debdeep (IIT Kgp) Parallel Programming

master quiz

omp_set_num_threads(8) ;
int x = 2;
#pragma omp parallel

{
#pragma omp master
{
sleep(1);
x = 12;
}
const int threadId = omp_get_thread_num();
printf("Thread %d : x %d\n", threadId, x);
}

August 2, 2015 45 / 46

Abhishek, Debdeep (IIT Kgp) Parallel Programming

Further Reading

@ Introduction to Parallel Computing, Second Edition - Grama, Gupta,
Karypis, Kumar : Chapter 7

@ Introduction to High Performance Computing for Scientists and
Engineers - Hager, Wellein : Chapter 6

@ http://openmp.org/mp-documents/0OpenMP-4.0-C.pdf
@ http://openmp.org

Abhishek, Debdeep (IIT Kgp) Parallel Programming August 2, 2015 46 /

http://openmp.org/mp-documents/OpenMP-4.0-C.pdf
http://openmp.org

	Introduction
	Programming with pthreads
	Programming with OpenMP

