How to build Pseudorandom Permutations?: Luby-Rackoff's Construction Debdeep Mukhopadhyay IIT Kharagpur

Pseudo-random permutation

- A pseudorandom function is an efficient function, $F:\{0,1\}^{\mathrm{k}} x\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$, such that no efficient algorithm A, can distinguish $F_{K}($.$) from$ $R($.$) for a randomly chosen key \mathrm{K} \leftarrow\{0,1\}^{\mathrm{n}}$ and a random function $R:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.
-

$A^{F_{K}(.)}$ behaves like $A^{R(.)}$

Pseudorandom Permutation

- It is also a permutation.
- Moreover there exists an efficient inverse, $\mathrm{P}_{\mathrm{K}}{ }^{-1}$.
- A pseudorandom permutation is also a pseudorandom function.
- Strong pseudorandom permutation: No efficient algorithm A can distinguish well between $<P_{K}(),. P_{K}{ }^{-1}()>$. from $<\Pi(),. \Pi^{-1}()>$. for a randomly chosen key and random permutation, Π.

$$
A^{P_{K}(\cdot), P_{K}^{-1}} \text { behaves like } A^{\Pi(), \Pi^{-1}(\cdot)}
$$

Building Pseudorandom Permutations

- We can build pseudorandom permutations from pseudorandom functions, F
- Define

$$
D_{F}(x, y)=y, F(y) \oplus x
$$

- Note that this injective and that does not depend whether F is injective or not.
- Note that D_{F} and $D_{F}{ }^{-1}$ are efficiently computable.
- This construction was originally due to Horst Feistel.

Is one round Pseudorandom

- No.
- Note that the output contains the right half of the input.
- This is extremely unlikely in case of a random permutation.
- So, does two rounds work?

Two Feistel Rounds

3 Rounds of DES

- 3 rounds of DES is also not pseudorandom permutation in the strong sense.
- But 4 round DES is a strong pseudorandom permutation.

Proof

```
Define \(\mathrm{P}_{\mathrm{K}}=D_{F_{k_{4}}}\left(D_{F_{k_{3}}}\left(D_{F_{k_{2}}}\left(D_{F_{k_{1}}}(x)\right)\right)\right.\) ). Given 4 random functions,
\(R=<R_{1}, \ldots, R_{4}>, \mathrm{R}_{\mathrm{i}}:\{0,1\}^{m} \rightarrow\{0,1\}^{m}\).
Let, \(\mathrm{P}_{\mathrm{R}}(x)=D_{R_{4}}\left(D_{R_{3}}\left(D_{R_{2}}\left(D_{R_{1}}(x)\right)\right)\right)\)
First let us reason that: \(\mathrm{P}_{\mathrm{K}}\) and \(\mathrm{P}_{\mathrm{R}}\) are indistinguishable, as otherwise F is not pseudorandom.
```

$$
\begin{array}{|l}
\left|\operatorname{Pr}\left[A^{P_{k}, P_{K_{K}}^{-1}}()=1\right]-\operatorname{Pr}\left[\mathrm{A}^{P_{R_{2}}, P_{R}^{-1}}()=1\right]\right| \leq 4 \varepsilon \\
\text { The proof is using a hybrid argument. } \\
\text { Consider the following five algorithms from }\{0,1\}^{2 \mathrm{~m}} \rightarrow\{0,1\}^{2 \mathrm{~m}}: \\
H_{0}: \text { pick random keys } \mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4} \\
H_{0}(.)=D_{F_{K_{4}}}\left(D_{F_{K_{3}}}\left(D_{F_{K_{2}}}\left(D_{F_{K_{1}}}(.)\right)\right)\right) \\
H_{1}: \text { pick random keys } \mathrm{K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4} \text { and a random } \\
\text { function } F_{1}:\{0,1\}^{m} \rightarrow\{0,1\}^{m} \\
H_{1}(.)=D_{F_{K_{4}}}\left(D_{F_{K_{3}}}\left(D_{F_{K_{2}}}\left(D_{F_{1}}(.)\right)\right)\right) \\
H_{2}: \text { pick random keys } \mathrm{K}_{3}, \mathrm{~K}_{4} \text { and random } \\
\text { functions } F_{1} \text { and } \mathrm{F}_{2}:\{0,1\}^{m} \rightarrow\{0,1\}^{m} \\
H_{2}(.)=D_{F_{K_{4}}}\left(D_{F_{K_{3}}}\left(D_{F_{2}}\left(D_{F_{1}}(.)\right)\right)\right) \\
H_{3}: \text { pick random keys } \mathrm{K}_{4} \text { and random } \\
\text { functions } F_{1}, F_{2}, \mathrm{~F}_{3}:\{0,1\}^{m} \rightarrow\{0,1\}^{m} \\
H_{3}(.)=D_{F_{K_{4}}}\left(D_{F_{3}}\left(D_{F_{2}}\left(D_{F_{1}}(.)\right)\right)\right) \\
H_{4}: \text { pick random functions } F_{1}, F_{2}, \mathrm{~F}_{3}, \mathrm{~F}_{4}:\{0,1\}^{m} \rightarrow\{0,1\}^{m} \\
H_{4}(.)=D_{F_{4}}\left(D_{F_{3}}\left(D_{F_{2}}\left(D_{F_{1}}(.)\right)\right)\right) \\
\hline
\end{array}
$$

Clearly H_{0} gives the first probability of using all pseudorandom and H_{4} gives the construction using all random functions.
Hence, we know there exists an i for which:
$\left|\operatorname{Pr}\left[\mathrm{A}^{\mathrm{H}_{\mathrm{i}}, H_{i}^{-1}}=1\right]-\operatorname{Pr}\left[A^{H_{i+1}, H_{i+1}^{-1}}=1\right]\right|>\varepsilon$
Define an algorithm A^{\prime} using A as follows:
On the first i layers A^{\prime} picks keys $\mathrm{K}_{1}, \ldots, K_{i}$.
A^{\prime} runs the pseudorandom function F using the
i keys $\mathrm{K}_{1}, K_{2}, \ldots, K_{i}$
On the ith layer, the oracle G is run.
For the remaining layers a random function is run.

Thus, A' operates on G and has to decide whether G is pseudorandom or random.

Note that when G is pseudorandom we have $\mathrm{A}^{\text {G }}$ behaving exactly same as $\mathrm{A}^{\mathrm{H}_{i}, H_{i}^{-1}}$.

When G is a random function, $A^{I G}$ behaves exactly like $A^{H_{i+1}, H_{i+1}^{-1}}$. Thus, we have:
$\left|\operatorname{Pr}_{\mathrm{K}}\left[A^{{ }^{F_{k}} 0}=1\right]-\operatorname{Pr}_{\mathrm{R}}\left[A^{1 R(.)}=1\right]\right|>\varepsilon$,
which contradicts that F is pseudorandom.

Next Step...

$\operatorname{Pr}\left[\mathrm{A}^{\mathrm{P}_{\mathrm{R}}, P_{R}^{-1}}()=1\right]-\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1\right] \leq \frac{t^{2}}{2^{2 m}}+\frac{t^{2}}{2^{m}}$
where $\Pi:\{0,1\}^{2 \mathrm{~m}} \rightarrow\{0,1\}^{2 \mathrm{~m}}$ is a random permutation.

Assume that the algorithm A is non-repeating.

Introduce one more experiment $S(A)$ that simulates A and simulates every oracle query by providing a random answer.
[Note that the simulated answer from S() may be INCONSISTENT with a truly random permutation]
Let A be a non-repeating algorithm of complexity at most t queries.
Then
$\operatorname{Pr}[S(A)=1]-\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1\right] \leq \frac{t^{2}}{2^{2 m+1}}$

Define a transcript a record of all oracle queries, $<\left(\mathrm{x}_{1}, y_{1}\right), \ldots\left(x_{t}, y_{t}\right)>$. The output of the algorithm is purely a function of the transcript.
Define consistent transcript T to be such that $\mathrm{x}_{\mathrm{i}}=x_{j} \Leftrightarrow y_{i}=y_{j}$.

> Also note that if the transcript is consistent, then
> $\operatorname{Pr}[\operatorname{Tr}(\mathrm{S})=\sigma \mid \operatorname{Tr}(\mathrm{S})$ is consistent $]$
> $=\frac{2^{-2 n t}}{1\left(1-\frac{1}{2^{2 n}}\right) \ldots\left(1-\frac{t-1}{2^{2 n}}\right)}=\frac{\left(2^{2 n}-t\right)!}{2^{2 n}!}$
> $\operatorname{Pr}\left[\operatorname{Tr}\left(A^{\Pi, \Pi^{-1}}\right)=\sigma\right]=\frac{1}{2^{2 n}} \frac{1}{\left(2^{2 n}-1\right)} \ldots \frac{1}{\left(2^{2 n}-t+1\right)}=\frac{\left(2^{2 n}-t\right)!}{2^{2 n}!}$

That is when the transcripts are consistent then the experiment S and Π cannot be distinguished.

$$
\begin{aligned}
& \mid \operatorname{Pr}[S(A)=1]-\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1 \mid\right. \\
& =\mid \operatorname{Pr}[S(A)=1 \mid \operatorname{Tr}(S) \text { is consistent }] \operatorname{Pr}[\operatorname{Tr}(S) \text { is consistent }] \\
& +\operatorname{Pr}[S(A)=1 \mid \operatorname{Tr}(S) \text { is inconsistent }] \operatorname{Pr}[\operatorname{Tr}(S) \text { is inconsistent }] \\
& -\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1\right] \operatorname{Pr}[\operatorname{Tr}(S) \text { is consistent }] \\
& -\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1\right] \operatorname{Pr}[\operatorname{Tr}(S) \text { is inconsistent }] \mid \\
& \left.\leq \mid \operatorname{Pr}[S(A)=1 \mid \operatorname{Tr}(S) \text { is consistent }]-\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1\right]\right) \operatorname{Pr}[\operatorname{Tr}(S) \text { is consistent }] \mid \\
& \left.+\mid \operatorname{Pr}[S(A)=1 \mid \operatorname{Tr}(S) \text { is inconsistent }]-\operatorname{Pr}\left[A^{\Pi, \Pi^{-1}}()=1\right]\right) \operatorname{Pr}[\operatorname{Tr}(S) \text { is inconsistent }] \\
& \leq 0+\operatorname{Pr}[\operatorname{Tr}(S) \text { is inconsistent }] \\
& =\binom{\mathrm{t}}{2} \frac{1}{2^{2 m}} \leq \frac{t^{2}}{2^{2 m+1}}
\end{aligned}
$$

$$
\operatorname{Pr}\left[A^{P_{R}, P_{R}^{-1}}()=1\right]-\operatorname{Pr}[S(A)=1] \leq \frac{t^{2}}{2^{2 m+1}}+\frac{t^{2}}{2^{m}}
$$

Let T consist of all valid transcripts for which the algorithm A returns 1.
$\therefore\left|\operatorname{Pr}\left[A^{P_{R}, P_{R}^{-1}}()=1\right]-\operatorname{Pr}[S(A)=1]\right|$
$=\left|\sum_{\tau \in T}\left(\operatorname{Pr}\left[A^{P_{R}, P_{R}^{-1}} \leftarrow \tau\right]-\operatorname{Pr}[S(A) \leftarrow \tau]\right)\right|$
Let $\mathrm{T}^{\prime} \subset \mathrm{T}$, consist of the consistent transcripts (consistent with a permutation).
$\therefore\left|\sum_{\tau \in T \backslash T^{\prime}}\left(\operatorname{Pr}\left[A^{P_{R}, P_{R}^{-1}} \leftarrow \tau\right]-\operatorname{Pr}[S(A) \leftarrow \tau]\right)\right|$
$=\left|\sum_{\tau \in T \backslash T^{\prime}} \operatorname{Pr}[S(A) \leftarrow \tau]\right| \leq \frac{t^{2}}{2} \frac{1}{2^{2 m}}=\frac{t^{2}}{2^{2 m+1}}$

Bounding the other part will require the details of the construction. Fix a transcript $\left(\mathrm{x}_{\mathrm{i}}, y_{i}\right) \in T^{\prime}$. Each x_{i} can be written as $\left(\mathrm{L}_{\mathrm{i}}^{0}, R_{i}^{0}\right)$. This gets transformed due to the 4 rounds. After the $\mathrm{j}^{\text {th }}$ round we have $\left(\mathrm{L}_{\mathrm{j}}^{\mathrm{i}}, R_{j}^{i}\right)$.

Functions F_{1} and F_{4} are said to be good for the transcript if $\left(\mathrm{R}_{1}^{1}, R_{2}^{1}, \ldots, R_{t}^{1}\right)$ and $\left(\mathrm{L}_{1}^{3}, L_{2}^{3}, \ldots, L_{t}^{3}\right)$ do not have any repeatitions. What happens when $R_{i}^{1}=R_{j}^{1}$?
$\mathrm{R}_{\mathrm{i}}^{1}=\mathrm{L}_{\mathrm{i}}^{0} \oplus \mathrm{~F}_{1}\left(\mathrm{R}_{\mathrm{i}}^{0}\right)$
$R_{j}^{1}=L_{j}^{0} \oplus F_{1}\left(R_{j}^{0}\right)$
$\Rightarrow 0=\mathrm{L}_{\mathrm{i}}^{0} \oplus \mathrm{~L}_{\mathrm{j}}^{0} \oplus \mathrm{~F}_{1}\left(\mathrm{R}_{\mathrm{i}}^{0}\right) \oplus \mathrm{F}_{1}\left(\mathrm{R}_{\mathrm{j}}^{0}\right)$

The algorithm A is non-repeating, so $\left(\mathrm{L}_{\mathrm{i}}^{0}, R_{i}^{0}\right)$ is distinct.
Note $R_{i}^{0} \neq R_{j}^{0}$, as otherwise $\mathrm{L}_{i}^{0} \neq L_{j}^{0}$, and thus $\mathrm{x}_{\mathrm{i}}=x_{j}$.
Thus in the above equality the function F_{1} is called at two distinct points, thus the output is randomly chosen. Thus the probability of the equality being satisfied is $2^{-\mathrm{m}}$ for a given i,j pair.
$\therefore \operatorname{Pr}_{\mathrm{F}_{1}}\left[\exists i, j \in[t], \mathrm{R}_{\mathrm{i}}^{1}=\mathrm{R}_{\mathrm{j}}^{1}\right] \leq \frac{t^{2}}{2^{m+1}}$.
Likewise, $0=\mathrm{R}_{\mathrm{i}}^{4} \oplus R_{\mathrm{j}}^{4} \oplus \mathrm{~F}_{4}\left(\mathrm{~L}_{\mathrm{i}}^{4}\right) \oplus \mathrm{F}_{4}\left(\mathrm{~L}_{\mathrm{j}}^{4}\right)$
$\therefore \operatorname{Pr}_{\mathrm{F}_{1}}\left[\exists i, j \in[t], L_{\mathrm{i}}^{3}=\mathrm{L}_{\mathrm{j}}^{3}\right] \leq \frac{t^{2}}{2^{m+1}}$.
Thus, $\operatorname{Pr}_{\mathrm{F}_{1}, F_{4}}\left[F_{1}, F_{4}\right.$ not good for transcript $] \leq \frac{t^{2}}{2^{m}}$.

Let us fix a good functions $\mathrm{F}_{1}, \mathrm{~F}_{4}$. We have:
$\mathrm{L}_{\mathrm{i}}^{3}=\mathrm{R}_{\mathrm{i}}^{2}=\mathrm{L}_{\mathrm{i}}^{1} \oplus \mathrm{~F}_{2}\left(\mathrm{R}_{\mathrm{i}}^{1}\right)$
$\mathrm{R}_{\mathrm{i}}^{3}=\mathrm{L}_{\mathrm{i}}^{2} \oplus \mathrm{~F}_{3}\left(\mathrm{R}_{\mathrm{i}}^{2}\right)=\mathrm{R}_{\mathrm{i}}^{1} \oplus \mathrm{~F}_{3}\left(\mathrm{~L}_{\mathrm{i}}^{3}\right)$
Thus, $\mathrm{F}_{2}\left(\mathrm{R}_{\mathrm{i}}^{1}\right), \mathrm{F}_{3}\left(\mathrm{~L}_{\mathrm{i}}^{3}\right)=\left(\mathrm{L}_{\mathrm{i}}^{3} \oplus \mathrm{~L}_{\mathrm{i}}^{1}, \mathrm{R}_{\mathrm{i}}^{3} \oplus \mathrm{R}_{\mathrm{i}}^{1}\right)$
Note, $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \Leftrightarrow \mathrm{F}_{2}\left(\mathrm{R}_{\mathrm{i}}^{1}\right), \mathrm{F}_{3}\left(\mathrm{~L}_{\mathrm{i}}^{3}\right)=\left(\mathrm{L}_{\mathrm{i}}^{3} \oplus \mathrm{~L}_{\mathrm{i}}^{1}, \mathrm{R}_{\mathrm{i}}^{3} \oplus \mathrm{R}_{\mathrm{i}}^{1}\right)$
If we have good functions, F_{1} and F_{4}, the values
$\mathrm{R}_{\mathrm{i}}^{1}$ and $\mathrm{L}_{\mathrm{i}}^{3}$ are distinct. Thus the occurence of $\left(\mathrm{x}_{\mathrm{i}}, y_{i}\right)$
is independent of i and thus the probability that a particular transcript is obtained is exactly $2^{-2 \mathrm{mt}}$.
Note that this is the same as for the algorithm S(A).
Thus in this case we cannot distinguish both the algorithms and
A is unable to determine whether it is interacting with $\mathrm{S}(\mathrm{A})$ or ($\mathrm{P}_{\mathrm{R}}, P_{R}^{-1}$).

$$
\begin{aligned}
& \therefore\left|\sum_{\tau \in T^{\prime}}\left(\operatorname{Pr}\left[A^{P_{R}, P_{R_{R}^{-1}}^{-1}} \leftarrow \tau\right]-\operatorname{Pr}[S(A) \leftarrow \tau]\right)\right| \\
& \left.\leq \sum_{\tau \in T^{\prime}}\left(\operatorname{Pr}\left[A^{p_{R} P_{R_{1}}^{-1}} \leftarrow \tau\right] \mid F_{1}, F_{4} \text { not good for } \tau\right) \mid\right) \operatorname{Pr}\left[F_{1}, F_{4} \text { not good for } \tau\right] \\
& \leq \frac{\mathrm{t}^{2}}{2^{m}}
\end{aligned}
$$

Solve

- Complete the proof
- time 1/2 hour.
- marks 10

