Probability Distribution: Building up the notion of Pseudo-randomness

Debdeep Mukhopadhyay
IIT Kharagpur

Probability Distribution

1. Probability Distribution: $p=\left(p_{1}, \ldots, p_{n}\right)$ is a tuple of elements $p_{i} \in R_{n}, 0 \leq \mathrm{p}_{\mathrm{i}} \leq 1$, called probabilities, such that $\sum_{i=1}^{n} p_{i}=1$.
2. A probability space (X, p_{X}) is a finite set
$X=\left\{x_{1}, \ldots, x_{n}\right\}$ equipped with a probability distribution
$p_{X}=\left\{p_{1}, \ldots, p_{n}\right\}$.
p_{i} is called the probability of $\mathrm{x}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$. We also write $\mathrm{p}_{\mathrm{x}}\left(x_{i}\right)=p_{i}$ and consider p_{x} as a map $\mathrm{X} \rightarrow[0,1]$, called the probability measure on X , associating with $\mathrm{x} \in \mathrm{X}$ its probability.
3. An event ε in a probability space $\left(\mathrm{X}, \mathrm{p}_{\mathrm{x}}\right)$ is a subset ε of X.

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{X}}(\varepsilon)=\sum_{y \in \varepsilon} p_{X}(y) \\
& \therefore \mathrm{p}_{\mathrm{X}}(X)=1
\end{aligned}
$$

A probability space X is the model of a random experiment. n independent repetitions of the random experiment are modeled by the direct product: $\mathrm{X}^{\mathrm{n}}=X \times X \times \ldots \times X$

Some interesting results...

Let ε be an event in a probability space X, with $\operatorname{Pr}[\varepsilon]=\mathrm{p}>0$. Repeatedly, we perform the random experiment X independently. Let, G be the expected number of experiments of X, until ε occurs the first time. Prove that: $E(G)=\frac{1}{p}$

$$
\operatorname{Pr}[G=t]=(1-p)^{t-1} p \Rightarrow E(G)=\sum_{t=1}^{\infty} t p(1-p)^{t-1}=-p \frac{d}{d p} \sum_{t=1}^{\infty}(1-p)^{t}=-\mathrm{p} \frac{d}{d p}\left(\frac{1}{p}-1\right)=\frac{1}{p} .
$$

Another Useful result

Let R, S and B be jointly distributed r.v with values in $\{0,1\}$.
Assume that B and S are independent and that B is uniformly distributed:
$\operatorname{Pr}(B=0)=\operatorname{Pr}(B=1)=1 / 2$
Prove that: $\operatorname{Pr}(\mathrm{R}=\mathrm{S})=1 / 2+\operatorname{Pr}(\mathrm{R}=\mathrm{B} \mid \mathrm{S}=\mathrm{B})-\operatorname{Pr}(\mathrm{R}=\mathrm{B})$

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{S}=\mathrm{B})= & \operatorname{Pr}(\mathrm{S}=0) \operatorname{Pr}(\mathrm{B}=0 \mid \mathrm{S}=0)+\operatorname{Pr}(\mathrm{S}=1) \operatorname{Pr}(\mathrm{B}=1 \mid \mathrm{S}=1) \\
= & \operatorname{Pr}(\mathrm{S}=0) \operatorname{Pr}(\mathrm{B}=0)+\operatorname{Pr}(\mathrm{S}=1) \operatorname{Pr}(\mathrm{B}=1) \\
= & \frac{1}{2}(\operatorname{Pr}(\mathrm{~S}=0)+\operatorname{Pr}(\mathrm{S}=1))=\frac{1}{2}
\end{aligned} \quad \begin{aligned}
\text { Likewise }, & \operatorname{Pr}(S=\bar{B})=\frac{1}{2} \\
\operatorname{Pr}(R=S)= & \frac{1}{2} \operatorname{Pr}(R=B \mid S=B)+\frac{1}{2} \operatorname{Pr}(R=\bar{B} \mid S=\bar{B}) \\
= & \frac{1}{2}\left[\operatorname{Pr}(R=B \mid S=B)+1-\frac{1}{2} \operatorname{Pr}(R=B \mid S=\bar{B})\right] \\
= & \frac{1}{2}+\frac{1}{2}\left[\operatorname{Pr}(R=B \mid S=B)-\frac{\operatorname{Pr}[(\mathrm{R}=\mathrm{B}) \cap(\mathrm{S}=\overline{\mathrm{B}})]}{\operatorname{Pr}(S=\bar{B})}\right] \\
\because(\mathrm{R}=\mathrm{B})= & ((\mathrm{R}=\mathrm{B}) \cap(\mathrm{S}=\overline{\mathrm{B}})) \cup((R=B) \cap(S=B)) \\
\therefore \operatorname{Pr}[R=B]= & \operatorname{Pr}[(\mathrm{R}=\mathrm{B}) \cap(\mathrm{S}=\overline{\mathrm{B}})]+\operatorname{Pr}[(R=B) \cap(S=B)] \\
= & S)=\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}(R=B \mid S=B)-\frac{\operatorname{Pr}[R=B]-\operatorname{Pr}[(R=B) \cap(S=B)]}{\operatorname{Pr}(S=\bar{B})}\right) \\
& =\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}(R=B \mid S=B)-\frac{\operatorname{Pr}[R=B]-\operatorname{Pr}[S=B] \operatorname{Pr}[(R=B) \mid(S=B)]}{1 / 2}\right) \\
& =\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}(R=B \mid S=B)-\frac{\operatorname{Pr}[R=B]-1 / 2 \operatorname{Pr}[(R=B) \mid(S=B)]}{1 / 2}\right) \\
& =\frac{1}{2}+\operatorname{Pr}(R=B \mid S=B)-\operatorname{Pr}[R=B]
\end{aligned}
$$

Statistical Distance between Probability Distributions

Let p and \tilde{p} be probability distributions on a finite set X . The statistical distance between p and \tilde{p} is:

$$
\operatorname{dist}(\mathrm{p}, \tilde{\mathrm{p}})=\frac{1}{2} \sum_{x \in X}|p(x)-\tilde{\mathrm{p}}(x)|
$$

The statistical distance between probability distributions p and \tilde{p} on a finite set X is the maximal distance between the probabilities of events in X, ie.

$$
\operatorname{dist}(\mathrm{p}, \tilde{\mathrm{p}})=\max _{\varepsilon \subseteq X}|p(\varepsilon)-\tilde{p}(\varepsilon)|
$$

$$
\begin{aligned}
& \text { The events in } \mathrm{X} \text { are the subsets of } \mathrm{X} \text {. We divide the subsets into } \\
& \text { three categories: } \\
& \qquad \varepsilon_{1}=\{x \in X \mid p(x)>\tilde{p}(x)\} \\
& \qquad \varepsilon_{2}=\{x \in X \mid p(x)<\tilde{p}(x)\} \\
& \quad \varepsilon_{3}=\{x \in X \mid p(x)=\tilde{p}(x)\} \\
& \text { We have } 0=\mathrm{p}(\mathrm{X})-\tilde{\mathrm{p}}(X)=\sum_{\mathrm{i}=1}^{3}\left[\mathrm{p}\left(\varepsilon_{\mathrm{i}}\right)-\tilde{p}\left(\varepsilon_{i}\right)\right] \\
& \because \mathrm{p}\left(\varepsilon_{3}\right)-\tilde{p}\left(\varepsilon_{3}\right)=0 \Rightarrow \mathrm{p}\left(\varepsilon_{1}\right)-\tilde{p}\left(\varepsilon_{1}\right)=-\left(\mathrm{p}\left(\varepsilon_{2}\right)-\tilde{p}\left(\varepsilon_{2}\right)\right) \\
& \text { Now because of the definition of } \varepsilon_{1}, \\
& \max _{\varepsilon \in \mathrm{X}}|\mathrm{p}(\varepsilon)-\tilde{\mathrm{p}}(\varepsilon)|=\mathrm{p}\left(\varepsilon_{1}\right)-\tilde{p}\left(\varepsilon_{1}\right)=-\left(\mathrm{p}\left(\varepsilon_{2}\right)-\tilde{p}\left(\varepsilon_{2}\right)\right) \\
& \begin{aligned}
\therefore \operatorname{dist}\left(\mathrm{p}, \mathrm{p}^{\tilde{p}}\right)=\frac{1}{2} \sum_{x \in X}|p(x)-\tilde{\mathrm{p}}(x)|
\end{aligned} \\
& \quad=\frac{1}{2}\left(\sum_{x \in \varepsilon_{1}}[p(x)-\tilde{\mathrm{p}}(x)]-\sum_{x \in \varepsilon_{2}}[p(x)-\tilde{\mathrm{p}}(x)]\right) \\
& \quad=\frac{1}{2}\left[\left(\mathrm{p}\left(\varepsilon_{1}\right)-\tilde{p}\left(\varepsilon_{1}\right)\right)-\left(\mathrm{p}\left(\varepsilon_{2}\right)-\tilde{p}\left(\varepsilon_{2}\right)\right)\right]=\max _{\varepsilon \subseteq X}|p(\varepsilon)-\tilde{p}(\varepsilon)|
\end{aligned}
$$

Indistinguishable Distributions

p and \tilde{p} are called polynomially close or ε-indistinguishable if:

$$
\operatorname{dist}(\mathrm{p}, \tilde{\mathrm{p}}) \leq \varepsilon(n)=\frac{1}{P(n)}
$$

where $\varepsilon(n)$ is a negligible quantity. $\mathrm{p}(\mathrm{n})$ is a polynomial in n .
Pseudo-random sequence: No efficient observer can distinguish it from a uniformly chosen string of the same length.

This approach leads to the concept of pseudorandom generators, which is a fundamental concept with lot of applications.

Proof

Let $\mathrm{J}_{\mathrm{k}}=\{n \mid n=r \mathrm{~s}, r, \mathrm{~s}$ are primes, $|\mathrm{r}|=|\mathrm{s}|=\mathrm{k}, \mathrm{r} \neq \mathrm{s}\}$ and
$\mathrm{x} \leftarrow \mathrm{Z}_{\mathrm{n}}$ and $\mathrm{x} \leftarrow \mathrm{Z}_{\mathrm{n}}^{*}$ are polynomially close. Is the result dependent on the choice of r and s ?

Pseudorandom Bit Generator

- Let $\mathrm{I}=\left(\mathrm{I}_{n}\right)_{n \in \mathbb{N}}$ be a key set with security parameter n , and let K be a probabilistic sampling algorithm for I, which on input (n) outputs an $i \in I_{n}$. Let I be a polynomial function in the security parameter.
- A pseudorandom bit generator with key generator K and stretch function $/$ is a family of functions $G=\left(G_{i}\right)_{i \in I}$ of functions.
$-G_{i}: X_{i} \rightarrow\{0,1\}^{(n)}, i \in I(n)$
- G is computable by a deterministic polynomial algorithm G.
- $G(i, x)=G_{i}(x)$ for all $i \in I$ and $x \in X_{i}$
- there is a uniform sampling algorithm for X. On input i, it outputs $x \in X_{i}$.

Pseudorandom Bit Generator

$$
\begin{aligned}
& \mid \operatorname{Pr}\left(A(i, z)=1: i=K\left(1^{n}\right), z \leftarrow\{0,1\}^{l(n)}\right. \\
& -\operatorname{Pr}\left(A\left(i, G_{i}(x)\right)=1\right): i=K\left(1^{n}\right), x \leftarrow X_{i} \mid \\
& \leq \frac{1}{P(n)}
\end{aligned}
$$

If the discrete log assumption is true,
$\operatorname{Exp}=\left(\operatorname{Exp}_{p, g}: Z_{p-1} \rightarrow Z_{p}^{*}, x \rightarrow g^{x} \bmod p\right)$
with $I=\left\{(p, g) \mid p\right.$ is prime, $g \in Z_{p}^{*}$ a primitive root $\}$
is a bijective one-way function.
$\operatorname{MSB}_{\mathrm{p}}(x)=\left\{\begin{array}{c}0 \text { for } 0 \leq \mathrm{x}<(\mathrm{p}-1) / 2 \\ 1 \text { for }(\mathrm{p}-1) / 2 \leq \mathrm{x} \leq \mathrm{p}-1\end{array}\right.$
is a hard-core predicate for Exp.
Exp can be treated as a one-way permutation,
identifying $\mathrm{Z}_{\mathrm{p}-1}$ with $\mathrm{Z}_{\mathrm{p}}^{*}$.
$Z_{p-1}=\{0, \ldots, p-2\}$
$Z_{p}^{*}=\{1, \ldots, p-1\}$
using the mapping $0 \rightarrow \mathrm{p}-1,1 \rightarrow 1, \ldots, \mathrm{p}-2 \rightarrow \mathrm{p}-2$ Induced PRG is a called Blum Micali Generator.

Blum-Micali-Yao's Theorem

- Suppose f is a length preserving one-way function. Let B be a hard core predicate for f. Then the algorithm G defined by $G(x)=F(x)| | B(x)=F(x) \cdot B(x)$ is a pseudo random generator.

Let D be an algorithm distinguishing between $G\left(U_{n}\right)$ and U_{n+1}.
$\therefore \operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[D\left(U_{n+1}\right)=1\right]>\varepsilon$
Define: $\mathrm{E}^{(1)}=\left[f\left(U_{n}\right) \cdot b\left(U_{n}\right)\right]$
$\mathrm{E}^{(2)}=\left[f\left(U_{n}\right) \cdot \bar{b}\left(U_{n}\right)\right]$
Note: $G\left(U_{n}\right)=f\left(U_{n}\right) \cdot b\left(U_{n}\right)=\mathrm{E}^{(1)}$

$$
\begin{aligned}
& \text { Also, } \operatorname{Pr}\left[D\left(U_{n+1}\right)=1\right] \\
& =\operatorname{Pr}\left[D\left(f\left(U_{n}\right) \cdot U_{1}\right)=1\right][\text { as, } f \text { is bijective }] \\
& =\operatorname{Pr}\left[D\left(f\left(U_{n}\right) \cdot b\left(U_{n}\right)\right)=1\right] \operatorname{Pr}\left[b\left(U_{n}\right)=U_{1}\right] \\
& +\operatorname{Pr}\left[D\left(f\left(U_{n}\right) \cdot \bar{b}\left(U_{n}\right)\right)=1\right] \operatorname{Pr}\left[\bar{b}\left(U_{n}\right)=U_{1}\right] \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[D\left(f\left(U_{n}\right) \cdot b\left(U_{n}\right)\right)=1\right]+\operatorname{Pr}\left[D\left(f\left(U_{n}\right) \cdot \bar{b}\left(U_{n}\right)\right)=1\right]\right) \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[D\left(\mathrm{E}^{(1)}\right)=1\right]+\operatorname{Pr}\left[D\left(\mathrm{E}^{(2)}\right)=1\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[D\left(U_{n+1}\right)=1\right] \\
& =\operatorname{Pr}\left[D\left(E^{(1)}=1\right]-\frac{1}{2}\left(\operatorname{Pr}\left[D\left(\mathrm{E}^{(1)}\right)=1\right]+\operatorname{Pr}\left[D\left(\mathrm{E}^{(2)}\right)=1\right]\right)\right. \\
& =\frac{1}{2}\left(\operatorname{Pr}\left[D\left(E^{(1)}=1\right]-\operatorname{Pr}\left[D\left(\mathrm{E}^{(2)}\right)=1\right]\right)>\varepsilon\right.
\end{aligned}
$$

Thus using D if we make an algorithm to guess the hardcore predicate $\mathrm{B}($.$) from \mathrm{y}=\mathrm{f}(\mathrm{x})$, then we are done. Algorithm A:

1. Select σ uniformly in $\{0,1\}$
2. If $\mathrm{D}(\mathrm{y} . \sigma)=1$, output σ, else $1-\sigma$

> What is the probability that A is able to compute the hardcore predicate?:
> $\operatorname{Pr}\left[\mathrm{A}(\mathrm{f}(\mathrm{X})=\mathrm{b}(\mathrm{X})]=\operatorname{Pr}\left[\mathrm{A}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right)=\mathrm{b}\left(\mathrm{U}_{\mathrm{n}}\right)\right]\right.\right.$
> $=\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \mathrm{U}_{1}\right)=1 \wedge \mathrm{U}_{1}=\mathrm{b}\left(\mathrm{U}_{\mathrm{n}}\right)\right]$
> $+\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \mathrm{U}_{1}\right)=0 \wedge 1-\mathrm{U}_{1}=\mathrm{b}\left(\mathrm{U}_{\mathrm{n}}\right)\right]$
> $=\frac{1}{2}\left(\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \mathrm{b}\left(\mathrm{U}_{\mathrm{n}}\right)\right)=1\right]\right.$
> $\left.+\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \overline{\mathrm{b}}\left(\mathrm{U}_{\mathrm{n}}\right)\right)=0\right]\right)$
> $=\frac{1}{2}\left(\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \mathrm{b}\left(\mathrm{U}_{\mathrm{n}}\right)\right)=1\right]\right.$
> $+\frac{1}{2}\left(1-\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \overline{\mathrm{b}}\left(\mathrm{U}_{\mathrm{n}}\right)\right]=1\right)\right.$
> $=\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \mathrm{b}\left(\mathrm{U}_{\mathrm{n}}\right)\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{f}\left(\mathrm{U}_{\mathrm{n}}\right) \overline{\mathrm{b}}\left(\mathrm{U}_{\mathrm{n}}\right)\right]=1\right)\right.$
> $=\frac{1}{2}+\frac{1}{2}\left(\operatorname{Pr}\left[D\left(E^{(1)}=1\right]-\operatorname{Pr}\left[D\left(\mathrm{E}^{(2)}\right)=1\right]\right)\right.$
> $>\frac{1}{2}+\varepsilon . \operatorname{Thus~we~reach~a~contradiction.~}$

Let $\mathrm{I}=\left(\mathrm{I}_{\mathrm{k}}\right)_{k \in N}$ be a key set with security parameter k , and let $\mathrm{Q} \in \mathrm{Z}[\mathrm{X}]$ be a positive polynomial. Let $\mathrm{f}=\left(\mathrm{f}_{\mathrm{i}}: D_{i} \rightarrow D_{i}\right)_{i \in I}$ be a family of one-way permutations with hard core predicate $\mathrm{B}=\left(\mathrm{B}_{i}: D_{i} \rightarrow\{0,1\}\right)_{i \in I}$ and key generator K . Let $\mathrm{G}=\mathrm{G}(\mathrm{f}, \mathrm{B}, \mathrm{Q})$ be the induced pseudorandom bit generator.

Is this a PR Bit Generator?

Proof

Then for every P.P.T A with inputs $\mathrm{i} \in \mathrm{I}_{\mathrm{k}}, \mathrm{z} \in\{0,1\}^{\mathrm{Q}(\mathrm{k})}$, $y \in D_{i}$ and output in $\{0,1\}$:
$\mid \operatorname{Pr}\left(\mathrm{A}\left(\mathrm{i}, \mathrm{G}_{\mathrm{i}}(x), f_{i}^{Q(k)}(x)\right)=1: i \leftarrow K\left(1^{k}\right), x \leftarrow D_{i}\right)$
$-\operatorname{Pr}\left(A(i, z, y)=1: i \leftarrow K\left(1^{k}\right), z \leftarrow\{0,1\}^{Q(k)}, y \leftarrow D_{i}\right) \mid \leq \varepsilon(k)$
Remark: The theorem states that for sufficiently large keys the probability of distinguishing successfully between truly random sequences and pseudorandom sequences-using a given efficient algorithm is negligibly small, even if $f_{i}^{Q(k)}(x)$ is known.

Contradicting the pseudo-randomness:
$\operatorname{Pr}\left(\mathrm{A}\left(\mathrm{i}, \mathrm{G}_{\mathrm{i}}(x), f_{i}^{Q(k)}(x)\right)=1: i \leftarrow K\left(1^{k}\right), x \leftarrow D_{i}\right)$
$-\operatorname{Pr}\left(A(i, z, y)=1: i \leftarrow K\left(1^{k}\right), z \leftarrow\{0,1\}^{Q(k)}, y \leftarrow D_{i}\right)>\varepsilon(k)$
For $k \in K$ and $i \in I_{k}$, we consider the following sequence of distributions: $p_{i, 0}, p_{i, 1}, \ldots, p_{i, Q(k)}$ on $\mathrm{Z}_{\mathrm{i}}=\{0,1\}^{Q(k)} \times D_{i}$.

The Hybrid Construction

```
For \(k \in K\) and \(i \in I_{k}\), we consider the following sequence of
distributions: \(p_{i, 0}, p_{i, 1}, \ldots, p_{i, Q(k)}\) on \(\mathrm{Z}_{\mathrm{i}}=\{0,1\}^{Q(k)} \times D_{i}\).
\(p_{i, 0}=\left\{\left(b_{1}, \ldots, b_{Q(k)}, y\right):\left(b_{1}, \ldots, b_{Q(k)}\right) \leftarrow\{0,1\}^{Q(k)}, y \leftarrow D_{i}\right\}\)
\(p_{i, 1}=\left\{\left(b_{1}, \ldots, b_{Q(k)-1}, B_{i}(x), f_{i}(x)\right):\left(b_{1}, \ldots, b_{Q(k)-1}\right) \leftarrow\{0,1\}^{Q(k)-1}, x \leftarrow D_{i}\right\}\)
\(\ldots\)
\(p_{i, r}=\left\{\left(b_{1}, \ldots, b_{Q(k)-r}, B_{i}(x), B_{i}\left(f_{i}(x)\right), \ldots, B_{i}\left(f_{i}^{r-1}(x)\right), f_{i}^{r}(x)\right):\left(b_{1}, \ldots, b_{Q(k)-r}\right) \leftarrow\{0,1\}^{Q(k)-r}, x \leftarrow D_{i}\right\}\)
\(\left.p_{i, Q(k)}=\left\{B_{i}(x), B_{i}\left(f_{i}(x)\right), \ldots, B_{i}\left(f_{i}^{Q(k)-1}(x)\right), f_{i}^{Q(k)}(x)\right): x \leftarrow D_{i}\right\}\)
```


From the contradiction

$$
\begin{aligned}
& \operatorname{Prob}\left(\mathrm{A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1 ; \mathrm{i} \leftarrow \mathrm{~K}(\mathrm{k}), \mathrm{z} \leftarrow\{0,1\}^{\mathrm{Q(k)}}, y \leftarrow D_{i}\right) \\
& =\operatorname{Prob}\left(\mathrm{A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1: \mathrm{i} \leftarrow \mathrm{~K}(\mathrm{k}),(\mathrm{z}, \mathrm{y}) \leftarrow \mathrm{P}_{\mathrm{i}, 0} Z_{i}\right) \\
& \operatorname{Prob}\left(\mathrm{A}\left(\mathrm{i}, \mathrm{G}_{\mathrm{i}}(\mathrm{x}), \mathrm{f}_{\mathrm{i}}^{\mathrm{Q}(\mathrm{k})}(\mathrm{x})\right)=1 ; \mathrm{i} \leftarrow \mathrm{~K}(\mathrm{k}), \mathrm{z} \leftarrow\{0,1\}^{\mathrm{Q}(\mathrm{k})}, y \leftarrow D_{i}\right) \\
& =\operatorname{Prob}\left(\mathrm{A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1: \mathrm{i} \leftarrow \mathrm{~K}(\mathrm{k}),(\mathrm{z}, \mathrm{y}) \leftarrow \mathrm{P}_{\mathrm{i}, \mathrm{Q}(\mathrm{k})}\right. \\
& \left.Z_{i}\right) \\
& \text { Thus our contradiction says that algorithm } \mathrm{A} \text { is able to distinguish } \\
& \text { between } \mathrm{P}_{\mathrm{i}, 0} \text { (uniform distribution) and } \mathrm{p}_{\mathrm{i}, \mathrm{Q}(\mathrm{k})} \text { (of pseudorandom } \\
& \text { sequences). }
\end{aligned}
$$

Difference between each iteration

Since f is bijective,
$\mathrm{p}_{\mathrm{i}, \mathrm{r}}=\left\{\left(b_{1}, \ldots, b_{Q(k)-r}, B_{i}(x), B_{i}\left(f_{i}(x)\right), \ldots, B_{i}\left(f_{i}^{r-1}(x)\right), f_{i}^{r}(x)\right):\left(b_{1}, \ldots, b_{Q(k)-r}\right) \leftarrow\{0,1\}^{Q(k)-r}, x \leftarrow D_{i}\right\}$ $=\left\{\left(b_{1}, \ldots, b_{Q(k)-r}, B_{i}\left(f_{i}(x)\right), B_{i}\left(f_{i}^{2}(x)\right), \ldots, B_{i}\left(f_{i}^{r}(x)\right), f_{i}^{r+1}(x)\right):\left(b_{1}, \ldots, b_{Q(k)-r}\right) \leftarrow\{0,1\}^{Q(k)-r}, x \leftarrow D_{i}\right\}$
We see that $\mathrm{p}_{\mathrm{i}, \mathrm{r}}$ differs from $\mathrm{p}_{\mathrm{i},+1}$ only at one position, namely at $\mathrm{Q}(\mathrm{k})$-r. There the hard core bit $\mathrm{B}_{\mathrm{i}}(x)$ is replaced by a truly random bit.
$\frac{1}{\mathrm{P}(\mathrm{k})}<\operatorname{Prob}\left(\mathrm{A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1: \mathrm{i} \leftarrow \mathrm{K}(\mathrm{k}),(\mathrm{z}, \mathrm{y}) \stackrel{\mathrm{P}_{\mathrm{i}, \mathrm{O}(\mathrm{k})}}{\mathrm{K}_{i}} Z_{i}\right)-$
$\operatorname{Prob}\left(\mathrm{A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1: 1 \leftarrow \mathrm{~K}(\mathrm{k}),(\mathrm{z}, \mathrm{y}) \stackrel{\mathrm{P}_{\mathrm{i}, 0}}{{ }_{\mathrm{Z}}^{\mathrm{i}}}\right.$)
$=\sum^{Q(k)-1}\left(\operatorname{Prob}\left(\mathrm{~A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1: i \leftarrow \mathrm{~K}(\mathrm{k}),(\mathrm{z}, \mathrm{y}) \stackrel{\mathrm{p}_{\mathrm{i}+1}}{\stackrel{ }{2}} Z_{i}\right)-\right.$
$\operatorname{Prob}\left(\mathrm{A}(\mathrm{i}, \mathrm{z}, \mathrm{y})=1: \mathrm{i} \leftarrow \mathrm{K}(\mathrm{k}),(\mathrm{z}, \mathrm{y}) \stackrel{\mathrm{p}_{\mathrm{t}},}{ } Z_{i}\right)$

Define algorithm A' using A

Choose r, with $0 \leq r<Q(k)$, uniformly at random.
Independently choose random bits $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, b_{Q(k)-r-1}$ and another random bit b.
For $\mathrm{y}=\mathrm{f}_{\mathrm{i}}(x) \in D_{i}$
$A^{\prime}\left(i, f_{i}(x)\right)=\left\{\begin{array}{l}b, \text { if } \mathrm{A}\left(\mathrm{i}, \mathrm{b}_{1}, . ., b_{Q(k)-r-1}, b, B_{i}\left(f_{i}(x)\right), \ldots, B_{i}\left(f_{i}^{r}(x)\right), f_{i}^{r+1}(x)\right)=1 \\ 1-b \text { otherwise }\end{array}\right.$
If A distinguishes between $\mathrm{p}_{\mathrm{i}, \mathrm{r}}$ and $\mathrm{p}_{\mathrm{i}, \mathrm{r}+1}$ it yields 1 with higher probability
if the $(\mathrm{Q}(\mathrm{k})-\mathrm{r})$ th bit of its input is $\mathrm{B}_{\mathrm{i}}(x)$ and is not a random bit.

Success of A' in guessing the hard-core predicate

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathrm{A}^{\prime}\left(\mathrm{i}, \mathrm{f}_{\mathrm{i}}(x)\right)=B_{i}(x): i=K(k), x \leftarrow D_{i}\right) \\
& =\frac{1}{2}+\operatorname{Pr}\left[A^{\prime}\left(i, f_{i}(x)\right)=b \mid B_{i}(x)=b\right)-\operatorname{Pr}\left(A^{\prime}\left(i, f_{i}(x)\right)=b\right) \\
& \text { Choosing r uniformly, } \\
& =\frac{1}{2}+\sum_{r=0}^{Q(k)-1} \operatorname{Pr}(R=r) \cdot\left[\operatorname{Pr}\left(A^{\prime}\left(i, f_{i}(x)\right)=b \mid B_{i}(x)=b, R=r\right)-\operatorname{Pr}\left(A^{\prime}\left(i, f_{i}(x)\right)=b \mid R=r\right)\right] \\
& =\frac{1}{2}+\frac{1}{Q(k)} \sum_{r=0}^{Q(k)-1}\left[\operatorname{Pr}\left(A^{\prime}\left(i, f_{i}(x)\right)=b \mid B_{i}(x)=b\right)-\operatorname{Pr}\left(A^{\prime}\left(i, f_{i}(x)\right)=b\right]\right. \\
& =\frac{1}{2}+\frac{1}{Q(k)} \sum_{r=0}^{Q(k)-1}\left(\operatorname{Pr}\left[A(i, z, y)=1: i \leftarrow K\left(1^{k}\right),(z, y) \stackrel{p_{i, t+1}}{Q} Z_{i}\right)-\right. \\
& >\frac{1}{2}+\frac{1}{Q(k) P(k)}
\end{aligned}
$$

This contradicts the hard-core predicate property.

Next Bit Unpredictability

Let $\mathrm{X}=\left(\mathrm{X}_{1} X_{2} \ldots X_{n}\right)$ be a distribution on $\{0,1\}^{\mathrm{n}}$. X is next-bit unpredictable if for every PPT predictor algorithm P , there exists a negligible function $\varepsilon(\mathrm{n})$ such that,

$$
\operatorname{Pr}_{\mathrm{i} \in[n]}\left[P\left(X_{1} \ldots X_{i-1}\right)=X_{i}\right] \leq \frac{1}{2}+\varepsilon(n)
$$

Surprisingly next-bit unpredictability is equivalent to pseudorandomness.

Yao's Theorem

X is pseudorandom if and only if, it is next bit unpredictable.

Proof

X is pseudorandom if and only if, it is next bit unpredictable. X is $\mathrm{PR} \Rightarrow$ Next bit is unpredictable
\neg Next bit is unpredictable $\Rightarrow \neg \mathrm{X}$ is PR
$\operatorname{Pr}_{\mathrm{E}_{\mathrm{E}}[n]}\left[P\left(X_{1} \ldots X_{i-1}\right)=X_{i}\right]>\frac{1}{2}+\varepsilon(n)$
$\exists i, \operatorname{Pr}\left[P\left(X_{1} \ldots X_{i-1}\right)=X_{i}\right]>\frac{1}{2}+\varepsilon(n)$
Define T such that:

$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{y}_{1} \ldots y_{n}\right)=\left\{\begin{array}{l}
0, \text { if } \mathrm{P}\left(\mathrm{y}_{1} \ldots y_{i-1}\right) \neq y_{i} \\
1, \text { if } \mathrm{P}\left(\mathrm{y}_{1} \ldots y_{i-1}\right)=y_{i}
\end{array}\right. \\
& \operatorname{Pr}_{y \in U_{n}}[T(y)=1]=\frac{1}{2} \\
& \operatorname{Pr}_{y \in X}[T(y)=1]>\frac{1}{2}+\varepsilon(n) \\
& \operatorname{Adv}(T)>\varepsilon(n) \text {, thus violating the PRNG } \\
& \operatorname{property} .
\end{aligned}
$$

Proof of the converse

Let us prove the converse.
Suppose X is not PRNG. Then there is a PPT
algorithm T st.:
$\operatorname{Adv}(\mathrm{T})=\left\|\operatorname{Pr}[\mathrm{T}(\mathrm{X})=1]-\operatorname{Pr}\left[\mathrm{T}\left(\mathrm{U}_{\mathrm{n}}\right)=1\right]\right\|>\varepsilon(n)$
wlog assume $\operatorname{Pr}[\mathrm{T}(\mathrm{X})=1]>\operatorname{Pr}\left[\mathrm{T}\left(\mathrm{U}_{\mathrm{n}}\right)=1\right]$.
Now construct a next bit predictor:
Let $\mathrm{U}_{1}, \ldots, U_{n}$ be uniformly distributed random variables on
$\{0,1\}$.
$\quad \mathrm{D}_{0}=\left(U_{1} \ldots U_{n}\right)$
$\quad \mathrm{D}_{1}=\left(X_{1} \ldots U_{n}\right)$
\ldots
$\quad \mathrm{D}_{\mathrm{i}-1}=\left(X_{1} \ldots X_{i-1} U_{i} \ldots U_{n}\right)$
$\mathrm{D}_{\mathrm{i}}=\left(X_{1} \ldots X_{i} U_{i+1} \ldots U_{n}\right)$
\ldots
$\quad \mathrm{D}_{\mathrm{n}}=\left(X_{1} \ldots X_{n}\right)$

$\varepsilon(n)<\operatorname{Pr}\left[T\left(D_{n}\right)=1\right]-\operatorname{Pr}\left[T\left(D_{0}\right)=1\right]$

$$
=\sum_{i}\left(\operatorname{Pr}\left[T\left(\mathrm{D}_{\mathrm{i}}\right)=1\right]-\operatorname{Pr}\left[T\left(D_{i-1}\right)=1\right]\right)
$$

$\exists i$, st. $\operatorname{Pr}\left[T\left(\mathrm{D}_{\mathrm{i}}\right)=1\right]-\operatorname{Pr}\left[T\left(D_{i-1}\right)=1\right]>\frac{\varepsilon(n)}{n}$
Define predictor algorithm $\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}\right)$:
Choose random bits, $y_{i} \ldots y_{n}$.
Let, $\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1} y_{i} \ldots y_{n}\right)=\left\{\begin{array}{l}y_{i}, \text { if } \mathrm{T}\left(\mathrm{x}_{1} \ldots x_{i-1} y_{i} \ldots y_{n}\right)=1 \\ 1-y_{i}, \text { otherwise }\end{array}\right.$
Thus, $\operatorname{Pr}\left[P\left(X_{1} \ldots X_{i-1} U_{i} \ldots U_{n}\right)=X_{i}\right]$
$=\frac{1}{2}\left(\operatorname{Pr}\left[P\left(X_{1} \ldots X_{i-1} U_{i} \ldots U_{n}\right)=X_{i} \mid U_{i}=X_{i}\right]+\right.$
$\left.\operatorname{Pr}\left[P\left(X_{1} \ldots X_{i-1} U_{i} \ldots U_{n}\right)=X_{i} \mid U_{i}=1-X_{i}\right]\right)$
$=\frac{1}{2}\left(\operatorname{Pr}\left[P\left(X_{1} \ldots X_{i-1} X_{i} \ldots U_{n}\right)=X_{i}\right]+\right.$
$\left.\operatorname{Pr}\left[P\left(X_{1} \ldots X_{i-1} 1-X_{i} \ldots U_{n}\right)=X_{i}\right]\right)$
$=\frac{1}{2}\left(\operatorname{Pr}\left[T\left(X_{1} \ldots X_{i-1} X_{i} \ldots U_{n}\right)=1\right]+\right.$
$\left.\operatorname{Pr}\left[T\left(X_{1} \ldots X_{i-1} 1-X_{i} \ldots U_{n}\right)=0\right]\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\operatorname{Pr}\left[T\left(D_{i}\right)=1\right]+\right. \\
& \left.1-\operatorname{Pr}\left[T\left(X_{1} \ldots X_{i-1} 1-X_{i} \ldots U_{n}\right)=1\right]\right) \\
& =\frac{1}{2}+\frac{1}{2}\left(\left[\operatorname{Pr}\left[T\left(D_{i}\right)=1\right]-\operatorname{Pr}\left[T\left(X_{1} \ldots X_{i-1} 1-X_{i} \ldots U_{n}\right)=1\right]\right)\right. \\
& =\frac{1}{2}+\left(\left[\operatorname{Pr}\left[T\left(D_{i}\right)=1\right]-\operatorname{Pr}\left[T\left(D_{i-1}\right)=1\right]\right)\right. \\
& >\frac{1}{2}+\frac{1}{n}(\varepsilon(n))
\end{aligned}
$$

Thus, X is not next bit unpredictable.

