
1

Divide and Conquer Algorithms
and

Recurrence Relations

Debdeep Mukhopadhyay

IIT Kharagpur

Divide & Conquer Algorithms

• Many types of problems are solvable by
reducing a problem of size n into some
number a of independent subproblems,
each of size n/b, where a1 and b>1.

• The time complexity to solve such
problems is given by a recurrence
relation:
– T(n) = a·T(n/b) + g(n)

Time to combine the
solutions of the

subproblems into a
solution

of the original problem.
Time for each subproblem

2

Why the name?

• Divide: This step divides the problem into
one or more substances of the same
problem of smaller size

• Conquer: Provides solutions to the bigger
problem by using the solutions of the
smaller problem by some additional work.

Divide and Conquer Examples

• Binary search: Break list into 1 sub-
problem (smaller list) (so a=1) of size
n/2 (so b=2).
– So T(n) = T(n/2)+ 2 (g(n)=c constant)

– g(n)=2, because two comparisons are needed
to conquer. One to decide which half of the
list to use. Second to decide whether any
term in the list remain.

3

Find the maximum and minimum of
a sequence

• If n=1, the number is itself min or max

• If n>1, divide the numbers into two lists.
Decide the min & max in the first list. Then
choose the min & max in the second list.

• Decide the min & max of the entire list.

• Thus,

T(n)=2T(n/2)+2

Fast Multiplication Example

• The ordinary grade-school algorithm takes
Θ(n2) steps to multiply two n-digit numbers.
– Can we do better?

• Let’s find an asymptotically faster algorithm!
• To find the product cd of two 2n-digit base-b

numbers, c=(c2n-1c2n-2…c0)b and
d=(d2n-1d2n-2…d0)b, first, we break c and d in
half:

c=bnC1+C0, d=bnD1+D0

4

))((

)1()(

)(

)1()(

))()((

)(

))((

1001

0011
2

10001101

0011
2

000011111001

0011
2

00100111
2

0101

DDCCb

DCbDCbb

DCDCDCDCb

DCbDCbb

DCDCDCDCDCDCb

DCDCb

DCDCDCbDCb

DDbCCbcd

n

nnn

n

nnn

n

n

nn

nn

















Derivation of Fast Multiplication

Zero

(Multiply out
polynomials)

(Factor last term)

Three multiplications, each with n-digit numbers

Recurrence Rel. for Fast Mult.

Notice that the time complexity T(n) of the
fast multiplication algorithm obeys the
recurrence:

• T(2n)=3T(n)+(n)
i.e.,

• T(n)=3T(n/2)+(n)

So a=3, b=2.

Time to do the needed adds &
subtracts of n-digit and 2n-digit
numbers

5

Solving the R.R

• We have seen some approaches before.
• We shall discuss some more useful

techniques
• Let, n=bk, k is a positive integer

– f(n)=af(n/b)+g(n)
=a2f(n/b2)+ag(n/b)+g(n)
=a3f(n/b3)+a2g(n/b2)+ag(n/b)+g(n)

… =akf(n/bk)+Σk-1ajg(n/bj).
If n=bk, we have f(1) in place of n/bk.

0

Theorem

• Let f be a non-decreasing function satisfying:
f(n)=af(n/b)+c, where n is divisible by b, a≥1, b
is an integer greater than 1, and c is a positive
real number.

• Then

log(), 1
()

(log), 1

b a

b

O n a
f n

O n a

 
 



6

Theorem contd.

• When n=bk, we have further:

log
1 2

1 2

() ,

where (1) /(1), /(1)

b af n C n C

C f c a C c a

 
     

Examples

• f(n)=5f(n/2)+3, f(1)=7. Find f(2k), k is a positive
integer

• f(n)=5kf(1)+3(1+5+52+…+5k-1)

=5kf(1)+3(5k-1)/4 [GP series]

=5k[f(1)+3/4]-3/4

Since, f(n) is a non-decreasing function,

f(n) is . 2log 5()O n

7

Examples

• Estimate the number of searches in Binary
Search

Solve: f(n)=f(n/2)+2

a=1=>f(n)=O(log2n)

• Estimate the number of comparsons to find
the min-max of a sequence (using the algo
previously stated)

Solve: f(n)=2f(n/2)+2

f(n)= 2log 2() ()O n O n

The Master Theorem

Consider a function f(n) that, for all n=bk

for all kZ+,,satisfies the recurrence
relation:

f(n) = af(n/b) + cnd

with a≥1, integer b>1, real c>0, d≥0.
Then:














da

dd

dd

ban

bann

ban

nf
b if)(O

 if)log(O

 if)(O

)(
log

8

Master Theorem Example

• Recall that complexity of fast multiply was:

T(n) = 3T(n/2) + (n)

• Thus, a=3, b=2, d=1. So a > bd, so case 3
of the master theorem applies, so:

which is O(n1.58…), so the new algorithm is
strictly faster than ordinary Θ(n2) multiply!

)(O)(O)(3loglog 2nnnT ab 

