The RSA Cryptosystem

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Public Key Cryptography

- Two keys
- Sender uses recipient's public key to encrypt
- Receiver uses his private key to decrypt
- Based on trap door, one way function
- Easy to compute in one direction
- Hard to compute in other direction
- "Trap door" used to create keys
- Example: Given p and q, product $\mathbf{N}=\mathrm{pq}$ is easy to compute, but given N, it is hard to find p and q

Public Key Cryptography

- Encryption
- Suppose we encrypt M with Bob's public key
- Only Bob's private key can decrypt to find M
- Digital Signature
- Sign by "encrypting" with private key
- Anyone can verify signature by "decrypting" with public key
- But only private key holder could have signed
- Like a handwritten signature

Encryption

(a) Encryption

Authentication

The RSA

\square RSA Cryptosystem

Let $n=p q$, where p and q are primes. Let $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{n}$, and define

$$
\mathcal{K}=\{(n, p, q, a, b): a b \equiv 1(\bmod \phi(n))\} .
$$

For $K=(n, p, q, a, b)$, define

$$
e_{K}(x)=x^{b} \bmod n
$$

and

$$
d_{K}(y)=y^{a} \bmod n
$$

$\left(x, y \in \mathbb{Z}_{n}\right)$. The values n and b comprise the public key, and the values p, q and a form the private key.

Proof of Correctness

$a b \equiv 1(\bmod \phi(\mathrm{n})) \Rightarrow \mathrm{ab}=1+\mathrm{t} \phi(\mathrm{n})$
for some integer $t \geq 1$.
Suppose, $x \in Z_{n}^{*} \Rightarrow x^{a b} \equiv x^{1+t \phi(n)} \equiv x\left(x^{\phi(n)}\right)^{t} \equiv x(\bmod \mathrm{n})$
[follows from Euler's Theorem]
Now, consider $\mathrm{x} \in Z_{n} \backslash Z_{n}^{*}$
So, $\operatorname{gcd}(x, n) \neq 1 \Rightarrow(x$ is a multiple of $p) \operatorname{or}(x$ is a multiple of $q)$
Thus, $\operatorname{gcd}(x, p)=p$ or $\operatorname{gcd}(x, q)=q$
If $\operatorname{gcd}(x, p)=p$, then $\operatorname{gcd}(x, q)=1$
[as otherwise x is a multiple of both p and q and still
x is less than $n=p q]$

Proof of Correctness

Thus, $x^{\phi(q)} \equiv 1(\bmod q) \Rightarrow x^{t \phi(q)} \equiv 1(\bmod q)$

$$
\begin{aligned}
& \Rightarrow x^{t \phi(q) \phi(p)} \equiv 1(\bmod q) \\
& \Rightarrow x^{t \phi(n)} \equiv 1(\bmod q)
\end{aligned}
$$

Thus, $x^{t \phi(n)}=1+k q$,
where k is a positive integer
Multiplying both sides by x,
$x^{t \phi(n)+1}=x+k q x$
$\because \operatorname{gcd}(x, p)=p \Rightarrow x=c p$, for some positive integer c
$x^{\phi(n)+1}=x+k c p q$
$\Rightarrow x^{t \phi(n)+1} \equiv x^{a b} \equiv x(\bmod \mathrm{n})$
Similarly, we can prove when $\operatorname{gcd}(\mathrm{x}, \mathrm{q})=\mathrm{q}$

Example

- Bob chooses $p=101$ and $q=113$
- Thus n=11413
$-\Phi(n)=100 \times 112=11200=265^{27}$
- b can be used for encryption if and only if it is not a multiple of 2,5 or 7 . Let b=3533
- In practice Bob will not factor $\Phi(n)$, but will check whether $\operatorname{gcd}(b, \Phi(n))=1$ using EA and compute b^{-1} at the same time.

Examples

- Bob publishes $\mathrm{n}=11413$ and $\mathrm{b}=3533$.
- Suppose Alice wants to encrypt x=9726 and send to Bob.
- Hence, she computes $x^{b}(\bmod n)$ $=9726^{3533} \mathrm{mod} 11413=5761$ and sends it to Bob.
- Bob computes $b^{-1} \bmod \Phi(n)=6597$ and decrypts using 5761^{6597} mod 11413=9726

Efficient Exponentiation

- Compute \mathbf{x}^{c} efficiently modn.
- Express c as follows: $c=\sum_{i=0}^{t-1} c_{i} i^{i}$

```
SQUARE-AND-MULTIPLY \((x, c, n)\)
\(z \leftarrow 1\)
for \(i \leftarrow \ell-1\) downto 0
\(\left\{z \leftarrow z^{2} \bmod n\right.\)
do \(\left\{\begin{array}{l}\text { if } c_{i}=1\end{array}\right.\)
then \(z \leftarrow(z \times x) \bmod n\)
return \((z)\)
```


Prime Number Theorem

- Number of primes that are less than or equal to \mathbf{N} is given by:

$$
\pi(N) \approx \frac{N}{\ln \mathrm{~N}}
$$

Hence,...

- If N is a 512 bit number, then there are around $2^{512} / \ln 2^{512} \approx 2^{512} / 355$.
- So, a random 512 bit integer will be prime with probability of $1 / 355$.
- Thus, if you choose 355 integers then there is one number which is prime
- If you choose only odd numbers the probability doubles.

Choosing the parameters of RSA

1.	GSA PARAMARETE two large primes, p and q, such that $p \neq q$
2.	$n \leftarrow p q$ and $\phi(n) \leftarrow(p-1)(q-1)$
3.	Choose a random $b(1<b<\phi(n))$ such that $\operatorname{gcd}(b, \phi(n))=1$
4.	$a \leftarrow b^{-1} \bmod \phi(n)$
5.	The public key is (n, b) and the private key is (p, q, a).

- \mathbf{n} is known, but its factors are not known
- b is also known, so to compute a one needs the value of $\Phi(n)$, for which we need p and q
- It has been conjectured that breaking RSA is polynomially equivalent to factoring n. But there is no proof!
- Typically, value of \mathbf{n} is 1024 bit long and the factors are also large of around 512 bits.

Computing $\Phi(\mathrm{n})$

- For if \mathbf{n} and $\Phi(\mathrm{n})$ are known, and n is the product of two primes p, q :
- then n can be factored by solving:

$$
\begin{aligned}
n & =p q \\
\Phi(n) & =(p-1)(q-1)
\end{aligned}
$$

Combining we obtain:

$$
p^{2}-(n-\Phi(n)+1) p+n=0
$$

The roots are p and q.

Decryption Exponent

- If the decryption exponent is known, then \mathbf{n} can be factored:
- there is a deterministic algorithm published in Crypto 2004 by Alexander May if:
- a and b are of the same bit size
- ab < n^{2}
- Run Time: $\mathbf{O}\left(\log ^{2} \mathbf{n}\right)$

Importance of this result

- This result is important from practical point of view:
- if b (the RSA secret key) is leaked, then changing it does not suffice
- one needs to change the modulus n.

Parity(y) and Half(y)

- Parity(y) denotes the low order bit of x, that is parity $(y)=0$, if x is even and parity $(y)=1$ if x is odd.
- $\operatorname{Half}(y)=0$, if $0 \leq x<n / 2$ and half(y) $=1$ if $n / 2<x \leq n-1$.

Reductions

- Existence of a polynomial time algorithm that computes half $(y)=>$ Existence of a polynomial time algorithm for RSA decryption.
- RSA Hard => Computing half(y) is hard.

The Proof Idea

- Let there be an oracle HALF, which computes half(y).
- if half(y$)=0$, then $\mathrm{x} \varepsilon[0, \mathrm{n} / 2$)
- Now, $y=x^{b}$ mod n. Compute, $\mathrm{y}=\mathbf{2}^{\mathrm{b}} \mathrm{y} \bmod \mathrm{n}$ $=(2 x)^{b} \bmod n$
- if half $(\mathrm{y})=0$, then $2 \mathrm{x} \varepsilon[0, \mathrm{n} / 2$)

$$
=>x \varepsilon[0, n / 4) \cup[n / 2,3 n / 4)
$$

Continuing in this fashion we obtain distinct boundaries of x. Then the actual x value, can be found out using binary search technique.

Algorithm

Algorithm: Oracle RSA Decryption(n,b,y) for $i=0$ to k external HALF
$\mathrm{k} \leftarrow$ floor $\left(\log _{2} n\right)$
for $\mathrm{i}=0$ to k ,
\{
$\mathrm{h}_{i}=\operatorname{HALF}(n, b, y)$
$\mathrm{y}=\mathrm{y} \times 2^{b}(\bmod \mathrm{n})$
\}
$\operatorname{if}\left(\mathrm{h}_{i}==1\right)$
lo=mid
else
hi=mid

return floor(hi)

Parity ?

- Computing parity(y) is polynomially equivalent to computing half(y):
- half(y)=parity((y $\left.\times e_{\mathrm{K}}(2)\right)$ mod $\left.n\right)$
- parity(y)=half((y x $\left.\left.e_{k}\left(2^{-1}\right)\right) \bmod n\right)$

Proof Sketch

- Parity ((y $\left.\left.\times e_{k}(2)\right) \bmod n\right)$
$=\operatorname{Parity}\left(e_{k}(2 x) \bmod n\right)$
$=0$, if $2 x$ is even
1 , if $2 x$ is odd
Now, $n=2 t+1$, where t is an integer
and $0 \leq x<n / 2=>0 \leq x \leq t=>0 \leq 2 x \leq 2 t=n-1$
All these number are even
If, $n / 2 \leq x \leq n-1=>t+1 \leq x \leq 2 t=>2 t+2 \leq 2 x \leq 4 t$
or, $\mathrm{n}+1 \leq 2 \mathrm{x} \leq 2 \mathrm{n}-2$
Taking, modulo n we have: $1 \leq 2 x \leq n-2$
All these numbers are odd. This proves first eqn.

References

- D. Stinson, Cryptography: Theory and Practice, Chapman \& Hall/CRC

