The RSA Cryptosystem

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Public Key Cryptography

* Two keys
— Sender uses recipient’s public key to encrypt
— Receiver uses his private key to decrypt

« Based on trap door, one way function
— Easy to compute in one direction
— Hard to compute in other direction
— “Trap door” used to create keys

— Example: Given p and q, product N=pq is easy to
compute, but given N, it is hard to find p and q

Low Power Ajit Pal 1IT Kharagpur



Public Key Cryptography

* Encryption
— Suppose we encrypt M with Bob’s public key
— Only Bob’s private key can decrypt to find M
« Digital Signature
— Sign by “encrypting” with private key

— Anyone can verify signature by “decrypting”
with public key

— But only private key holder could have signed
— Like a handwritten signature

Encryption

¢
e

Alice’s public l Alice's privale

key key
— Transmitted —
s l.'i["tk.’[h.'\l _—
] —
e ——
Plaintext Pluintext
input Encryption algorithm Decryption algorithm output
(e.g.. RSA) (reverse ol encryplion

algorithimy

{a) Encryplion

Low Power Ajit Pal 1IT Kharagpur



Authentication

Ted

T

Bob's privaie Bob's public
key key

Transmitted

@ ciphertext @
—

Plaintext Plaintext
T Encryption '.sz_:- rithm Decryption algorithm
(e.e. RSA) (geverse of encryplion

algorithm)

outpul

b} Authenlication

The RSA

’ ‘ RSA Cryptosystem

Let n = pq, where p and q are primes. Let P = € = Z,,, and define
K= 1{(n.pg¢ab):ab=1(mod ¢(n))}.
For K = (n,p,q,a,b), define
ex(r) = z¥ mod n

and
di (y) = y* mod n

(z,y € Zy). The values n and b comprise the public key, and the values p, ¢
and a form the private key.

Low Power Ajit Pal 1IT Kharagpur



Proof of Correctness

ab=1(mod ¢(n)) = ab=1+tg(n)

for some integer t >1.

Suppose, X € Z; = x* = x"Y™M = x(x*™)" = x (mod n)
[follows from Euler's Theorem]

Now, consider xe Z \Z,

So,gcd(x,n) #1= (x is a multiple of p)or(x is a multiple of q)
Thus, gcd(x,p)=p or gcd(x,q)=q

If gcd(x,p)=p, then gcd(x,q)=1

[as otherwise x is a multiple of both p and g and still

x is less than n=pq]

Proof of Correctness

Thus, x*® =1(mod q) = x“ =1(mod q)
— x#(@e(p) =1(mod q)
= x¥™ =1(mod q)
Thus, X™ =1+Kkq,
where K is a positive integer
Multiplying both sides by x,
XYM = x4 kax
-~ ged(x, p) = p = x =cp, for some positive integer ¢
XMW = x + kepq
= XM = x® = x(mod n)
Similarly, we can prove when gcd(X,q)=q

Low Power Ajit Pal

1T Kharagpur




Example

 Bob chooses p=101 and =113
— Thus n=11413
— ®(n)=100x112=11200=26527
— b can be used for encryption if and only
if it is not a multiple of 2, 5 or 7. Let
b=3533
 In practice Bob will not factor ®(n),
but will check whether gcd(b, ®(n))=1
using EA and compute b-! at the
same time.

Examples

* Bob publishes n=11413 and b=3533.

» Suppose Alice wants to encrypt x=9726
and send to Bob.
* Hence, she computes x’(mod n)

=97263333mod 11413=5761 and sends it
to Bob.

« Bob computes b-'mod ®(n)=6597 and
decrypts using 5761%%%7 mod
11413=9726

Low Power Ajit Pal 1IT Kharagpur



Efficient Exponentiation

« Compute x¢ efficiently mod n.
 Express c as follows: .- qui

SQUARE-AND-MULTIPLY(Z, ¢, )

24+ 1
fori < ¢ — 1 downto (

2z — z° mod n
do {ifc; =1

then z «— (2 x ) mod n
return (z)

Prime Number Theorem

* Number of primes that are less than or
equal to N is given by:

N
In N

w(N) ~

Low Power Ajit Pal 1IT Kharagpur



Hence, ...

If N is a 512 bit number, then there
are around 2512/|n 2512=2512/355,

So, arandom 512 bit integer will be
prime with probability of 1/355.

Thus, if you choose 355 integers
then there is one number which is
prime

If you choose only odd numbers the
probability doubles.

Choosing the parameters of RSA

RSA PARAMETER GENERATICN

Generate two large primes, p and ¢, such that p # ¢

n « pgand ¢(n) « (p—1)(g — 1)

Choose a random b (1 < b < ¢(n)) such that ged(b, é(n)) = 1
a — b~ ! mod é(n)

A S

The public key is {n, b) and the private key is (p, ¢, ).

* nis known, but its factors are not known

* b is also known, so to compute a one needs the value of ®(n),
for which we need p and q

+ It has been conjectured that breaking RSA is polynomially
equivalent to factoring n. But there is no proof!

+ Typically, value of n is 1024 bit long and the factors are also
large of around 512 bits.

Low Power Ajit Pal 1IT Kharagpur



Computing P(n)

* For if n and ®(n) are known, and n is
the product of two primes p, q:

—then n can be factored by solving:
n=pq
®(n)=(p-1)(q-1)
Combining we obtain:
p?~(n- ®(n) +1)p+n=0
The roots are p and q.

Decryption Exponent

* If the decryption exponent is known,
then n can be factored:

— there is a deterministic algorithm
published in Crypto 2004 by Alexander
May if:

* a and b are of the same bit size
» ab < n?
* Run Time: O(log? n)

Low Power Ajit Pal 1IT Kharagpur



Importance of this result

* This result is important from
practical point of view:

— if b (the RSA secret key) is leaked, then
changing it does not suffice

— one needs to change the modulus n.

Parity(y) and Half(y)

 Parity(y) denotes the low order bit of
x, that is parity(y)=0, if x is even and
parity(y)=1 if x is odd.

« Half(y)=0, if 0sx<n/2 and half(y)=1 if
n/2<xsn-1.

Low Power Ajit Pal 1IT Kharagpur



Reductions

» Existence of a polynomial time
algorithm that computes
half(y)=>Existence of a polynomial
time algorithm for RSA decryption.

 RSA Hard => Computing half(y) is
hard.

The Proof Idea

* Let there be an oracle HALF, which computes
half(y).
— if half(y)=0, then x £ [0, n/2)
— Now, y=x’mod n. Compute,
y=2by mod n
=(2x)* mod n
— if half(y)=0, then 2x € [0, n/2)
=>x & [0, n/4) U [n/2, 3n/4)

Continuing in this fashion we obtain distinct boundaries
of x. Then the actual x value, can be found out using
binary search technique.

Low Power Ajit Pal 1T Kharagpur

10



Algorithm

Algorithm: Oracle RSA Decryption(n,b,y) for i=0 to k

external HALF {

k < floor(log, n) _ _

for i=0to k, mid=(hi+lo)/2
{ if(h, ==1)

h, = HALF (n,b, y)
y=yx2°(mod n)
} else

hi=mid

lo=mid

Binary Search E> }

Routine ]
return floor (hi)

Parity ?

« Computing parity(y) is polynomially
equivalent to computing half(y):
— half(y)=parity((y x ex(2)) mod n)
— parity(y)=half((y x e,(2-1)) mod n)

Low Power Ajit Pal 1T Kharagpur



Proof Sketch

+ Parity((y x e,(2)) mod n)

= Parity(e,(2x) mod n)

=0, if 2x is even

1, if 2x is odd
Now, n=2t+1, where t is an integer
and 0sx<n/2=>0<x<t=>0 < 2x < 2t=n-1
All these number are even

If, n/2 £x Sn-1 => t+1Sx <2t => 2t+2 <2x <4t
or, n+1 £2x £2n-2
Taking, modulo n we have: 1 < 2x < n-2

All these numbers are odd. This proves first egn.

References

» D. Stinson, Cryptography: Theory
and Practice, Chapman & Hall/CRC

Low Power Ajit Pal 1T Kharagpur

12



