Classical Cryptosystems

Debdeep Mukhopadhyay
Assistant Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Objectives

- Definitions
- Kerckhoffs Principle
- Monoalphabetic Ciphers: Shift Cipher
- Polyalphabetic Ciphers: Vigenere Cipher
- Affine Ciphers and the Euler Totient Function
- Permutation Cipher

Definitions

- A cipher or cryptosystem is used to encrypt the plaintext
- The result of encryption is ciphertext
- We decrypt ciphertext to recover plaintext
- A key is used to configure a cryptosystem
- A symmetric key cryptosystem uses the same key to encrypt as to decrypt
- A public key cryptosystem uses a public key to encrypt and a private key to decrypt.

Kerckhoffs Principle

- Basis assumption
- The system is completely known to the attacker
- Only the key is secret
- Also known as Kerckhoffs Principle
- Crypto algorithms are not secret
- Why do we make this assumption?
- Experience has shown that secret algorithms are weak when exposed
- Secret algorithms never remain secret
- Better to find weaknesses beforehand

Cryptographic Communication

A generic use of crypto

Cryptosystem

A cryptosystem is a five-tuple ($\mathcal{P}, \mathcal{C}, \gtrless, \mathcal{E}, \mathcal{D}$), where the following are satisfied:

1. \mathcal{P} is a finite set of possible plaintexts
2. \mathbb{e} is a finite set of possible ciphertexts
3. \mathbb{R}, the keyspace, is a finite set of possible keys
4. $\forall K \in \mathbb{Z}, \exists e_{K} \in \mathcal{E}$ (encryption rule), $\exists d_{K} \in \mathcal{D}$ (decryption rule).
Each $e_{K}: \mathcal{P} \rightarrow \mathcal{C}$ and $d_{K}: \mathcal{C} \rightarrow \mathcal{P}$ are functions such that $\forall x \in \mathcal{P}, d_{K}\left(e_{K}(x)\right)=x$.

Encryption Function is Injective

- $y=e_{\mathrm{K}}(\mathrm{x})$: Denotes the encryption transformation.
- if $y=e_{k}(x 1)=e_{k}(x 2)$, then Bob does not know whether y has come from x 1 or $\mathbf{x} 2$.
- If the Plaintext set and ciphertext set are same, then the encryption function is just a permutation.

Classical Cryptography

- Monoalphabetic Ciphers Once a key is chosen, each alphabetic character of a plaintext is mapped onto a unique alphabetic character of a ciphertext.
- The Shift Cipher (Caesar Cipher)
-The Substitution Cipher
-The Affine Cipher

Classical Cryptography

- Polyalphabetic Ciphers

Each alphabetic character of a plaintext can be mapped onto m alphabetic characters of a ciphertext. Usually m is related to the encryption key.
-The Vigenère Cipher
-The Hill Cipher
-The Permutation Cipher

Shift cipher

- Consider,
$-\mathrm{P}=\mathrm{C}=\mathrm{K}=\mathrm{Z}_{26}$.
- For $0 \leq K \leq 25$, define
" $e_{k}(x)=x+K \bmod 26$
" $d_{k}(x)=y-K \bmod 26$
$-\left(x, y \in Z_{26}\right)$
- It is easy to see that, $x=d_{k}\left(e_{k}(x)\right)$.

Simple Substitution

- Plaintext:
fourscoreandsevenyearsago

- Ciphertext:

IRXUVFRUHDAGVHYHABHDUVDIR

- Shift by 3 is "Caesar's cipher"

Note that the use of smaller letter for plaintext and capital letters for ciphertext is only to improve readibility

Ceasar’s Cipher Decryption

- Suppose we know a Ceasar's cipher is being used
- Ciphertext:

VSRQJHEREVTXDUHSDQWU

Plaintext	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{I}	\mathbf{m}	\mathbf{n}	\mathbf{o}	\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{s}	\mathbf{t}
\mathbf{u}	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}															
Ciphertext	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{v}	\mathbf{w}

- Plaintext: spongebobsquarepants

Not-so-Simple Substitution

- Shift by n for some $n \in\{0,1,2, \ldots, 25\}$
- Then key is \mathbf{n}
- Example: key = 7

Plaintext	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{I}	\mathbf{m}	\mathbf{n}	\mathbf{o}	\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{s}	\mathbf{t}
\mathbf{u}	\mathbf{u}	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}														

Properties required of the encryption

- Each of encryption and decryption function should be easily computable.
- An opponent, on seeing a ciphertext string y, should be unable to determine the key K, that was used, or the plaintext string x.
- "Cryptanalysis" is the process of attempting to know the key from given information.

Cryptanalysis: Try all possibilities

- Ciphertext: JBCRCLQRWCRVNBJENBWRWN
- Try all the 26 possible keys (Exhaustive or brute force search)
- jbcrclqrwcrvnbjenbwrwn iabqbkpqvbqumaidmavqvm hzapajopuaptlzhclzupul astitchintimessavesnine: key = 9

Substitution Cipher

- Key is some permutation of letters
- Need not be a shift
- For example

- Then 26! $\approx 4 \times 10^{26}>2^{88}$ possible keys!

But still the cipher can be attacked quite easily.

The Affine Cipher

Let $\boldsymbol{P}=e=Z_{26}$, let

$$
K=\left\{(a, b) \in Z_{26} \times Z_{26} \mid \operatorname{gcd}(a, 26)=1\right\} .
$$

$\forall \boldsymbol{x} \in \mathcal{P}, \forall \boldsymbol{y} \in \mathcal{C}, \forall K \in \boldsymbol{K}$, define

$$
e_{K}(x)=a x+b(\bmod 26)
$$

and

$$
d_{K}(y)=a^{-1}(y-b)(\bmod 26) .
$$

The encryption is injective if and only if $\operatorname{gcd}(\mathrm{a}, 26)=1$

Multiplicative Inverse of an Element

- Suppose a is an element from Z_{m}.

Then the multiplicative inverse of an element is an element b also in Z_{m}, such that $a b=1(\bmod m)$.

- Then, $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=1$
- Note that if $m=$ prime number, p then every element has an inverse. Then Z_{p} is called a field.

Inverse of Affine Cipher

- Affine Cipher is invertible if a has a multiplicative inverse.
- That is $\operatorname{gcd}(a, m)=1$
$-\{1,3,5,7,9,11,15,17,19,21,23,25\}$ have elements which are co-prime to m
- Thus, $1^{-1}=1,3^{-1}=9,5^{-1}=21,7^{-1}=15,11^{-1}=19$, $15^{-1}=7,17^{-1}=23,25^{-1}=25$
- Thus, the inverse of an element belongs to the above set. Why?

Key Size of Affine Cipher

- The possible values of a such that $\operatorname{gcd}(\mathrm{a}, 26)=1$ are:
\{1,3,5,7,9,11,15,17,19,21,23,25\}
Thus, there are 12 possible a's
The coefficient b can be any 26 value:
Total key size is $12 \times 26=312$
Key size is thus too small...can we generalize the affine cipher?

Generalized Affine Cipher

- Euler's Totient function : Suppose $a \geq 1$ and $m \geq 2$ are integers. If $\operatorname{gcd}(a, m)=1$, then we say that a and m are relatively prime.
- The number of integers in $Z_{m}(m>1)$, that are relatively prime to m and does not exceed m is denoted by $\Phi(\mathrm{m})$, called Euler's Totient function or phi function.

Example

- $m=26=>\Phi(26)=12$
- If p is prime, $\Phi(p)=p-1$
- If $\mathrm{n}=1,2, \ldots, 24$ the values of $\Phi(\mathrm{n})$ are:
- 1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8, 12,10,22,8
- Thus we see that the function is very irregular.

Properties of Φ

- If \mathbf{m} and \mathbf{n} are relatively prime numbers,
$-\Phi(\mathrm{mn})=\Phi(\mathrm{m}) \Phi(\mathrm{n})$
- $\Phi(77)=\Phi(7 \times 11)=6 \times 10=60$
- $\Phi(1896)=\Phi(3 \times 8 \times 79)=2 \times 4 \times 78$ =624
- This result can be extended to more than two arguments comprising of pairwise coprime integers.

An Important Result

- If \mathbf{m} and \mathbf{n} are relatively prime, $\Phi(\mathrm{mn})=\Phi(\mathrm{m}) \Phi(\mathrm{n})$

contd.

- Thus, there are $\Phi(n)$ columns with $\Phi(m)$ elements in each which are coprime to both m and n.
- Thus there are $\Phi(m) \Phi(n)$ elements which are co-prime to mn .
- This proves the result...

Further Result

- $\Phi\left(p^{a}\right)=p^{a}-p^{a-1}$
- Evident for $\mathrm{a}=1$
- For a>1, out of the elements 1, 2, $\ldots, p^{\text {a }}$ the elements $\mathrm{p}, \mathrm{p}^{2}, \mathrm{p}^{\mathrm{a}-1} \mathrm{p}$ are not coprime to $p^{\text {a }}$.
Rest are co-prime.
Thus $\Phi\left(p^{a}\right)=p^{a}-p^{a-1}$

$$
=p^{a}(1-1 / p)
$$

contd.

- $\mathrm{n}=\mathrm{p}_{1}{ }^{\text {a1 }} \mathrm{p}_{2}{ }^{\mathrm{a} 2} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\text {ak }}$
- Thus, $\Phi(n)=\Phi\left(p_{1}{ }^{19}\right) \Phi\left(p_{2}{ }^{\text {a2 }}\right) \ldots \Phi\left(p_{k}{ }^{\text {ak }}\right)$

$$
=n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \ldots\left(1-1 / p_{k}\right)
$$

Thus, if $\mathrm{m}=60=4 \times 3 \times 5$

$$
\Phi(60)=60(1-1 / 2)(1-1 / 3)(1-1 / 5)=16
$$

Hence, no of Affine keys $=16 \times 60=$ 960.

Monoalphabetic Ciphers

- Once a key is chosen, each alphabetic character is mapped to a unique alphabetic character in the ciphertext.
- Example: Shift and Substitution Cipher

Polyalphabetic Ciphers

- In such ciphers, a plaintext can be mapped into more than one possible characters in ciphertexts.
- They are harder to cryptanalyze.
- Example: Vigenere, Hill Cipher

Vigenere Cipher

- Vigenere cipher is a kind of polyalphabetic cipher:
-Each key consists of \boldsymbol{m} characters, called keyword.
-Encrypt m characters at a time
-Devised by Blaise de Vigenere in the sixteen century.

Example

- thiscryptosystemisnotsecure
- Let $\mathrm{m}=6$ and key=(2,8,15,7,4,17)
- Convert the plaintext into residues modulo 26.
- Write them in groups of 6, and then add the keyword

Example

19	7	8	18	2	17	24	15	19	14	18	24
2	8	15	7	4	17	2	8	15	7	4	17
21	15	23	25	6	8	0	23	8	21	22	15

So, this part of the ciphertext is : VPXZGIAXIVWP
Note that character ' t ' is mapped to ' V ' and ' I '. Thus, polyalphabetic.

Vigenere cipher-key size

What is the key space? Suppose the keyword length is m.
There are total 26^{m} possible keys.
Suppose $m=5$, then $26^{5}=1.1 \times 10^{7}$, which is large enough to preclude exhaustive key search by hand.
However, we will see that there will be a systemic method to break Vigenere cipher.

We see that one character could be mapped into m different characters when the character is in m different positions.

Hill cipher -- introduction

- Another polyalphabetic cipher.
- Invented in 1929 by Lester S. Hill.
- Let \boldsymbol{m} be an positive integer, and let $\mathscr{P}=C$ $\left(Z_{26}\right)^{m}$
- First divide the characters in plaintext into blocks of m characters, take m linear combinations of the m characters, thus producing the \boldsymbol{m} characters in ciphertext.

Hill cipher -- example

Suppose $m=2$, a plaintext element is written as $x=\left(x_{1}, x_{2}\right)$ and a ciphertext element as $y=\left(y_{1}, y_{2}\right)$. Here y_{1} would be a linear combination of x_{1} and x_{2}, as would y_{2}.
Suppose we take:

$$
y_{1}=\left(11 x_{1}+3 x_{2}\right) \bmod 26
$$

$y_{2}=\left(8 x_{1}+7 x_{2}\right) \bmod 26$
then y_{1} and y_{2} can be computed from x_{1} and x_{2}
We can write the above computations in matrix notation:

$$
\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)\left(\begin{array}{cc}
11 & 8 \\
3 & 7
\end{array}\right)
$$

or $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{K}$ where $\boldsymbol{y}=\left(y_{1}, y_{2}\right), \boldsymbol{x}=\left(x_{1}, x_{2}\right)$, and $\boldsymbol{K}=\left(\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right)$
Assume all operations are performed by modulo 26 .

Hill cipher - theoretical foundation

- Given plaintext x, we get ciphertext $y=$ xK
- If given ciphertext y, we should get plaintext x by $\boldsymbol{y K} K^{-1}$

Thus, for Hill cipher to work, the matrix K must have an inverse K^{-1}.

From linear algebra, suppose I_{m} is an identity matrix, K is $m \times m$ matrix, Then $K K^{-1}=I_{m}$. So, $y K^{-1}=x K K^{-1}=x I_{m}=x$.

Hill cipher - example

Suppose key is:

$$
K=\left(\begin{array}{ll}
11 & 8 \\
3 & 7
\end{array}\right) \quad \text { then } \quad K^{-1}=\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right)
$$

Check that K and K^{-1} are indeed inverses.

Hill cipher - algebra foundation

1. Determinant of a matrix A, denoted by $\operatorname{det} A$:
-- if $A\left(a_{\mathrm{ij}}\right)$ is 2×2, then $\operatorname{det} A=a_{11} a_{22}-a_{12} a_{21}$
-- if $A\left(a_{\mathrm{ij}}\right)$ is 3×3, then $\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}$
$-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}$
2. Theorem: suppose $K=\binom{k_{11} k_{12}}{k_{21} k_{22}} \quad$ with $k_{\mathrm{ij}} \in Z_{26}$

Then K has an inverse if and only if $\operatorname{det} K$ is invertible in Z_{26} if and only if $\operatorname{gcd}(\operatorname{det} K, 26)=1$
Moreover,

$$
K^{-1}=(\operatorname{det} K)^{-1}\left(\begin{array}{cc}
k_{22} & -k_{12} \\
-k_{21} & k_{11}
\end{array}\right) \text { Where } \operatorname{det} K=k_{11} k_{22}-k_{12} k_{21}
$$

Hill cipher - formal definition

- Let $m \geq 2$, be a positive integer. Let $\mathscr{P}=C$ $=\left(Z_{26}\right)^{m}$ and let
$\mathcal{K}=\{m \times m$ invertible matrices over $\left.Z_{26}\right\}$
For each key K, define:

$$
e_{K}(x)=x K \text { and } d_{K}(y)=y K^{-1}
$$

where all operations are performed in Z_{26}.

Permutation cipher--introduction

- All previous ciphers include substitutions: plaintext characters are replaced by different ciphertext characters.
- The permutation cipher will keep the plaintext characters unchanged, but alter their position by rearranging them using a permutation.
- Suppose X is a finite set, a permutation over X is a bijective function π : $X \rightarrow X$. thus the inverse permutation $\pi^{-1}: X \rightarrow X$ is defined by the rule:

$$
\pi^{-1}(x)=x^{\prime} \text { if and only if } \pi\left(x^{\prime}\right)=x
$$

Permutation cipher-formal definition

- Let \boldsymbol{m} be a positive integer, Let $\mathscr{P}=C=\left(Z_{26}\right)^{m}$ and let \mathcal{K} consists of all permutations of $\{1,2, \ldots, m\}$. For a key (i.e., a permutation) π

Define

$$
e_{\pi}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{\pi(1)}, \ldots, x_{\pi(m)}\right)
$$

and

$$
d_{\pi}\left(y_{1}, \ldots, y_{m}\right)=\left(y_{\pi^{-1}(1)}, \ldots, y_{\pi^{-1}(m)}\right)
$$

where π^{-1} is the inverse permutation of π.

Permutation cipher-example

- Suppose $m=6$.

$$
\begin{gathered}
x||1|| l|l| l|l| l \\
\hline \pi(x) \| 1
\end{gathered}
$$

Then

$$
\begin{array}{c|c|c|c|c|c|c|c}
x & \| & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \pi^{-1}(x) \| & 3 & \mid & 6 & 1 & 1 & 5 & |c| c \mid
\end{array}
$$

Given plaintext: shesellsseashellsbytheseashore
first split by $m=6$: shesel Isseas hellsb ythese ashore
Get ciphertext by π : ELSEHS...
Comments: the permutation cipher is a special case of Hill cipher.

Points to Ponder

- Comment on whether the Euler Totient Function for $\mathrm{n}>1$ is even or odd?
- Express permutation cipher as a Hill cipher.

References

- B. A. Forouzan, "Cryptography and Network Security", TMH

Next Days Topic

- Cryptanalysis of Classical Ciphers

