One Way Functions

Amit Suthar 05CS3016
Amar Patel 05CS3017

Computer Science and Engineering Department
Indian Institute of Kharagpur, Kharagpur
West Bengal, 721302
India

Contents

1 Introduction

1.1 OneWay Function e

2 Types of One Way Functions

2.1 Strong One Way Function.
2.2 WeakOne Way Function
2.3 Hardness Amplication
2.4 Aninstance of a Hardness Amplication problem

2.5 Proofof Claim e

Chapter 1

Introduction

1.1 One Way Function

A one-way function is a mathematical function that is significantly easier to compute in one direction (the
forward direction) than in the opposite direction (the inverse direction).It might be possible, for example, to
compute the function in the forward direction in seconds but to compute its inverse could take months or

years, if at all possible.

Informally, a function f is a one-way function if

1. The description of f is publicly known and does not require any secret information for its operation.
2. Given z, it is easy to compute f(z).

3. Given y, in the range of f, it is hard to find an x such that f(z) = y. More precisely, any efficient

algorithm solving a P-problem succeeds in inverting f with negligible probability.

The existence of one-way functions is an open conjecture. In fact, their existence would imply P =
NP, resolving the foremost unsolved question of computer science. This is easy to show by showing the
contrapositive: if P = N P, then I'P = F'N P, and so any function that can be computed in polynomial time
can be inverted in polynomial time, since there is a simple FNP algorithm that inverts it by nondeterministi-
cally enumerating all possible inputs. However, it is not known whether P = N P implies the existence of

one-way functions, mainly because of the worst-case hardness vs. average-case hardness distinction.

For example, it is conjectured, but not proved, that the following are one-way functions:

1. Factoring problem: f(p, q) = pq, for randomly chosen primes p,q.

2. Discrete logarithm problem: f(p, g,x) =< p, g, g*(modp) >for g a generator of Z_p* for some prime
.

3. Discrete root extraction problem: f(p,q,e,y) =< pq,e,y*(modpq) >, for y in Zpq)*, e in Z_(pq)
and relatively prime to (p — 1)(¢ — 1), and p,q primes. This is the function commonly known as RSA

encryption.
4. Subset sum problem: f(a,b) =< sum_(i = 1)n)a_ib_i,b >, fora_iin0, 1, and n-bit integers b_i.

5. Quadratic residue problem.

The existence of a one-way function implies the existence of many other useful cryptographic primi-

tives, including:

* Pseudorandom number generators;

* Pseudorandom function families;

* Bit commitment schemes;

* Private-key encryption schemes secure against adaptive chosen-ciphertext attack;
* Message authentication codes;

* Digital signature schemes (secure against adaptive chosen-message attack.

A trapdoor one-way function is a one-way function for which the inverse direction is easy given a

certain piece of information (the trapdoor), but difficult otherwise.

Chapter 2

Types of One Way Functions

There are two types of one way functions namely weak one way functions and strong one way functions

2.1 Strong One Way Function

A Strong One-Way function is a function which is easy to compute and can be inverted only with a negligible

probability on a random input or it is hard to invert on all but a negligible fraction of inputs.

Definition 1. A function f : {0,1}* — {0, 1}* is called strongly one way if two condition hold

1. easy to compute: There exists a polynomial-time algrithm, A, so that on input x algorithm A outputs

f(x) (i.e fix)=A(x)).

2. hard to invert: For every probabilistic polynomial-time algorithm A/,every polynomial p() , and all
sufficently large n’s

2.2 Weak One Way Function

A Weak One-Way function is a function which is easy to compute and slightly hard to invert for random

inputs or easy to invert on some non-negligible fraction of the inputs.
Definition 2. A function f : {0,1}"™ — {0, 1}" is called weak one-way, if

f is a polynomial-time computable function

there exists a polynomial p(.), for every probabilistic polynomial-time algorithm A, and all sufficiently large n's

Pr(A'(f(@)) € f ' f(2)) < 1 - -
where x is chosen uniformly in 0, 1™ and the probability is also over the internal coin flaps of A flops

Example Integer Factoring

Consider f(z,y) = z.y
Easy to compute
Is it one-way?
No: if f(z,y) is even can set inverse as (f(x,y)/2,2)
If factoring a number into prime factors is hard
Specially given N = P.Q, the product of two random large (n-bit) primes, it is hard to factor

Then somewhat hard - there are a non-negligible fraction of such numbers 1//n? from the density of primes.

Hence a weak one-way function.

2.3 Hardness Amplication

Given: a function f that is guaranteed to be a weak one-way Let p(n) be such that
Pr(A'(f(@)) € F ' f(2) < 1 - o

Can we construct a function that is Strong one-way ?

2.4 An instance of a Hardness Amplication problem

Simple idea: repetition.

For some polynomial q(n) define

9(1'1,1'2, ~~~7xq(n)) = f(xl)a f(xQ)a ceey f(xq(n))
To invert g need to succeed in inverting f in all ¢(n) places
If q(n) = p2(n) seems unlikely (1 — 1/p(n))?2("™) is approximately equal to e?("")

To prove : Let f : {0,1}* — {0,1}* be a weak OWF. Then there exists a polynomial t(n), such that
for input length m, the following function: g(x1, xa,,...,Zm) = f(x1)f(z2)... f(x) is a strong OWF.

Proof by contradiction: We assume that g is not strongly one-way

Proeqoapn[Ag(@)) € 971 (9(2)] > 5y

Goal: To construct A’ that uses A to invert with probability > 1- ﬁ ; that is violate the weak one-wayness.

A repeat procedure I below 2nmp(n) times:

Procedure I

fori:«— 1to4

Select uniformly and independently a sequence of strings z1, 3, , , , Z,, € {0,1}"
Compute:

(Zla 22y 5 Zm) = A(f(.’l,'1>7 IR f(xl - 1)7 Y, f(ml + 1)a IR) f(xﬂ’L))

If f(z;) =y ; halt and output y.

We define:
Good =x: Pr[I(f(z)) € [~ (f(z))] > m
Bad = otherwise.

Claim: Pr[z;isGood] > 1 — %

We first prove the claim by contradiction as follows.

2.5 Proof of Claim

PriA(g(z1,x2,, ..., Tm))succeeds] = Pr[A(g(z1, x2, , ..., Tm) Succeeds A IBadx;]
+ Pr[A(g(x1,xa,, ..., Tm))succeeds A Vi, x;isGood)]

a) Pr{A(g(z1, 2, , ..., Tm))succeeds A IBadx;)

<>, PrlA(g(xy, @2, , ..., 2y)succeeds N\ Bad;]

<D Y weBad PrlA(g(zy, z2,, ..., xm)) succeed A x; = x]

=3 Y wepaa Privi = 2] Pr[A(g(x1, 22, , ..., om)) | 2 = 2]

<> Prmaz[A(g(x1, 22, , ..., xp)) succeed when z; is Bad]

< Zl Pry,q.[1 succeed in inverting f(z;) when x; is Bad]

1 _ 1
S Mmptny = 2p(m)

b) PrlA(g(z1, 22, , ..., Tm))succeeds A Vi, z;isGood)
< PriVi, z;isGood)

<(1- Qq%n))™ [if we contradict the claim]
=(1- %)2”‘1(”) [putting m = 2nq(n)]

~ L
N

cPrlA(g(zy, o2,y oy)) Succeed] < 2p%n) + L

This contradicts the fact that A is successful against g.

o Pr[ziisGood] > 1 — m

and Pr[z;isBad] < #(n)

Finally,
Pr[A’ (f(x) fails]
=Pr[A’(f(x) fails | x is Good]Pr[x is Good]+Pr[A’(f(x) fails | x is Bad]Pr[x is Bad]
Pr[A,(f(x) fails | x is Good]+Pr[x is Bad]
We know, Pr[x is Bad] < %
Pr[A’ (f(x)) fails | x is Good] ~
Pr[A:(f(x) fails] < & + 5oty & 5o
Pr[A (f(x) succeeds] > 1 — ﬁ

This contradicts the weak one-wayness of f(x).

