
26‐07‐2015

1

PARALLEL AND DISTRIBUTED ALGORITHMS
BY

DEBDEEP MUKHOPADHYAY
AND

ABHISHEK SOMANI
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

SYLLABUS

The Idea of Parallelism: A Parallelised version of the Sieve of
Eratosthenes

PRAM Model of Parallel Computation

Pointer Jumping and Divide & Conquer: Useful Techniques for
Parallelization

PRAM Algorithms: Parallel Reduction, Prefix Sums, List Ranking, Preorder
Tree Traversal, Merging Two Sorted Lists, Graph Coloring

Reducing the Number of Processors and Brent's Theorem

Dichotomy of Parallel Computing Platforms

Cost of Communication

Programmer's view of modern multi-core processors

The role of compilers and writing efficient serial programs

2

26‐07‐2015

2

SYLLABUS (CONTD.)
Parallel Complexity: The P-Complete Class

Mapping and Scheduling

Elementary Parallel Algorithms

Sorting

Parallel Programming Languages: Shared Memory Parallel Programming using OpenMP

Writing efficient OpenMP programs

Dictionary Operations: Parallel Search

Graph Algorithms

Matrix Multiplication

Industrial Strength programming 1:

Programming for performance; Dense Matrix-matrix multiplication through various stages:
data access optimization, loop interchange, blocking and tiling

Analyze BLAS (Basic Linear Algebra System) and ATLAS (Automatically Tuned Linear
Algebra System) code

3

SYLLABUS (CONTD.)

Distributed Algorithms: models and complexity measures.

Safety, liveness, termination, logical time and event ordering

Global state and snapshot algorithms

Mutual exclusion and Clock Synchronization

Distributed Graph algorithms

Distributed Memory Parallel Programming: Cover MPI programming basics with
simple programs and most useful directives; Demonstrate Parallel Monte Carlo

Industrial strength programming 2:

Scalable programming for capacity

Distributed sorting of massive arrays

Distributed Breadth-First Search of huge graphs and finding Connected
Components

4

26‐07‐2015

3

TEXT BOOKS AND RESOURCES

Michael J Quinn, Parallel Computing, TMH

Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar,
Introduction to Parallel Computing, Pearson

Joseph Jaja, An Introduction to Parallel Algorithms, Addison Wesley

Mukesh Singhal and Niranjan G. Shivaratri, Advanced Concepts in
Operating Systems, TMH

Course site:
http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm

5

THE IDEA OF PARALLELISM

6

26‐07‐2015

4

PARALLELISM AND HIGH SPEED
COMPUTING

Many problems can be solved by massive parallelism.

p steps on 1 printer, 1 step on p printers

p = speed-up factor (best case)

Given a sequential algorithm, how can we parallelize it?

7

PARALLEL ALGORITHMS

The fastest computers in the world are built of numerous conventional
microprocessors.

The emergence of these high performance, massively parallel
computers demand the development of new algorithms to take
advantage of this technology.

Objectives:
 Design

 Analyze

 Implement

Parallel algorithms on such computers with numerous processors

8

26‐07‐2015

5

APPLICATIONS

Scientists often use high performance computing to validate their theory.
 “Data!data!data!" he cried impatiently. "I can't make bricks without clay.”

― Arthur Conan Doyle, The Adventure of the Copper Beeches

Many scientific problems are so complex that solving them requires extremely
powerful machines.

Some complex problems where parallel computing is useful:

Computer Aided Design

Cryptanalysis

Quantum Chemistry, statistical mechanics, relativistic physics

Cosmology and astrophysics

Weather and environment modeling

Biology and pharmacology

Material design

9

MOTIVATIONS OF PARALLELISM
Computational Power Argument – from Transistors to FLOPS

In 1965, Gordon Moore said

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue if not to increase. Over the long term, the
rate of increase is a bit more uncertain although there is no reason to
believe it will not remain nearly constant for at least 10 years.”

From 1975, he revised the doubling period to 18 months, what came
to be known as Moore’s law.

With more devices in chip, the pressing issue is of achieving increasing
OPS (operation per second):
 A logical recourse is to rely on parallelism.

10

26‐07‐2015

6

MOTIVATIONS OF PARALLELISM
The memory/disk speed argument

Overall speed of computation is determined not just by speed of
processor, but also by the ability of memory system to feed data to it.
 While clock rates of high speed processors have increased by 40% in last 10 years, DRAM

access times have increased by only 10%.
 Coupled with increase in instructions executed per clock cycles this gap presents a huge

performance bottleneck.

Typically bridged by using a hierarchy of memory (Cache Memory)

Performance of memory system is determined by the fraction of total
memory requests that can be satisfied from cache.

Parallel Platforms yield better memory system performance:
1. Larger aggregate caches
2. Higher aggregate bandwidths to the memory system
(both typically linear with the number of processors).

Further the principles of parallel algorithms themselves lend to cache friendly serial algorithms!

11

MOTIVATIONS OF PARALLELISM

The Data Communication Argument

The internet is often envisioned as one large heterogenous
parallel/distributed computing environment.

Some most impressive applications:
 SETI (Search for Extra Terrestrial Intelligence) utilizes the power of large number of

home computers to analyze electromagnetic signals from outer space.

 Factoring large integers

 Bitcoin mining (tries to find the collision of a cryptographic hash function)

Even having a powerful centralized processor will not work because of
the low bandwidth network. It is infeasible to collect data at a node.

12

26‐07‐2015

7

ADVENT OF PARALLEL MACHINES
Daniel Slotnick at University of Illinois
designed two early parallel computers.
 Solomon, constructed by Westinghouse Electric Company (early 60’s)

 ILLIAC IV, assembled at Buroughs Corporation (early 70’s)

During 70’s at CMU, C.mmp and Cm* were constructed.

During 80’s at Caltech, the Cosmic cube was built (the ancestor of
multicomputers)

13

MICROPROCESSORS VS
SUPERCOMPUTERS: PARALLEL MACHINES

Parallelism is exploited on a variety of high performance computers, in particular
massively parallel computers (MPPs) and clusters.

MPPs, clusters, and high-performance vector computers are termed supercomputers

(vector processors have instructions that operate on a one dimension array)

Example: Cray Y/MP and NEC SX-3

Supercomputers were augmented with several architectural advances by 70’s like:
bit parallel memory, bit parallel arithmetic, cache memory, interleaved memory,
instruction lookahead, multiple functional units, pipelining:
 However microprocessors had a long way to go!

 Huge development due to advances in their architectures, coupled with reduced instruction cycle
times have lead to the convergence in relative performances of them and supercomputers.

Lead to the development of commercially viable parallel computers consisting of
10s, hundreds, or even 1000s of microprocessors.
 Example: Intel’s Paragon XP/S, MasPar’s MP-2, Thinking machines CM-5

14

26‐07‐2015

8

15

PARALLEL PROCESSING TERMINOLOGY:
WHAT IS PARALLELISM?

Parallelism refers to the simultaneous occurrence of events on a
computer.

An event typically means one of the following:
 An arithmetical operation

 A logical operation

 Accessing memory

 Performing input or output (I/O)

16

TYPES OF PARALLELISM

Parallelism can be examined at several levels.
 Job level: several independent jobs simultaneously run on the same
computer system.

 Program level: several tasks are performed simultaneously to solve
a single common problem.

 Instruction level: the processing of an instruction such as adding two
numbers can be divided into subinstruction. If several similar
instructions are to be performed their subinstructions may be
overlapped using a technique called pipelining

 Bit level: when the bits in a word are handled one after the other
this is called a bit-serial operation. If the bits are acted on in
parallel the operation is bit-parallel.

26‐07‐2015

9

JOB LEVEL PARALLELISM

This is parallelism between different independent jobs or phases of a
jobs on a computer

Example: Consider a computer with 4 processors. It runs jobs that are
classified as small (S), medium (M) and large (L). Small jobs require 1
processor, medium jobs 2 processors, and large jobs 4 processor. Each
job on the computer takes one unit of time. Initially there is a queue of
jobs: S M L S S M L L S M M

Show how these jobs would be scheduled to run if the queue is treated
in order. Also give a better schedule.

17

18

SCHEDULING EXAMPLE

Average utilisation is 83.3%

Time to complete all jobs is 7 time units.

Time Jobs running Utilisation

1 S, M 75%

2 L 100%

3 S, S, M 100%

4 L 100%

5 L 100%

6 S, M 75%

7 M 50%

26‐07‐2015

10

19

A BETTER SCHEDULE
A better schedule would allow jobs to be taken out of order to give
higher utilisation.

S M L S S M L L S M M

Allow jobs to “float” to the front to the queue to maintain high
utilisation.

Time Jobs running Utilisation

1 S, M, S 100%

2 L 100%

3 S, M, S 100%

4 L 100%

5 L 100%

6 M, M 100%

20

NOTES ON SCHEDULING EXAMPLE

In the last example:
 Average utilisation is 100%.

 Time to complete all jobs is 6 time units.

Actual situation is more complex as jobs may run for differing lengths
of time.

Real job scheduler must balance high utilisation with fairness
(otherwise large jobs may never run).

26‐07‐2015

11

21

PARALLELISM BETWEEN JOB PHASES
Parallelism also arises when different independent jobs
running on a machine have several phases, e.g., computation,
writing to a graphics buffer, I/O to disk or tape, and system
calls.

Suppose a job is executing and needs to perform I/O before
it can progress further. I/O is usually expensive compared with
computation, so the job currently running is suspended, and
another is started. The original job resumes after the I/O
operation has completed.

This requires special hardware: I/O channels or special I/O
processor.

The operating system controls how different jobs are scheduled
and share resources.

22

PROGRAM LEVEL PARALLELISM

This is parallelism between different parts of the same
job.

Example

A robot has been programmed to look for electrical
sockets when it runs low on power. When it finds one it
goes over to it and plugs itself in to recharge. Three
subsystems are involved in this - the vision,
manipulation, and motion subsystems. Each subsystem
is controlled by a different processor, and they act in
parallel as the robot does different things.

26‐07‐2015

12

23

ROBOT EXAMPLE

Task Vision Manipulation Motion

1. Looking for
electrical socket

 

2. Going to
electrical socket

 

3. Plugging into
electrical socket

 

24

NOTES ON ROBOT EXAMPLE

The subsystems are fairly independent, with the vision subsystem
guiding the others.

There may also be a central “brain” processor.

This is an example of task parallelism in which different tasks are
performed concurrently to achieve a common goal.

26‐07‐2015

13

25

DOMAIN DECOMPOSITION
A common form of program-level parallelism arises from

the division of the data to be programmed into subsets.

This division is called domain decomposition.

Parallelism that arises through domain decomposition is
called data parallelism.

The data subsets are assigned to different
computational processes. This is called data distribution.

Processes may be assigned to hardware processors by
the program or by the runtime system. There may be
more than one process on each processor.

26

DATA PARALLELISM

Consider an image digitised
as a square array of pixels
which we want to process by
replacing each pixel value
by the average of its
neighbours.

The domain of the problem is
the two-dimensional pixel
array.

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

26‐07‐2015

14

27

DOMAIN DECOMPOSITION

Suppose we decompose the
problem into 16 subdomains

We then distribute the data
by assigning each
subdomain to a process.

The pixel array is a regular
domain because the
geometry is simple.

This is a homogeneous
problem because each pixel
requires the same amount of
computation (almost - which
pixels are different?).

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

PARALLEL PROCESSING

Information processing that emphasizes the concurrent manipulation of
data elements belonging to one or more process solving a single
problem.

A parallel computer is a multiple processor computer capable of
parallel processing.

The throughput of the device is the number of results it produces per
unit time.
 Throughput can be improved by increasing the speed of processing on data.

 Also, by increasing the number of operations that are performed at a time.

Pipelining and data parallelism are two ways of doing so.

28

26‐07‐2015

15

PIPELINING AND DATA PARALLELISM

A pipelined computation is divided into number of steps, called
segments or stages.
 Each segment works on full speed on a part of the computation.

Data parallelism is the use of multiple functional units to apply the
same operation simultaneously to elements of a data set.

Speed up is the ratio between the time needed for the most efficient
sequential algorithm to perform a computation and the time needed
to perform the same computation on a machine incorporating
pipelining and/or parallelism.

29

CONTRASTING THE IDEAS

Each assembly has three steps: A, B,
and C, each taking 1 unit of time.

A sequential widget assembly
machine makes a widget in 3 units of
time (Fig a)

A pipeline with 3 segments, produces
the first widget in 3 units of time (Fig
b)

A 3-way data parallel widget
assembly machine produces 3
widgets every 3 units of time (Fig c)

30

26‐07‐2015

16

COMPARE THE SPEED-UPS

31

CONTROL PARALLELISM

Pipeline is actually a special case of a more general class of parallel
algorithms, called control-path parallelism.

Data Parallelism: Same operation is performed on a data set.

Control Parallelism: Different operations are performed on different data
elements concurrently.

Consider an example: The task of maintenance of an estate’s landscape
as quickly as possible>
 Mowing the lawn, edging the lawn, checking the sprinklers, weeding the flower beds.

 Except checking the sprinklers, other jobs would be quick if there are multiple workers.

 Increasing the lawn mowing speed by creating a team and assigning each member a
portion of the lawn is an example of data parallelism.

 We can also perform the other tasks concurrently. This is an example of control parallelism.

 There is a precedence relationship, since all other tasks must be completed before the
sprinklers are tested.

32

26‐07‐2015

17

SCALABILITY

An algorithm is scalable if the level of parallelism increases at least
linearly with the problem size.

An architecture is scalable if it continues to yield the same
performance per processor, albeit used on a larger problem size, as
the number of processors increase.

This allows a user to solve larger problems in the same amount of time
by using a parallel computer with more processors.

Data parallel algorithms are more scalable than control parallel
algorithms, which is usually a constant, independent of the problem
size.
 We shall study more such algorithms which are amenable to data parallelism!

33

