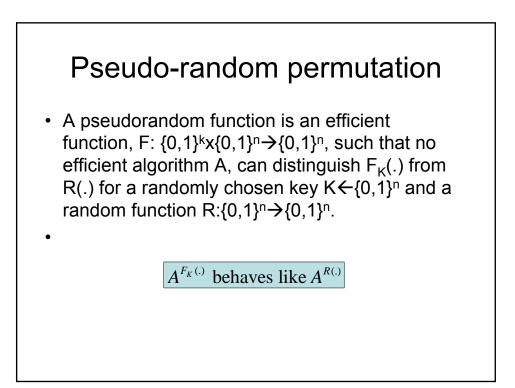
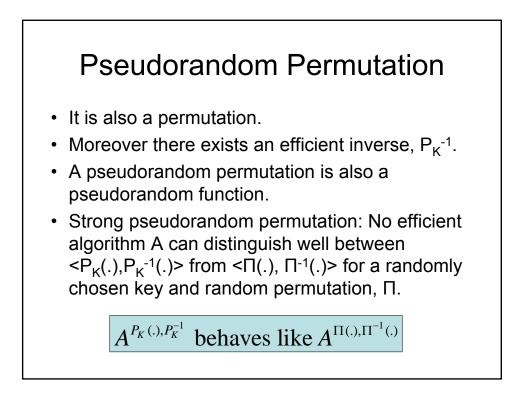
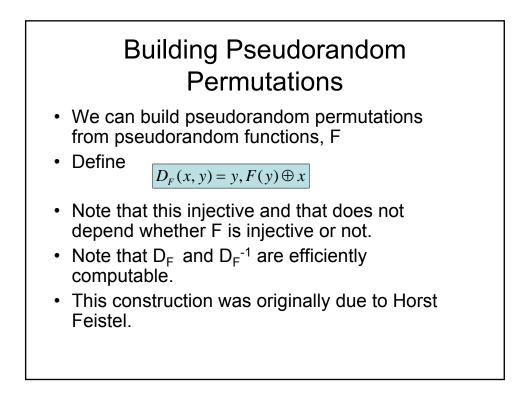
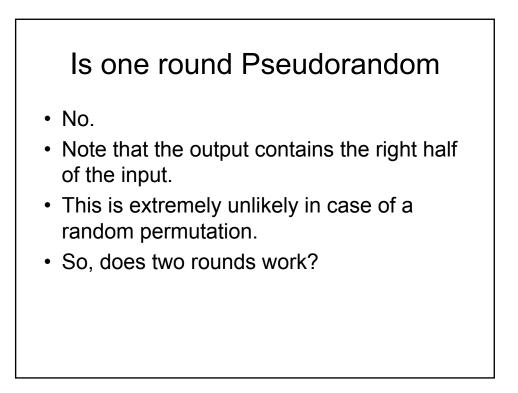
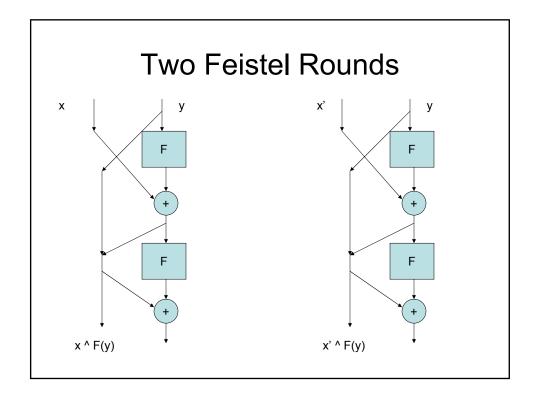
How to build Pseudorandom Permutations?: Luby-Rackoff's Construction Debdeep Mukhopadhyay IIT Kharagpur





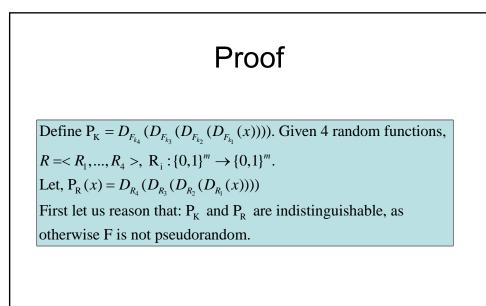




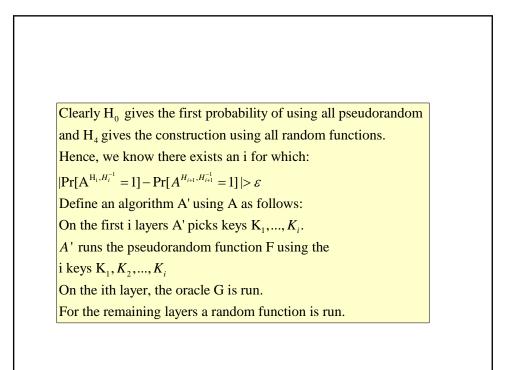


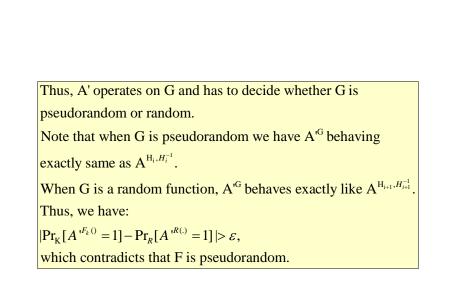
3 Rounds of DES

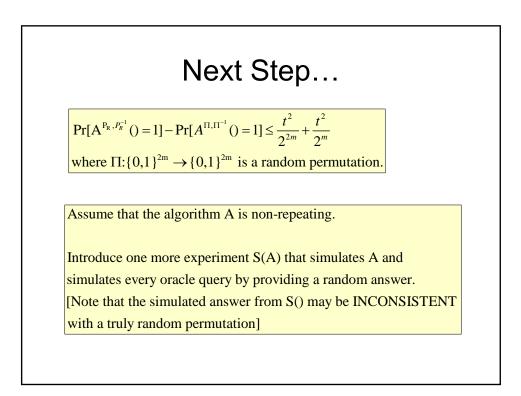
- 3 rounds of DES is also not pseudorandom permutation in the strong sense.
- But 4 round DES is a strong pseudorandom permutation.

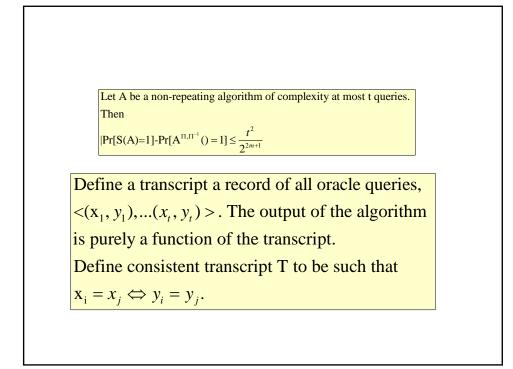


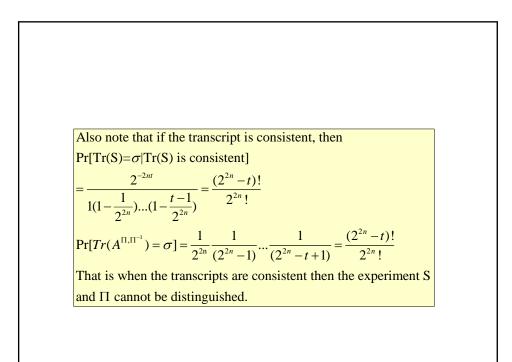
Proof:	$ \Pr[A^{P_{k},P_{k}^{-1}}()=1]-\Pr[A^{\Pr_{k},P_{k}^{-1}}()=1] \le 4\varepsilon$
	The proof is using a hybrid argument.
	Consider the following five algorithms from $\{0,1\}^{2m} \rightarrow \{0,1\}^{2m}$:
	H_0 : pick random keys K_1, K_2, K_3, K_4
	$H_0(.) = D_{F_{K_4}}(D_{F_{K_3}}(D_{F_{K_2}}(D_{F_{K_1}}(.))))$
	H_1 : pick random keys K_2, K_3, K_4 and a random
	function $F_1: \{0,1\}^m \to \{0,1\}^m$
	$H_1(.) = D_{F_{K_4}}(D_{F_{K_3}}(D_{F_{K_2}}(D_{F_1}(.))))$
	H_2 : pick random keys K_3, K_4 and random
	functions F_1 and $F_2 : \{0,1\}^m \to \{0,1\}^m$
	$H_2(.) = D_{F_{K_4}}(D_{F_{K_3}}(D_{F_2}(D_{F_1}(.))))$
	H_3 : pick random keys K_4 and random
	functions $F_1, F_2, F_3 : \{0,1\}^m \to \{0,1\}^m$
	$H_3(.) = D_{F_{K_4}}(D_{F_3}(D_{F_2}(D_{F_1}(.))))$
	H_4 : pick random functions $F_1, F_2, F_3, F_4 : \{0,1\}^m \rightarrow \{0,1\}^m$
	$H_4(.) = D_{F_4}(D_{F_3}(D_{F_2}(D_{F_1}(.))))$











 $|\Pr[S(A) = 1] - \Pr[A^{\Pi,\Pi^{-1}}() = 1|$ $= |\Pr[S(A) = 1 | Tr(S) \text{ is consistent}] \Pr[Tr(S) \text{ is consistent}]$ $+\Pr[S(A) = 1 | Tr(S) \text{ is inconsistent}] \Pr[Tr(S) \text{ is inconsistent}]$ $-\Pr[A^{\Pi,\Pi^{-1}}() = 1]\Pr[Tr(S) \text{ is consistent}]$ $= \Pr[S(A) = 1 | Tr(S) \text{ is consistent}] - \Pr[A^{\Pi,\Pi^{-1}}() = 1])\Pr[Tr(S) \text{ is consistent}]|$ $+|\Pr[S(A) = 1 | Tr(S) \text{ is inconsistent}] - \Pr[A^{\Pi,\Pi^{-1}}() = 1])\Pr[Tr(S) \text{ is inconsistent}]$ $\leq 0 + \Pr[\operatorname{Tr}(S) \text{ is inconsistent}]$ $= \left(\frac{t}{2}\right)\frac{1}{2^{2m}} \leq \frac{t^2}{2^{2m+1}}$

$$\begin{aligned} &\Pr[A^{p_{R},p_{R}^{-1}}()=1] - \Pr[S(A)=1] \leq \frac{t^{2}}{2^{2m+1}} + \frac{t^{2}}{2^{m}} \\ &\text{Let T consist of all valid transcripts for which the algorithm A returns 1.} \\ &\therefore |\Pr[A^{p_{R},p_{R}^{-1}}()=1] - \Pr[S(A)=1]| \\ &= |\sum_{\tau \in T} (\Pr[A^{p_{R},p_{R}^{-1}} \leftarrow \tau] - \Pr[S(A) \leftarrow \tau])| \\ &\text{Let T'} \subset \text{T, consist of the consistent transcripts (consistent with a permutation).} \\ &\therefore |\sum_{\tau \in T \setminus T'} (\Pr[A^{p_{R},p_{R}^{-1}} \leftarrow \tau] - \Pr[S(A) \leftarrow \tau])| \\ &= |\sum_{\tau \in T \setminus T'} \Pr[S(A) \leftarrow \tau]| \leq \frac{t^{2}}{2} \frac{1}{2^{2m}} = \frac{t^{2}}{2^{2m+1}} \end{aligned}$$

Bounding the other part will require the details of the construction. Fix a transcript $(x_i, y_i) \in T'$. Each x_i can be written as (L_i^0, R_i^0) . This gets transformed due to the 4 rounds. After the jth round we have (L_j^i, R_j^i) . Functions F_i and F_4 are said to be good for the transcript if $(R_1^1, R_2^1, ..., R_i^1)$ and $(L_1^3, L_2^3, ..., L_i^3)$ do not have any repeatitions. What happens when $R_i^1 = R_j^1$? $R_i^1 = L_i^0 \oplus F_1(R_i^0)$ $R_j^1 = L_j^0 \oplus F_1(R_j^0)$ $\Rightarrow 0 = L_i^0 \oplus L_j^0 \oplus F_1(R_i^0) \oplus F_1(R_j^0)$

The algorithm A is non-repeating, so (L_i^0, R_i^0) is distinct. Note $R_i^0 \neq R_j^0$, as otherwise $L_i^0 \neq L_j^0$, and thus $x_i = x_j$. Thus in the above equality the function F_1 is called at two distinct points, thus the output is randomly chosen. Thus the probability of the equality being satisfied is 2^{-m} for a given i,j pair. $\therefore \Pr_{F_1}[\exists i, j \in [t], R_i^1 = R_j^1] \leq \frac{t^2}{2^{m+1}}$. Likewise, $0 = R_i^4 \oplus R_j^4 \oplus F_4(L_i^4) \oplus F_4(L_j^4)$ $\therefore \Pr_{F_1}[\exists i, j \in [t], L_i^3 = L_j^3] \leq \frac{t^2}{2^{m+1}}$. Thus, $\Pr_{F_1, F_4}[F_1, F_4 \text{ not good for transcript}] \leq \frac{t^2}{2^m}$. Let us fix a good functions F_1, F_4 . We have: $L_i^3 = R_i^2 = L_i^1 \oplus F_2(R_i^1)$ $R_i^3 = L_i^2 \oplus F_3(R_i^2) = R_i^1 \oplus F_3(L_i^3)$ Thus, $F_2(R_i^1), F_3(L_i^3) = (L_i^3 \oplus L_i^1, R_i^3 \oplus R_i^1)$ Note, $(x_i, y_i) \Leftrightarrow F_2(R_i^1), F_3(L_i^3) = (L_i^3 \oplus L_i^1, R_i^3 \oplus R_i^1)$ If we have good functions, F_1 and F_4 , the values R_i^1 and L_i^3 are distinct. Thus the occurence of (x_i, y_i) is independent of i and thus the probability that a particular transcript is obtained is exactly 2^{-2ntt} . Note that this is the same as for the algorithm S(A). Thus in this case we cannot distinguish both the algorithms and A is unable to determine whether it is interacting with S(A) or (P_R, P_R^{-1}) .

$$\begin{aligned} & \left| \sum_{\tau \in T'} (\Pr[A^{p_{R}, p_{R}^{-1}} \leftarrow \tau] - \Pr[S(A) \leftarrow \tau]) \right| \\ & \leq \sum_{\tau \in T'} (\Pr[A^{p_{R}, p_{R}^{-1}} \leftarrow \tau] | F_{1}, F_{4} \text{ not good for } \tau)|) \Pr[F_{1}, F_{4} \text{ not good for } \tau] \\ & \leq \frac{t^{2}}{2^{m}} \end{aligned}$$

Solve

- Complete the proof
 - time 1/2 hour.
 - marks 10