
1

How to build Pseudorandom
Permutations?:

Luby-Rackoff’s Construction
Debdeep Mukhopadhyay

IIT Kharagpur

Pseudo-random permutation

• A pseudorandom function is an efficient
function, F: {0,1}kx{0,1}n {0,1}n, such that no
efficient algorithm A, can distinguish FK(.) from
R(.) for a randomly chosen key K {0,1}n and a
random function R:{0,1}n {0,1}n.

•
(.) (.)behaves like KF RA A

2

Pseudorandom Permutation

• It is also a permutation.
• Moreover there exists an efficient inverse, PK

-1.
• A pseudorandom permutation is also a

pseudorandom function.
• Strong pseudorandom permutation: No efficient

algorithm A can distinguish well between
<PK(.),PK

-1(.)> from <Π(.), Π-1(.)> for a randomly
chosen key and random permutation, Π.

1 1(.), (.), (.) behaves like K KP PA A
− −Π Π

Building Pseudorandom
Permutations

• We can build pseudorandom permutations
from pseudorandom functions, F

• Define

• Note that this injective and that does not
depend whether F is injective or not.

• Note that DF and DF
-1 are efficiently

computable.
• This construction was originally due to Horst

Feistel.

(,) , ()FD x y y F y x= ⊕

3

Is one round Pseudorandom

• No.
• Note that the output contains the right half

of the input.
• This is extremely unlikely in case of a

random permutation.
• So, does two rounds work?

Two Feistel Rounds

F

F

+

+

yx

x ^ F(y)

F

F

+

+

yx’

x’ ^ F(y)

4

3 Rounds of DES

• 3 rounds of DES is also not pseudo-
random permutation in the strong sense.

• But 4 round DES is a strong
pseudorandom permutation.

Proof

4 3 2 1

4 3 2 1

K

1 4 i

R

K R

Define P (((()))). Given 4 random functions,

,..., , R :{0,1} {0,1} .
Let, P () (((())))

First let us reason that: P and P are indistinguishable, as
otherwise F

k k k kF F F F

m m

R R R R

D D D D x

R R R
x D D D D x

=

=< > →
=

 is not pseudorandom.

5

Proof:

1 1
R

4 3 2 1

, P ,

2m 2m

0 1 2 3 4

0

1

|Pr[() 1] Pr[A () 1] | 4
The proof is using a hybrid argument.
Consider the following five algorithms from {0,1} {0,1} :

: pick random keys K ,K ,K , K
(.) ((((.))))

K K R

K K K K

P P P

F F F F

A

H
H D D D D

H

ε
− −

= − = ≤

→

=

14 3 2

2 14 3

2 3 4

1

1

2 3 4

1 2

2

3

: pick random keys K ,K ,K and a random

function F :{0,1} {0,1}
(.) ((((.))))

: pick random keys K ,K and random

functions F and F :{0,1} {0,1}
(.) ((((.))))

: pic

K K K

K K

m m

F F F F

m m

F F F F

H D D D D

H

H D D D D

H

→
=

→
=

3 2 14

4 3 2 1

4

1 2 3

3

4 1 2 3 4

4

k random keys K and random

functions F ,F ,F :{0,1} {0,1}
(.) ((((.))))

: pick random functions F ,F ,F ,F :{0,1} {0,1}
(.) ((((.))))

K

m m

F F F F

m m

F F F F

H D D D D

H
H D D D D

→
=

→
=

1 1
i 1 1

0

4

H , ,

Clearly H gives the first probability of using all pseudorandom
and H gives the construction using all random functions.
Hence, we know there exists an i for which:

|Pr[A 1] Pr[1] |i i iH H HA
− −

+ += − =

1

1 2

Define an algorithm A' using A as follows:
On the first i layers A' picks keys K ,..., .

' runs the pseudorandom function F using the
i keys K , ,...,
On the ith layer, the oracle G is run.
For the

i

i

K
A

K K

ε>

 remaining layers a random function is run.

6

1
i

G

H ,

G

Thus, A' operates on G and has to decide whether G is
pseudorandom or random.
Note that when G is pseudorandom we have A' behaving

exactly same as A .

When G is a random function, A' behaves exa

iH −

1
i+1 1H ,

() (.)
K

ctly like A .
Thus, we have:
|Pr [' 1] Pr [' 1] | ,
which contradicts that F is pseudorandom.

i

k

H

F R
RA A ε

−
+

= − = >

Next Step…
1 1

R

2 2
P , ,

2

2m 2m

Pr[A () 1] Pr[() 1]
2 2

where :{0,1} {0,1} is a random permutation.

RP
m m

t tA
− −Π Π= − = ≤ +

Π →

Assume that the algorithm A is non-repeating.

Introduce one more experiment S(A) that simulates A and
simulates every oracle query by providing a random answer.
[Note that the simulated answer from S() may be INCONSISTENT
with a truly random permutation]

7

1
2

,
2 1

Let A be a non-repeating algorithm of complexity at most t queries.
Then

|Pr[S(A)=1]-Pr[A () 1]
2 m

t−Π Π
+= ≤

1 1

i

Define a transcript a record of all oracle queries,
<(x ,),...(,) . The output of the algorithm
is purely a function of the transcript.
Define consistent transcript T to be such that
x

t t

j i j

y x y

x y y

>

= ⇔ = .

1

2 2

2

2 2

2
,

2n 2 2 2

Also note that if the transcript is consistent, then
Pr[Tr(S)= |Tr(S) is consistent]

2 (2)!
1 1 2 !1(1)...(1)

2 2
1 1 1 (2)!Pr[()] ...

2 (2 1) (2 1) 2 !
That is when the tra

nt n

n

n n

n

n n n

t
t

tTr A
t

σ

σ
−

−

Π Π

−
= =

−
− −

−
= = =

− − +
nscripts are consistent then the experiment S

and cannot be distinguished.Π

8

1

1

1

,

,

,

| Pr[() 1] Pr[() 1|
| Pr[() 1| () is consistent]Pr[() is consistent]

+ Pr[() 1| () is inconsistent]Pr[() is inconsistent]

Pr[() 1]Pr[() is consistent]

Pr[() 1]Pr[()

S A A
S A Tr S Tr S
S A Tr S Tr S

A Tr S

A Tr S

−

−

−

Π Π

Π Π

Π Π

= − =
= =

=

− =

− =
1

1

,

,

 is inconsistent]|

|Pr[() 1| () is consistent] Pr[() 1]) Pr[() is consistent]|

+|Pr[() 1| () is inconsistent] Pr[() 1]) Pr[() is inconsistent]
0+Pr[Tr(S) is inconsistent]

t
=

2

S A Tr S A Tr S

S A Tr S A Tr S

−

−

Π Π

Π Π

≤ = − =

= − =
≤

⎛ ⎞
⎜
⎝

2

2 2 1

1
2 2m m

t
+≤⎟

⎠

1

1

1,

2 2
,

2 1

,

Pr[() 1] Pr[() 1]
2 2

Let T consist of all valid transcripts for which the algorithm A
returns 1.

| Pr[() 1] Pr[() 1] |

| (Pr[] Pr[()]) |

Let T' T, consist o

R R

R R

P PR R

P P
m m

P P

T

t tA S A

A S A

A S A
τ

τ τ

−

−

−

+

∈

= − = ≤ +

∴ = − =

= ← − ←

⊂

∑

1,

\ '
2 2

2 2 1
\ '

f the consistent transcripts (consistent
with a permutation).

| (Pr[] Pr[()]) |

1| Pr[()] |
2 2 2

P PR R

T T

m m
T T

A S A

t tS A

τ

τ

τ τ

τ

−

∈

+
∈

∴ ← − ←

= ← ≤ =

∑

∑

9

i i

0 0
i

th

Bounding the other part will require the details of the
construction. Fix a transcript (x ,) '. Each x can be

written as (L ,). This gets transformed due to the

4 rounds. After the j round w

i

i

y T

R

∈

i
j

1 4
1 1 1 3 3 3
1 2 1 2

1 1
i j

1 0 0
i i 1 i
1 0
j j 1

e have (L ,).

Functions F and F are said to be good for the transcript
if (R , ,...,) and (L , ,...,) do not have any repeatitions.

What happens when R =R ?

R =L F (R)

R =L F (

i
j

t t

R

R R L L

⊕

⊕ 0
j

0 0 0 0
i j 1 i 1 j

R)

0=L L F (R) F (R)⇒ ⊕ ⊕ ⊕

0 0
i

0 0 0 0
i

1

The algorithm A is non-repeating, so (L ,) is distinct.

Note , as otherwise L , and thus x .
Thus in the above equality the function F is called at two distinct
points, thus the out

i

i j i j j

R

R R L x≠ ≠ =

1

1

-m

2
1 1

F i j 1

4 4 4 4
i j 4 i 4 j

2
3 3

F i j

put is randomly chosen. Thus the probability
of the equality being satisfied is 2 for a given i,j pair.

Pr [, [],R =R] .
2

Likewise, 0=R F (L) F (L)

Pr [, [], =L]
2

m

m

ti j t

R

ti j t L

+∴ ∃ ∈ ≤

⊕ ⊕ ⊕

∴ ∃ ∈ ≤

1 4

1

2

F , 1 4

.

Thus, Pr [, not good for transcript] .
2F m

tF F

+

≤

10

1 4
3 2 1 1
i i i 2 i
3 2 2 1 3
i i 3 i i 3 i

1 3 3 1 3 1
2 i 3 i i i i i

1 3 3 1 3 1
i i 2 i 3 i i i i i

Let us fix a good functions F ,F . We have:
L =R =L F (R)
R =L F (R)=R F (L)

Thus, F (R),F (L)=(L L ,R R)

Note, (x ,y) F (R),F (L)=(L L ,R R)
If we have good functions

⊕

⊕ ⊕

⊕ ⊕

⇔ ⊕ ⊕

1 4
1 3
i i i

-2mt

, F and F , the values
 R and L are distinct. Thus the occurence of (x ,)
is independent of i and thus the probability that a particular
transcript is obtained is exactly 2 .
Note that this i

iy

1
R

s the same as for the algorithm S(A).
Thus in this case we cannot distinguish both the algorithms and
A is unable to determine whether it is interacting with S(A)
or (P ,).RP−

1,

1,

'

1 4 1 4
'

2

| (Pr[] Pr[()]) |

(Pr[] | , not good for)|)Pr[, not good for]

t
2

P PR R

P PR R

T

T

m

A S A

A F F F F

τ

τ

τ τ

τ τ τ

−

−

∈

∈

∴ ← − ←

≤ ←

≤

∑

∑

11

Solve

• Complete the proof
– time 1/2 hour.
– marks 10

