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How to build Pseudorandom 
Permutations?:                     

Luby-Rackoff’s Construction
Debdeep Mukhopadhyay

IIT Kharagpur

Pseudo-random permutation

• A pseudorandom function is an efficient 
function, F: {0,1}kx{0,1}n {0,1}n, such that no 
efficient algorithm A, can distinguish FK(.) from 
R(.) for a randomly chosen key K {0,1}n and a 
random function R:{0,1}n {0,1}n.

•
(.) (.)behaves like KF RA A
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Pseudorandom Permutation

• It is also a permutation.
• Moreover there exists an efficient inverse, PK

-1.
• A pseudorandom permutation is also a 

pseudorandom function.
• Strong pseudorandom permutation: No efficient 

algorithm A can distinguish well between 
<PK(.),PK

-1(.)> from <Π(.), Π-1(.)> for a randomly 
chosen key and random permutation, Π.

1 1(.), (.), (.) behaves like K KP PA A
− −Π Π

Building Pseudorandom 
Permutations

• We can build pseudorandom permutations 
from pseudorandom functions, F

• Define 

• Note that this injective and that does not 
depend whether F is injective or not.

• Note that DF and DF
-1 are efficiently 

computable.
• This construction was originally due to Horst 

Feistel.

( , ) , ( )FD x y y F y x= ⊕
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Is one round Pseudorandom

• No.
• Note that the output contains the right half 

of the input.
• This is extremely unlikely in case of a 

random permutation.
• So, does two rounds work?

Two Feistel Rounds

F

F

+

+

yx

x ^ F(y)

F

F

+

+

yx’

x’ ^ F(y)
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3 Rounds of DES

• 3 rounds of DES is also not pseudo-
random permutation in the strong sense.

• But 4 round DES is a strong 
pseudorandom permutation.

Proof

4 3 2 1

4 3 2 1

K

1 4 i

R

K R

Define P ( ( ( ( )))). Given 4 random functions, 

,..., ,  R :{0,1} {0,1} .
Let, P ( ) ( ( ( ( ))))

First let us reason that: P  and P  are indistinguishable, as 
otherwise F

k k k kF F F F

m m

R R R R

D D D D x

R R R
x D D D D x

=

=< > →
=

 is not pseudorandom.
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Proof:

1 1
R

4 3 2 1

, P ,

2m 2m

0 1 2 3 4

0

1

|Pr[ () 1] Pr[A () 1] | 4
The proof is using a hybrid argument.
Consider the following five algorithms from {0,1} {0,1} :

: pick random keys K ,K ,K , K
(.) ( ( ( (.))))

K K R

K K K K

P P P

F F F F

A

H
H D D D D

H

ε
− −

= − = ≤

→

=
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1
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: pick random keys K ,K ,K  and a random 

function F :{0,1} {0,1}
(.) ( ( ( (.))))

: pick random keys K ,K  and random 

functions F  and F :{0,1} {0,1}
(.) ( ( ( (.))))

: pic

K K K

K K

m m

F F F F

m m

F F F F

H D D D D

H

H D D D D

H

→
=

→
=

3 2 14

4 3 2 1

4

1 2 3

3

4 1 2 3 4

4

k random keys K  and random 

functions F ,F ,F :{0,1} {0,1}
(.) ( ( ( (.))))

: pick random functions F ,F ,F ,F :{0,1} {0,1}
(.) ( ( ( (.))))

K

m m

F F F F

m m

F F F F

H D D D D

H
H D D D D

→
=

→
=

1 1
i 1 1

0

4 

H , ,

Clearly H  gives the first probability of using all pseudorandom 
and H gives the construction using all random functions.
Hence, we know there exists an i for which:

|Pr[A 1] Pr[ 1] |i i iH H HA
− −

+ += − =

1

1 2

Define an algorithm A' using A as follows:
On the first i layers A' picks keys K ,..., .

'  runs the pseudorandom function F using the 
i keys K , ,...,
On the ith layer, the oracle G is run.
For the

i

i

K
A

K K

ε>

 remaining layers a random function is run.
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1
i

G 

H ,

G 

Thus, A' operates on G and has to decide whether G is 
pseudorandom or random.
Note that when G is pseudorandom we have A' behaving 

exactly same as A .

When G is a random function, A' behaves exa

iH −

1
i+1 1H ,

() (.)
K

ctly like A .
Thus, we have:
|Pr [ ' 1] Pr [ ' 1] | ,
which contradicts that F is pseudorandom.

i

k

H

F R
RA A ε

−
+

= − = >

Next Step…
1 1

R

2 2
P , ,

2

2m 2m

Pr[A () 1] Pr[ () 1]
2 2

where :{0,1} {0,1}  is a random permutation.

RP
m m

t tA
− −Π Π= − = ≤ +

Π →

Assume that the algorithm A is non-repeating. 

Introduce one more experiment S(A) that simulates A and 
simulates every oracle query by providing a random answer. 
[Note that the simulated answer from S() may be INCONSISTENT
with a truly random permutation]
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1
2

,
2 1

Let A be a non-repeating algorithm of complexity at most t queries. 
Then 

|Pr[S(A)=1]-Pr[A () 1]
2 m

t−Π Π
+= ≤

1 1

i

Define a transcript a record of all oracle queries, 
<(x , ),...( , ) . The output of the algorithm 
is purely a function of the transcript. 
Define consistent transcript T to be such that 
x

t t

j i j

y x y

x y y

>

= ⇔ = .

1

2 2

2

2 2

2
,

2n 2 2 2

Also note that if the transcript is consistent, then 
Pr[Tr(S)= |Tr(S) is consistent]

2 (2 )!
1 1 2 !1(1 )...(1 )

2 2
1 1 1 (2 )!Pr[ ( ) ] ...

2 (2 1) (2 1) 2 !
That is when the tra

nt n

n

n n

n

n n n

t
t

tTr A
t

σ

σ
−

−

Π Π

−
= =

−
− −

−
= = =

− − +
nscripts are consistent then the experiment S

and  cannot be distinguished.Π
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1

1

1

,

,

,

| Pr[ ( ) 1] Pr[ () 1|
| Pr[ ( ) 1| ( ) is consistent]Pr[ ( ) is consistent]

+ Pr[ ( ) 1| ( ) is inconsistent]Pr[ ( ) is inconsistent]

Pr[ () 1]Pr[ ( ) is consistent]

Pr[ () 1]Pr[ ( )

S A A
S A Tr S Tr S
S A Tr S Tr S

A Tr S

A Tr S

−

−

−

Π Π

Π Π

Π Π

= − =
= =

=

− =

− =
1

1

,

,

 is inconsistent]|

|Pr[ ( ) 1| ( ) is consistent] Pr[ () 1]) Pr[ ( ) is consistent]|

+|Pr[ ( ) 1| ( ) is inconsistent] Pr[ () 1]) Pr[ ( ) is inconsistent]
0+Pr[Tr(S) is inconsistent]

t
=

2

S A Tr S A Tr S

S A Tr S A Tr S

−

−

Π Π

Π Π

≤ = − =

= − =
≤

⎛ ⎞
⎜
⎝

2

2 2 1

1
2 2m m

t
+≤⎟

⎠

1

1

1,

2 2
,

2 1

,

Pr[ () 1] Pr[ ( ) 1]
2 2

Let T consist of all valid transcripts for which the algorithm A 
returns 1. 

| Pr[ () 1] Pr[ ( ) 1] |

| (Pr[ ] Pr[ ( ) ]) |

Let T' T, consist o

R R

R R

P PR R

P P
m m

P P

T

t tA S A

A S A

A S A
τ

τ τ

−

−

−

+

∈

= − = ≤ +

∴ = − =

= ← − ←

⊂

∑

1,

\ '
2 2

2 2 1
\ '

f the consistent transcripts (consistent
with a permutation).

| (Pr[ ] Pr[ ( ) ]) |

1| Pr[ ( ) ] |
2 2 2

P PR R

T T

m m
T T

A S A

t tS A

τ

τ

τ τ

τ

−

∈

+
∈

∴ ← − ←

= ← ≤ =

∑

∑
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i i

0 0
i

th

Bounding the other part will require the details of the 
construction. Fix a transcript (x , ) '. Each x  can be 

written as (L , ). This gets transformed due to the 

4 rounds. After the j  round w

i

i

y T

R

∈

i
j

1 4
1 1 1 3 3 3
1 2 1 2

1 1
i j

1 0 0
i i 1 i
1 0
j j 1

e have (L , ).

Functions F  and F  are said to be good for the transcript 
if (R , ,..., ) and (L , ,..., ) do not have any repeatitions.

What happens when R =R ?

R =L F (R )

R =L F (

i
j

t t

R

R R L L

⊕

⊕ 0
j

0 0 0 0
i j 1 i 1 j

R )

0=L L F (R ) F (R )⇒ ⊕ ⊕ ⊕

0 0
i

0 0 0 0
i

1

The algorithm A is non-repeating, so (L , ) is distinct. 

Note ,  as otherwise L ,  and thus x .
Thus in the above equality the function F  is called at two distinct 
points, thus the out

i

i j i j j

R

R R L x≠ ≠ =

1

1

-m

2
1 1

F i j 1

4 4 4 4
i j 4 i 4 j

2
3 3

F i j

put is randomly chosen. Thus the probability 
of the equality being satisfied is 2  for a given i,j pair. 

Pr [ , [ ],R =R ] .
2

Likewise, 0=R F (L ) F (L )

Pr [ , [ ], =L ]
2

m

m

ti j t

R

ti j t L

+∴ ∃ ∈ ≤

⊕ ⊕ ⊕

∴ ∃ ∈ ≤

1 4

1

2

F , 1 4

.

Thus, Pr [ ,  not good for transcript] .
2F m

tF F

+

≤
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1 4
3 2 1 1
i i i 2 i
3 2 2 1 3
i i 3 i i 3 i

1 3 3 1 3 1
2 i 3 i i i i i

1 3 3 1 3 1
i i 2 i 3 i i i i i

Let us fix a good functions F ,F . We have:
L =R =L F (R )
R =L F (R )=R F (L )

Thus, F (R ),F (L )=(L L ,R R )

Note, (x ,y ) F (R ),F (L )=(L L ,R R )
If we have good functions

⊕

⊕ ⊕

⊕ ⊕

⇔ ⊕ ⊕

1 4
1 3
i i i

-2mt

, F  and F , the values 
 R  and L  are distinct. Thus the occurence of (x , ) 
is independent of i and thus the probability that a particular 
transcript is obtained is exactly 2 .
Note that this i

iy

1
R

s the same as for the algorithm S(A).
Thus in this case we cannot distinguish both the algorithms and 
A is unable to determine whether it is interacting with S(A) 
or (P , ).RP−

1,

1,

'

1 4 1 4
'

2

| (Pr[ ] Pr[ ( ) ]) |

(Pr[ ] | ,  not good for )|)Pr[ ,  not good for ]

t   
2

P PR R

P PR R

T

T

m

A S A

A F F F F

τ

τ

τ τ

τ τ τ

−

−

∈

∈

∴ ← − ←
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≤

∑

∑
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Solve 

• Complete the proof
– time 1/2 hour.
– marks 10


