Relations
 --- Binary Relations

Debdeep Mukhopadhyay
IIT Kharagpur

What is a relation?

- The mathematical concept of relation is based on the common notion of relationships among objects:
- One box is heavier than the other
- One man is richer than the other
- An event occurs prior to the other

Ordered n-tuple

- For $\mathrm{n}>0$, an ordered n -tuple (or simply n tuple) with ith component a_{i} is a sequence of n objects denoted by $<a_{1}, a_{2}, \ldots, a_{n}>$. Two ordered n -tuples are equal iff their ith components are equal for all $\mathrm{i}, 1<=\mathrm{i}<=\mathrm{n}$.
- For $\mathrm{n}=2$, ordered pair
- For n=3, ordered triple

Cartesian Product

- Let $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}\right\}$ be an indexed collection of sets with indices from 1 to n, where $n>0$. The cartesian product, or cross product of the sets A_{1} through A_{n}, denoted by $A_{1} \times A_{2} \times \ldots \times A_{n}$, or $x_{i=1}^{n} A_{i}$ is the set of n-tuples $\left.<a_{1}, a_{2}, \ldots, a_{n}>\mid a_{i} \in A_{i}\right\}$. When $A_{i}=A$, for all i, then $x_{i=1}^{n} A_{i}$ will be denoted by A^{n}.

Examples

- Let $A=\{1,2\}, B=\{m, n\}, C=\{0\}, D=\Phi$.
$-A x B=\{<1, m>,<1, n>,<2, m>,<2, n>\}$
$-A x C=\{<1,0>,<2,0>\}$
$-\mathrm{AxD}=\Phi$
- When A and B are real numbers, then $A x B$ can be represented as a set of points in the Cartesian Plane. Let, $A=\{x \mid 1 \leq x \leq 2\}$ and $B=\{y \mid 0 \leq y \leq 1\}$. Then
$-A x B=\{<x, y>\mid 1 \leq x \leq 2 \wedge 0 \leq y \leq 1\}$

Theorems

1. $A X(B \cup C)=(A X B) \cup(A X C)$
2. $A X(B \cap C)=(A X B) \cap(A X C)$
3. $(A \cup B) X C=(A X C) \cup(B X C)$
4. $(A \cap B) X C=(A X C) \cap(B X C)$

Proof of 1

$$
\begin{aligned}
& <x, y>\in A \times(B \cup C) \Leftrightarrow x \in A \wedge y \in(B \cup C) \\
& \Leftrightarrow x \in A \wedge(y \in B \vee y \in C) \\
& \Leftrightarrow(x \in A \wedge y \in B) \vee(x \in A \wedge y \in C) \\
& \Leftrightarrow(<x, y>\in A \times B) \vee(<x, y>\in A \times C) \\
& \Leftrightarrow<x, y>\in(A \times B) \cup(A \times C)
\end{aligned}
$$

What is a relation mathematically?

- Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation R on $x_{i=1}^{n} A_{i}$ is a subset of $x_{i=1}^{n} A_{i}$. If $R=\Phi$, then R is called the empty or void relation. If
$R=x_{i=1}^{n} A_{i}$ then R is the universal relation. If $A_{i}=A$ for all i, then R is called an n-ary relation on A.
- If $\mathrm{n}=1$, unary
- If $n=2$, binary
- Ternary...

Number of n-ary relations

- If A_{i} has r_{i} elements, then $x_{i=1}^{n} A_{i}$ has $\prod_{i=1}^{n} r$ elements
- The number of n-ary relations is the cardinal number of the power set of the cartesian product of the $A_{i} s$.
- Thus, the number of relations is

Equality of relations

- Let R_{1} be an n-ary relation on $x_{i=1}^{n} A_{i}$ and R_{2} be an m -ary relation on $\mathrm{x}_{\mathrm{i}=1}^{\mathrm{m}} B_{i}$. Then $\mathrm{R}_{1}=\mathrm{R}_{2}$ iff $\mathrm{n}=\mathrm{m}$, and $A_{i}=B_{i}$ for all $i, 1 \leq i \leq n$, and $R_{1}=R_{2}$ are equal sets of ordered n -tuples.
- Every n-ary relation on a set A, corresponds to an n-ary predicate with A as the universe of discourse.
- A unary relation on a set A is simply a subset of set A.

Binary Relations

- They are frequently used in abstraction in CS
- Various data structures, like trees and graphs can be modeled as binary relations and vice versa.
- We shall see techniques and methods to analyze.

Binary Relations

- Let A, B be any two sets.
- A binary relation R from A to B, written (with signature) $R: A \leftrightarrow B$, is a subset of $\boldsymbol{A} \times \boldsymbol{B}$.
- E.g., let $<\mathbf{~} \mathbf{N} \leftrightarrow \mathbf{N}: \equiv\{<n, m>\mid n<m\}$
- The notation $a R b$ or $a R b$ means $\langle a, b\rangle \in R$.
- E.g., $a<b$ means $(a, b) \in<$
- If $a R b$ we may say " a is related to b (by relation R)", or "a relates to b (under relation R)".
- A binary relation R corresponds to a predicate function $P_{R}: A \times B \rightarrow\{\mathbf{T}, F\}$ defined over the 2 sets $A, B ;$ e.g., "eats" $: \equiv\{<a, b>\mid$ organism a eats food $b\}$

Domain and Co-domain

- Let R be a binary relation over AxB .
- Domain: Set A
- Co-domain: Set B
- <a,b>ЄR=> aRb
- <a,b> $\not \subset R=>a R b$

Complementary Relations

- Let $R: A \leftrightarrow B$ be any binary relation.
- Then, $R: A \leftrightarrow B$, the complement of R, is the binary relation defined by
$\mathscr{R}: \equiv\{<a, b>\mid(a, b) \notin R\}$
Example: $<=\{(a, b) \mid(a, b) \notin<\}=\{(a, b) \mid \neg a<b\}=\geq$

Inverse/Converse Relations

- Any binary relation $R: A \leftrightarrow B$ has an inverse relation $R^{-1}: B \leftrightarrow A$, defined by

$$
R^{-1}: \equiv\{(b, a) \mid(a, b) \in R\} .
$$

E.g. $<^{-1}=\{(b, a) \mid a<b\}=\{(b, a) \mid b>a\}=>$.

- E.g., if R :People \rightarrow Foods is defined by $a R b \Leftrightarrow a$ eats b, then:
$b R^{-1} a \Leftrightarrow b$ is eaten by a. (Passive voice.)

Relations on a Set

- A (binary) relation from a set A to itself is called a relation on the set A.
- E.g., the "<" relation from earlier was defined as a relation on the set \mathbf{N} of natural numbers.
- The identity relation \mathbf{I}_{A} on a set A is the set $\{(a, a) \mid a \in A\}$.

Representing Relations

- With a zero-one matrix.
- With a directed graph.

Using Zero-One Matrices

- To represent a relation R by a matrix $\mathbf{M}_{R}=\left[m_{i j}\right]$, let $m_{i j}=1$ if $\left(a_{i}, b_{j}\right) \in R$, else 0 .
- $E . g ., A=\{1,2,3\}, B=\{1,2\}$. Let R be the relation from A to B containing (a, b) s.t a is in A and b is in B and $a>b$.
- The 0-1 matrix representation

When $A=B$, we have a square matrix
$M_{R}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right]$

So, what is complement of R ?

- $A=\{1,2,3\}, B=\{1,2\}$. Let R be the relation from A to B containing (a, b) s.t a is in A and b is in B and $a>b$
- Complement of $R=\{(a, b) \mid \operatorname{not}(a>b)\}$

$$
=\{(a, b) \mid a<=b\}
$$

- 0-1 matrix is:

We can obtain by the element wise bit complement of the matrix.

Types of Relations

- Let R be a binary relation on A :
$-R$ is reflexive if $x R x$ for every x in A
$-R$ is irreflexive if $x R x$ for every x in A
$-R$ is symmetric if $x R y$ implies $y R x$ for every x, y in A
$-R$ is antisymmetric if $x R y$ and $y R x$ together imply $x=y$ for every x, y in A
$-R$ is transitive if $x R y$ and $y R z$ imply $x R z$ for every x, y, z in A

Zero-One Reflexive, Symmetric

- These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Symmetric and Anti-symmetric

- A relation R on a set A is called symmetric if $(b, a) \varepsilon R=>(a, b) \varepsilon R$ for all $a, b \varepsilon A$.
- A relation R on a set A is called antisymmetric if $(a, b) \varepsilon R$ and $(b, a) \varepsilon R$ only if $a=b$, for all $a, b \in A$.
- A relation can be both symmetric and antisymmetric.
- A relation can be neither.

Tell what type of relation

$M_{R}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \quad$ (Reflexive, Symmetric)

M_{R}	$=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \quad$ (Neither Reflexive nor irreflexive, Symmetric)
M_{R}	$=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \quad$ (Reflexive, Anti-Symmetric)

Operations on 0-1 Matrix

- Union and Intersection of relations can be obtained by join and meet of the Binary matrices

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{R}_{1} \cup \mathrm{R}_{2}}=\mathrm{M}_{\mathrm{R}_{1}} \vee \mathrm{M}_{\mathrm{R}_{2}} \\
& \mathrm{M}_{\mathrm{R}_{1} \cap \mathrm{R}_{2}}=\mathrm{M}_{\mathrm{R}_{1}} \wedge \mathrm{M}_{\mathrm{R}_{2}}
\end{aligned}
$$

Operations on 0-1 Matrix

$$
M_{R_{1}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

$$
M_{\mathrm{R}_{1} \cup \mathrm{R}_{2}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] M_{\mathrm{R}_{1} \cap \mathbb{R}_{2}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Composition of relations

- $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{S}: \mathrm{B} \rightarrow \mathrm{C}$

$$
\mathrm{S} \circ \mathrm{R}: \mathrm{A} \rightarrow \mathrm{C}
$$

- Suppose, A, B and C have m, n and p elements
- $M_{S}:\left[S_{i j}\right](n x p), M_{R}:\left[r_{i j}\right](m x n), M_{S . R}:\left[t_{i j}\right](m x p)$
- $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right)$ belongs to $\mathrm{S} . \mathrm{R}$ iff there is $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{k}}\right)$ belonging to R and (b_{k}, c_{i}) belonging to S for some k.
- Thus $\mathrm{t}_{\mathrm{ij}}=1$ iff $\mathrm{r}_{\mathrm{ik}}=1$ and $\mathrm{s}_{\mathrm{kj}}=1$, for some k .
- Thus, $\mathrm{M}_{\mathrm{S}, \mathrm{R}}=\mathrm{M}_{\mathrm{R}} \odot \mathrm{M}_{\mathrm{s}}$

Example of composition

$$
\begin{aligned}
& M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] M_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& \mathrm{M}_{\mathrm{S} \mathrm{OR}}=\mathrm{M}_{\mathrm{R}} \odot \mathrm{M}_{\mathrm{S}}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Using Directed Graphs

- A directed graph or digraph $G=\left(V_{G}, E_{G}\right)$ is a set V_{G} of vertices (nodes) with a set $E_{G} \subseteq V_{G} \times V_{G}$ of edges (arcs,links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R: A \leftrightarrow B$ can be represented as a graph $G_{R}=\left(V_{G}=A \cup B\right.$, $\left.E_{G}=R\right)$.

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

Reflexive:
Every node
has a self-loop

Irreflexive:
No node
links to itself

Symmetric:
Every link is
bidirectional

Antisymmetric:
No link is bidirectional

A Question discussed in class

- Does symmetricity and transitivity imply reflexivity?
- Reason of doubt:
- aRb=>bRa (symmetricity)
- This implies aRa (transitivity)
- So, R is reflexive!
- Clarification:

Closure of Relations

Closure?

- Let R be a relation on a set A
- R may or may not have a property P
- Define S, as the relation which has the property P AND
- S contains R AND
- S is the subset of every relation with property P and which contains R
- S is called the closure of R w.r.t P
- Closure may not exist.

Reflexive Closure

- $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $A=\{1,2,3\}$
- Is R reflexive?
- How can we create an S (which is as small as possible) containing R which is reflexive?
- Add (2,2) and (3,3).
- S is reflexive and contains R
- Since, any reflexive relation on A must contain $(2,2)$ and $(3,3)$, all such relations must be a superset of S
- S is hence the reflexive closure.

Generalization

- Define $\Delta=\{(\mathrm{a}, \mathrm{a}) \mid \mathrm{a} \in \mathrm{A}\}$ (Diagonal Relation)
- $\mathrm{S}=\mathrm{R} \cup \Delta$
- S is the reflexive closure of R.

Symmetric Closure

- $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$ on the set $A=\{1,2,3\}$
- Is R symmetric?
- How can we create an S (which is as small as possible) containing R which is symmetric?
- Add (2,1) and (1,3).
- S is symmetric and contains R
- Since, any symmetric relation on A must contain $(2,1)$ and (1,3), all such relations must be a superset of S
- S is hence the symmetric closure.

Generalization

- Define $\mathrm{R}^{-1}=\{(\mathrm{b}, \mathrm{a}) \mid(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$
- $\mathrm{R}=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$
- $\mathrm{R}^{-1}=\{(1,1),(2,1),(2,2),(3,2),(1,3),(2,3)\}$
- $\mathrm{S}=\mathrm{R} \cup \mathrm{R}^{-1}$ $=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)\}$
- S contains R
- All such relations contain S
- Thus, S is the symmetric closure.

Transitive Closure?

- $R=\{(1,3),(1,4),(2,1),(3,2)\}$
- R is not transitive.
- So, add (1,2),(2,3),(2,4),(3,1).
- Does it become transitive?
- No, because say $(3,2)$ and $(2,4)$ are members but not $(3,4)$.
- So, transitive closure is not that easy.

Composition of R with itself : R^{n}

- Let R be a relation on set A
- $a R b=>\{(a, b) \mid(a, b) \in R\}$
- Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$ are defined recursively by:

$$
R^{1}=R \text { and } R^{n+1}=R^{n} \cdot R
$$

- Example: $\mathrm{R}=\{(1,1),(2,1),(3,2),(4,3)\}$ $R^{2}=\{(1,1),(2,1),(3,1),(4,2)\}$

Composition in DAG

- A path from a to b in DAG G, is a sequence of edges $\left(a, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, b\right)$. The path has length n. A path of length $n \geq 1$ that begins and ends at the same vertex is called a circuit or cycle.
- Theorem: Let R be a relation on a set A. There is a path of length n, where n is a positive integer from a to b, iff (a, b) belongs to R^{n}.

Proof

- Base: There is a path from a to b of length 1 , iff (a, b) is in R.
- Induction: Assume theorem is true for n
- There is a path of length $(n+1)$ between a and b, iff there is a path of length 1 between (a, c) and there is a path of length of n between (c, b) for some c.
- Hence, there is such a path iff $(a, c) \in R$ and (c,b) $\in R^{n}$ (inductive hypothesis)
- But there is such an element c iff $(a, b) \in R^{n+1}$

Theorem

- The relation R on a set A is transitive iff

$$
R^{n} \subseteq R
$$

- If part: If R^{2} is a subset of R (special case) then R is transitive
- Else part:
- Trivial proof for $\mathrm{n}=1$
- Assume if R is transitive R^{n} is a subset of R.
- Consider (a,b) $€ R^{n+1}$. Thus, there is an element c st $(a, c) \in R$ and $(c, b) \in R^{n}$. By hypothesis, $(c, b) \in R$.
- But R is transitive, so (a,c) $€ R$ and $(c, b) \in R$ means $(a, b) \in R$

Now lets look at the Problem of Transitive Closure

- Define, the connectivity relation consisting of the pairs (a, b) such that there is a path of length at least one from a to b in R.

$$
R^{+}=\bigcup_{n=1}^{\infty} R^{n}
$$

- Theorem: The connectivity relation is the transitive closure
- Proof:
$-R^{+}$contains R
$-R^{+}$is transitive

To show that R^{+}is the smallest!

- Assume a transitive S containing R
- R^{+}is a subset of S^{+}(as all paths in R are also paths in S)
- Thus, we have
$R^{+} \subseteq S^{+} \subseteq S\left(\right.$ as S is transitive we have $\left.S^{n} \subseteq S\right)$

Lemma

- Let, A be a set with n elements, and let R be a relation on A. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n.
- Thus, the transitive closure is

$$
t(R)=\bigcup_{i=1}^{n} R^{i}
$$

- Proof follows from the fact R^{k} is a subset of $t(R)$

Example

- Find the zero-one matrix of the transitive closure of

Algorithm-1

- Procedure transitiveclosure $\left(M_{R}\right)$
$A=M_{R}, B=A$
for $\mathrm{i}=2$ to n
begin
$A=A \odot B$
$B=B \vee A$
end
B is the answer

Algorithm-2
 (Roy-Warshall algorithm)

- Based on the construction of 0-1 matrices, $\mathrm{W}_{0}, \mathrm{~W}_{1}, \ldots, \mathrm{~W}_{\mathrm{n}}$, where $\mathrm{W}_{0}=\mathrm{M}_{\mathrm{R}}$ (0-1 matrix of the relation).
- Uses the concept of internal vertices of a path: If there is a path (a, b), namely, $\left(a, x_{1}, x_{2}, \ldots x_{m-1}, b\right)$
- Internal vertices: $x_{1}, x_{2}, \ldots x_{m-1}$
- The start vertex is not an internal vertex unless it is visited again, except as a last vertex
- The end vertex is not an internal vertex unless it has been visited before, except as a first vertex

So, what is the trick?

- Construct, $W_{k}=\left[w_{i j}\left({ }^{(k)}\right]\right.$, where $w_{i j}(k)=1$, if there is a path from v_{i} to v_{j} such that all the interior vertices of this path are in the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$, and 0 otherwise.
- $\mathrm{W}_{\mathrm{n}}=\mathrm{M}_{\mathrm{R}}{ }^{*}$. Can you see why?
- But construction of W_{n} is easy than the boolean product of matrices.

Construct W_{k}

- $w_{i j}^{(k)}=1$, if there is a path from v_{i} to v_{j} such that all the interior vertices of this path are in the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, and 0 otherwise.

CASE-1
Internal Nodes from set $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$

Computing W_{k}

- $w_{i j}^{[k]}=w_{i j}^{[k-1]} \vee\left(w_{i k}{ }^{[k-1]} \wedge w_{k j}^{[k-1]}\right)--2$ oper
- Procedure Warshall-transitive-closure $\left(\mathrm{M}_{\mathrm{R}}\right)$
$\mathrm{W}=\mathrm{M}_{\mathrm{R}}$ for $k=1$ to n begin
for $\mathrm{i}=1$ to n
begin
for $\mathrm{j}=1$ to n
$w_{\mathrm{ij}}{ }^{[k]}=\mathrm{w}_{\mathrm{ij}}{ }^{[k-1]} \vee\left(\mathrm{w}_{\mathrm{ik}}{ }^{[k-1]} \wedge \mathrm{w}_{\mathrm{kj}}^{[k-1]}\right)$
end
end
end W is the answer $M_{R}{ }^{+}$

Equivalence Relation

Definition

- Three important characteristics of the notion "equivalence":
- Every element is equivalent to itself (reflexivity)
- If a is equivalent to b, then b is equivalent to a (symmetry)
- If a is equivalent to b, and b is equivalent to c, then a is equivalent to c (transitivity)
- A binary relation R on a set A is an equivalence relation if R is reflexive, symmetric and transitive.

Modular equivalences:
 Congruence Modulo m

- $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid a \equiv b(\bmod m)$
- Reflexive as aRa
- Symmetric:
- If $a R b=>m \mid(a-b)=>(a-b)=k m$, where k is an integer
- Thus, (b-a)=-km=>m|(b-a)=>bRa
- Transitive:
$-a R b=>(a-b)=k_{1} m$
$-b R c=>(b-c)=k_{2} m$
- So, $(a-c)=(a-b)+(b-c)=\left(k_{1}+k_{2}\right) m=>m \mid(a-c)=>a R c$

Equivalence Class

- Let R be an equivalence relation on a set A. The set of all the elements that are related to an element a of A is called the equivalence class of a. It is denoted by $[a]_{R}$. When only one relation is under consideration, one can drop the subscript R .
- $[\mathrm{a}]_{\mathrm{R}}=\{\mathrm{s} \mid(\mathrm{a}, \mathrm{s}) \in \mathrm{R}\}$. Any element in the class can be chosen as the representative element in the class.

Example

- aRb iff a=b or a=-b
- R is an Equivalence relation (exercise)
- What is the equivalence class of an integer a?
- $[a]_{R}=\{-a, a\}$

Example

- What are the equivalence classes of 0 and 1 for congruence modulo 4 ?
- $[0]=\{\ldots,-8,-4,0,4,8, \ldots\}$
- [1]=\{...,-7,-3,1,5,9,...\}
- The equivalence classes are called congruent classes modulo m .

Partitions

- Let R be an equivalence relation on a set
A. These statements are equivalent if:

1. aRb
2. [a]=[b]
3. $[a] \cap[b] \neq \varnothing$

- $1=>2=>3=>1$

Theorem

- Let R be an equivalence relation on set A.

1. For, all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$
2. $U_{x \in A}[x]=A$

Thus, the equivalence classes form a partition of A. By partition we mean a collection of disjoint nonempty subsets of A, that have A as their union.

Why both conditions 1 and 2 are required?

- In the class we had a discussion, saying that is 1 sufficient and does 2 always hold?
- Lets consider the following example:

Define over the set $\mathrm{A}=\left\{\mathrm{y} \mid \mathrm{y} \in \mathrm{I}^{+}\right\}$

$$
\mathrm{R}=\left\{(\mathrm{a}, \mathrm{~b}) \mid \mathrm{b}=\mathrm{a}^{2}\right\} .
$$

Thus $(1,1),(2,4)$ are members of R.

- Consider the class: $[\mathrm{x}]=\{\mathrm{s} \mid(\mathrm{x}, \mathrm{s}) \in \mathrm{R}\}$

Pictographic Representation

- So, we see that we have classes which satisfy property 1
(here for distinct a and b, the intersection of [a] and [b] is always null)
- But the union of the partitions is not the set A. It's a subset of A
- For equivalence classes it is exactly A.

- Property 1 and 2 together define equivalence classes.

Quotient Set

- Let R be an equivalence relation on A . The quotient set, A / R, is the partition $\left\{[a]_{R} \mid a \in A\right\}$. The quotient set is also called A modulo R or the partition of A induced by R.
- Equivalence classes of R form a partition of A. Conversely, given a partition $\left\{\mathrm{A}_{\mathrm{i}} \mathrm{i} \mathrm{El}\right\}$ of A , there is an equivalence relation R that has the sets, A_{i} as its equivalence classes.
- Equivalence relations induce partitions and partitions induce equivalence relations

