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Public Key Cryptography

• Two keys
– Sender uses recipient’s public key to encrypt
– Receiver uses his private key to decrypt

• Based on trap door, one way function
– Easy to compute in one direction
– Hard to compute in other direction
– “Trap door” used to create keys
– Example: Given p and q, product N=pq is easy to 

compute, but given N, it is hard to find p and q
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Public Key Cryptography

• Encryption
– Suppose we encrypt M with Bob’s public key
– Only Bob’s private key can decrypt to find M

• Digital Signature
– Sign by “encrypting” with private key
– Anyone can verify signature by “decrypting”

with public key
– But only private key holder could have signed
– Like a handwritten signature

Encryption
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Authentication

The RSA 
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Proof of Correctness
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Example

• Bob chooses p=101 and q=113
– Thus n=11413

– Φ(n)=100x112=11200=26527

– b can be used for encryption if and only 
if it is not a multiple of 2, 5 or 7. Let 
b=3533

• In practice Bob will not factor Φ(n), 
but will check whether gcd(b, Φ(n))=1 
using EA and compute b-1 at the 
same time.

Examples

• Bob publishes n=11413 and b=3533.

• Suppose  Alice wants to encrypt x=9726 
and send to Bob.

• Hence, she computes xb(mod n) 
=97263533mod 11413=5761 and sends it 
to Bob.

• Bob computes b-1mod Φ(n)=6597 and 
decrypts using 57616597 mod 
11413=9726 
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Efficient Exponentiation

• Compute xc efficiently mod n.

• Express c as follows: 

Prime Number Theorem

• Number of primes that are less than or 
equal to N is given by:

( )
ln  N

N
N 
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Hence,…
• If N is a 512 bit number, then there 

are around 2512/ln 2512 ≈2512/355.
• So, a random 512 bit integer will be 

prime with probability of 1/355.
• Thus, if you choose 355 integers 

then there is one number which is 
prime

• If you choose only odd numbers the 
probability doubles.

Choosing the parameters of RSA

• n is known, but its factors are not known
• b is also known, so to compute a one needs the value of Φ(n), 

for which we need p and q
• It has been conjectured that breaking RSA is polynomially

equivalent to factoring n. But there is no proof!
• Typically, value of n is 1024 bit long and the factors are also 

large of around 512 bits.
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Computing Φ(n) 
• For if n and Φ(n) are known, and n is 

the product of two primes p, q:
– then n can be factored by solving:

n=pq
Φ(n)=(p-1)(q-1)

Combining we obtain:
p2-(n- Φ(n) +1)p+n=0

The roots are p and q.

Decryption Exponent

• If the decryption exponent is known, 
then n can be factored:
– there is a deterministic algorithm 

published in Crypto 2004 by Alexander 
May if:

• a and b are of the same bit size

• ab < n2

• Run Time: O(log2 n)
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Importance of this result

• This result is important from 
practical point of view:
– if b (the RSA secret key) is leaked, then 

changing it does not suffice

– one needs to change the modulus n.

Parity(y) and Half(y)

• Parity(y) denotes the low order bit of 
x, that is parity(y)=0, if x is even and 
parity(y)=1 if x is odd.

• Half(y)=0,  if 0≤x<n/2 and half(y)=1 if 
n/2<x≤n-1.
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Reductions

• Existence of a polynomial time 
algorithm that computes 
half(y)=>Existence of a polynomial 
time algorithm for RSA decryption.

• RSA Hard => Computing half(y) is 
hard.

The Proof Idea
• Let there be an oracle HALF, which computes 

half(y).
– if half(y)=0, then x ε [0, n/2)
– Now, y=xbmod n. Compute, 

y=2by mod n
=(2x)b mod n

– if half(y)=0, then 2x ε [0, n/2)
=>x ε [0, n/4) U [n/2, 3n/4)

Continuing in this fashion we obtain distinct boundaries 
of x. Then the actual x value, can be found out using 
binary search technique.
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Algorithm

2

Algorithm: Oracle RSA Decryption(n,b,y)

external HALF
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{
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    if(h 1)

          lo=mid
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          hi=mid

}

return (hi)  

i
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Binary Search 
Routine

Parity ?

• Computing parity(y) is polynomially
equivalent to computing half(y):
– half(y)=parity((y x eK(2)) mod n)

– parity(y)=half((y x ek(2-1)) mod n) 
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Proof Sketch
• Parity((y x ek(2)) mod n)
= Parity(ek(2x) mod n)
= 0, if 2x is even

1, if 2x is odd
Now, n=2t+1, where t is an integer
and 0≤x<n/2 => 0 ≤ x ≤ t => 0 ≤ 2x ≤ 2t=n-1

All these number are even 
If, n/2 ≤x ≤n-1 => t+1≤x ≤2t => 2t+2 ≤2x ≤4t
or, n+1 ≤2x ≤2n-2 
Taking, modulo n we have: 1 ≤ 2x ≤ n-2

All these numbers are  odd. This proves first eqn.
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