
One Way Functions and Hard Core Predicates

Mainack Mondal , Anup Kumar Bhattacharya

February 16, 2009

1 Introduction

In this chapter we shall study One Way functions (OWF s) and hard core
Predicates (HP s), their formal definitions and some properties. Some concepts
and definitions from the previous chapters are extensively used here and so they
are defined below for recapitulation.

1.1 Adversary

We model the attacker or adversary as a probabilistic polynomial time algorithm
or PPT.

1.2 Concept of Security

Informally an encryption scheme is secure if for each adversary A and for every
polynomial p(.) , there exist a ‘N’ such that ,

Pr(A succeeds in the attack) <
1

p(n)
, ∀ n > N

1.3 Semantic Security or (t, ε- SS )

∀ distribution X over {0, 1}n
∀ partial information h : {0, 1}n → {0, 1}n
∀ interesting information f : {0, 1}n → {0, 1}
∀ Adversary A with time complexity t′ < t(n) , t(n) =

∑
tdnd

∃ Simulating algorithm S such that ,

Pr
m

U←−{0,1}n

(pk,sk)← Gn

[A(E(m, pk),pk,h(m)) = f(m)] ≤ Pr
m

U←−{0,1}n

[S(h(m)) = f(m)] + ε(n)

Where ε(n) is a negligible quantity.
then E (.) is called semantically (t,ε) secure or ((t,ε) − SS)

1



1.4 Message Indistinguishability or (t, ε - MI)

∀ messages m0,m1 ∈ {0, 1}
n

∀ Adversary A with time complexity t′ < t(n) , t(n) =
∑

tdnd

Pr
i∈{0,1}

(pk,sk)← Gn

[A(E(mi, pk),pk) = i] ≤ 1
2+ ε(n)

Where ε(n) is a negligible quantity.
then E (.) is called (t,ε) MI secure or ((t,ε) − MI)
Another equivalent definition of (t, 2ε)−MI will be used frequently

Pr
m0,m1

U←−{0,1}n

(pk,sk)← Gn

[A(E(m1, pk),pk) = a] − Pr
m0,m1

U←−{0,1}n

(pk,sk)← Gn

[A(E(m0, pk),pk) = a] ≤ 2ε(n)

1.5 n

The security parameter, for example the key length.

1.6 ε(n)

A negligible quantity. Formally speaking a sequence {εn}n∈N(respectively a
function ε(n) : N→ R ) is called negligible in n if for every positive polynomial
p(.) and all sufficiently large n ,

ε(n) <
1

p(n)

1.7 Uniformly Chosen

If a n bit message m is chosen with uniform probability from {0,1}n then m is
defined to be uniformly or randomly chosen and represented symbolically as

m
U←− {0, 1}n

2 One way functions

2.1 One way functions: Motivation

In secure encryption schemes, the legitimate users should be able to easily de-
cipher the messages using some special information, yet it should be infeasible
for an adversary who does not have that special piece of information.
Here one should understand that the term ‘infeasible’ or equivalently ‘computa-
tionally hard ’ is in the average sense of the word, not in the worst case scenario
and so we cannot devise ‘secure’ encryption schemes with every NP complete
problems which are essentially hard in the worst case but may not be so in the
average case.

2



Hence the existence of secure encryption schemes implies the existence of a PPT
algorithm to generate instances with special information such that

a. It is easy to solve these instances with the special information.
b. It is hard, on average to solve these instances without the special
information.

The foregoing definition gives rise to the concept of one way function which
loosely speaking is easy to compute but hard to invert on average.

2.2 One way functions: Definition

The definition given in this section is called the definition of a strong one way
function and is the most popular one.

A function f : {0,1}* −→ {0,1}* is called strongly one way if the following
two conditions hold :

1. Easy to Compute: ∃ deterministic polynomial time algorithm A such that
on input x , A outputs f(x) , i.e.

A(x) = f(x) (1)

2. Hard to invert : ∀ PPT algorithm A′ ,∀ positive polynomial p(.) and ∀
sufficiently large n ,

Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] <
1

p(n)
(2)

Next we present some explanations useful for understanding the definition.

2.2.1 Un

A random variable which is uniformly distributed over {0, 1}n . So the prob-
ability is taken over all possible values of Un. We can also denote Un by an
equivalent uniformly distributed random variable X.

2.2.2 f−1(f(Un))

A′ need not to output any specific preimage of f(X).Any element y ∈ f−1(f(X))
will be fine. Although if f(X) is bijective then y will be unique.

2.2.3 1n

In addition to the function value we also give the length of the desired output
in unary notation , namely 1n . The main reason is to set the variable based on
which the complexity will be measured. (that is to define the ‘n’ in the notation
O (f(n))).
Otherwise one may drastically shrink the input and claim it will be a one way
function just for the reason that any algorithm that computes the preimage runs
in exponential time complexity w.r.t. the output size. To stop that we pass the

3



desired size and define the complexity of the adversary w.r.t. that.

Example:
Consider the function f(x) = y , where x ∈ {0, 1}n and
y = binary representation of the length of x
= binary representation of |x|
So, |f(x)| = log2|x|

Given f(x) one can compute the preimage quite easily.
Namely, f−1(f(x)) 3 0|x| = 02|f(x)|

this trivial construction requires exponential time complexity w.r.t the size
of f(x) but linear time complexity w.r.t. size of x.
Thus passing 1|x| stops this function to claim itself an OWF. �

Note in the special case of length preserving functions i.e. where

|f(x)| = |x|

This particular information is redundant.
Thus if f in the definition 2.2 is bijective, length preserving and X is a uniformly
distributed random variable over {0, 1}n then equation (2) reduces to the fact
that f will be called a strong OWF if ∀ PPT algorithm A′ and all sufficiently
large n

Pr[A′(f(X)) = X] < ε(n) (3)

ε(n) is a negligible quantity using formal notions.

3 Trapdoor One Way Permutation

3.1 Trapdoor One Way Permutation: Motivation

From the discussion in the section 2 we can infer that OWF satisfy the require-
ment of a function which is easy to compute but hard to invert. But to build a
secure encryption scheme one should also generate the special information that
will help the legitimate user to invert the function efficiently, otherwise in the
scheme the legitimate user will also be at the same stand as that of adversary.

This special and secret information known to the legitimate user and not to
the adversary is called trap door information and based on that we define the
trap door one way permutations in the next section which effectively touches
the holy grail of providing a secure encryption scheme.

4



3.2 Trapdoor One Way Permutation: Informal Definition

The triplet of algorithms (G, F, I) is called a family of trapdoor permutations
where,

G generates the pair (k, tk) which is the key - trapdoor information pair ,
F(., k) is a bijective function
I(., k , tk) gives the inverse of F (., k)
Such that all the G,F,I are deterministic polynomial time algorithm
And also ∀ PPT algorithm A′ , ∀ positive polynomial p(n) and a uniformly
distributed random variable X over {0, 1}n , there exists a N such that

Pr[A′(f(X), k) = X] <
1

p(n)
,∀n > N (4)

The term permutation comes from the fact that F is bijective and hence F
is nothing but a permutation of inputs.

3.3 An Example of Trapdoor One Way Permutation: RSA

In RSA,
F : f(x) = xemodpq

p, q are odd primes.

We know efficient deterministic O((log pq)3) algorithms to compute f(x)
from x but there exist no known efficient method to compute x given f(x) , e,
and N (= pq)

Now if the information

d = e−1mod((p− 1)(q − 1))

is given its easy to compute x from f(x) .
We can model this decryption algorithm as I

Hence RSA is a strong candidate for trap door one way permutation.

4 Hard Core Predicates

4.1 Hard Core Predicates: Motivation

Saying that a function f is one way implies that given f(x) it is hard to extract
the preimage of f(x), but it may be easy to retrieve some information about x
from the knowledge of f(x). So one should not use these ‘Unsafe’ information
for encryption purpose.

Also there may be (or intuitively should be) some information or rather
Boolean predicates related to x which are hard to compute from f(x) which
makes f−1(f(x)) hard to get from f(x).

Informally this hard to get information can be considered as hard core pred-
icate or hp for the OWF f

5



4.2 Hard Core Predicates: Definition

A polynomial time computable predicate B : {0, 1}n−→ {0,1} is called a hard
core of a function f if ∀ PPT algorithm A′ , ∀ positive polynomial p(.) there
exist a N such that ∀ n > N

Pr[A′(f(X)) = B(X)] ≤ 1
2

+
1

p(n)
(5)

Where X is distributed uniformly over {0, 1}n

We call the hardcore predicate (t, ε )-hp iff ∀ PPT algorithm A′ with running
time t’ = t(n)=

∑
tdn

d ,we have

Pr[A′(f(X)) = B(X)] ≤ 1
2

+ ε(n) (6)

here ε(n) is a negligible quantity.

4.3 Hard Core Predicates for Trap Door Permutation

A polynomial time algorithm B : {0,1}* × {0,1}* −→ {0,1} is called the hard
core of the one way trapdoor permutation (G, F, I) if ∀ PPT algorithm A′ and
∀ positive polynomial p(.), ∃ N such that ,∀n > N

Pr[A′(F (X, k), k) = B(X, k)] ≤ 1
2

+
1

p(n)
(7)

or equivalently ,

Pr[A′(F (X, k), k) = B(X, k)] ≤ 1
2

+ ε(n) (8)

here ε(n) is a negligible quantity.

4.4 Hard Core Predicate: Examples

4.4.1 Example 1

Let X U←−{0, 1}n , X =Σ xi2i and Given f is some very good OWF. Now prove
or disprove the following statement

Since we can never get any information about x from f(x) hence the
following predicate is a hp for any OWF f

B(X) = x1 ⊕ x2 ⊕ ...⊕ xn

Solution:
Let us consider a OWF f(X) for which B is a hp. Now construct another
function g(X) as follows

6



g(X) = f(X)||
n
⊕
i=1

xi

this is also a OWF but at the same time B is not a hp for g, since we can just
output the last bit of g as the predicate B.
Hence the claim is false. �

4.4.2 Example 2

Consider the one way trapdoor permutation RSA where

F : f(x) = xemod pq

p, q are odd primes, X ∈ {0, 1}*

Claim:The predicate

B(x, n) =
((x

n

)
+ 1
)
mod 2

is not an hp for RSA where ( .
.

)
= jacobi symbol

Proof
By property of RSA n = pq , p,q, are odd primes
Thus ϕ(n) = (p− 1)(q− 1) = even number
Since gcd (e , ϕ(n)) = 1
Hence e is odd

So
(
m
n

)e =
(
m
n

)
, ∀m,n

⇒
(
y
n

)
=
(
xe

n

)
=
(
x
n

)e
=
(
x
n

)
Consider the algorithm,

A’(f(x),n){
return (

[((
f(x)
n

)
+ 1
)
mod2

]
);

}

Thus, Pr [A’ (f(x),n) = B(x, n)] = 1 > 1
2+ ε(n) ∀ ε(n)

Hence by definition (8)
B is not a hp for RSA �

Finding a predicate which is not a hp for RSA except Jacobi symbol is a non
trivial research problem.

7



4.4.3 Example 3

Theorem: the predicate

B(x, n) = x mod 2, i.e. lsb of x

And the predicate
B′(x, n) = msb of x

Are both hard core predicates for RSA.

Proof
We shall not give a full proof of this claim which can already be found in
literature. Instead we make some assumptions and show that based on those if
B and B′ are not hp for RSA then RSA is not an OWF that is f can be inverted
easily without the secret information.
We shall make use of the following lemma and give its proof after this theorem.

lsb (2x mod n) = msb (x mod n)

here n = pq , p, q are odd primes and without loss of generality x < n
let B is not an hp , moreover there exist some PPT algorithm A such that

Pr[A(f(x), n) = B(x, n)] = 1 (9)

Consider the algorithm,

A′(f(x),n){
return [A((f(x) ×2e),n)];

}

By the lemma A(f(2x), n) = B′(x ,n)

now, f(2x)
= (2x)e mod n
= 2e×f(x) mod n

Hence , A′(f(x) ,n)
= A (f(x) ×2e,n)
= A(f(2x),n)
= B’(x,n)

Using the fact that x U←− {0, 1}n ⇒ 2x U←− {0, 1}n and equation (9)

8



Pr[A′(f(x), n) = B′(x, n)] = 1

We can easily see that,

A′[f(x),n] = 0 ⇒ x ∈
[
0, n2

)
A′[f(2x),n] = 0 ⇒ x ∈

[
0, n4

)⋃ [
n
2 ,

3n
4

)
and in general,

A′[f(2ix),n] = 0 ⇒ x ∈
2i−1⋃
j=0

[
jn
2i ,

2j+1
2i+1 n

)
Hence we can device a binary search which shall call A′O(log n) times and
compute x from f(x), Let the search algorithm is called A′′.

Then,
Pr[A′′(f(x), n) = x] = 1 > ε(n), ∀ε(n)

Which contradicts the fact that RSA is a OWF.
Hence B and B′ is hp. �

Proof of the lemma:

If 0 ≤ x < n
2 , msb(x) = 0

and then 0 ≤ 2x < n
=⇒ 2x mod n = 2x
=⇒ (2x mod n) mod 2 = 0
=⇒ lsb(2x) = 0 for 0 ≤ x < n

2
=⇒lsb(2x) = msb(x),for 0 ≤ x < n

2

If n
2 ≤ x < n, msb (x) = 1

also 0 ≤ 2x −n < n − 2
hence, 2x mod n = 2x - n
now, n = pq , p and q are odd, so n is odd
=⇒ (2x - n) is odd
=⇒ (2x - n) mod 2 = 1
=⇒ (2x mod n) mod 2 = 1
=⇒ lsb(2x) = msb(x) for n

2 ≤ x < n

combining , for 0 ≤ x < n, lsb(2x) = msb(x) �

9



5 Goldwasser Michelle Encryption Scheme

Now we ask the question which is quite natural at this point , why bother about
hp ? Can we make any use of them? Can we make any encryption scheme with
them? The answer is yes and the scheme is a pretty good one.
We first state the encryption scheme to encrypt one bit given a OWF and its
hp .We analyse the security of the scheme and extend our results to multiple
bits.

5.1 Encryption of one bit using hp

5.1.1 Algorithm

Given is a family of trapdoor permutations (G,F,I) and a hard core predicate
B(X,k) for F .Here we want to encrypt a bit b which is the secret information.

SCHEME((G,F,I),B,b) {

/*** key generation ***/

1. Generate the pair (k, tk) using G

/*** Encryption EGM (b, k) ***/

1. pick X U←− {0, 1}n

2. return (F(X, k), b⊕B(X, k))

/*** Decryption DGM (c,F(X,k)) ***/

1. X = I[F(X,k),tk]

2. return(c ⊕ B(X, k))

}

5.1.2 Example

Consider RSA as the trapdoor one way permutation and B(X, k) = X mod 2
as the hp for RSA.
Thus for encrypting the bit ‘b’ the encrypted output is

{Xe mod N, b⊕X mod 2}

10



5.1.3 Security Analysis

Theorem: GM encryption scheme for single bit i.e. EGM is MI secure.

Proof
Suppose the encryption scheme is not (t, ε) - MI secure,
So ∃ a PPT algorithm A′ such that

Pr
b∈{0,1}

(pk,sk)← Gn

X
U←−{0,1}n

[A(F(X, k),b⊕ B(X, k), k) = b] > 1
2+ ε(n)

Consider the following algorithm A′

A′(y, k){

1. pick random c ∈ {0, 1}

2. return (c ⊕A(y, c, k))

}

So, Pr
X

U←−{0,1}n

[A′(F (X, k), k) = B(X, k)]

= Pr
c∈{0,1}

(pk,sk)←Gn

X
U←−{0,1}n

[A(F(X, k), c, k) = B(X, k)⊕ c] > 1
2 + ε(n)

Since A′ is a PPT algorithm just as A .So B is not a hp according to definition.
This is a contradiction.
Hence the primary assumption was wrong.
Hence EGM is MI secure.
Hence proved �

5.2 Encryption of multiple bits using hp

5.2.1 Algorithm

Given is a family of trapdoor permutations (G,F,I) and a hard core predicate
B(X, k) for F .Here we encrypt the n bit message m (= m[1]m[2]....m[n] )

SCHEME((G,F,I), B, m) {

/*** key generation ***/

1. Generate the pair (k, tk) using G

11



/*** Encryption E′GM (m,k) ***/

for( i = 1 to n ) {

1. pick X U←− {0, 1}n

2. return (F(X,k),m[i]⊕B(X,k))

}

/*** Decryption D′GM (d,F(X,k)) ***/

for( i = 1 to n ) {

1. X = I[F(X,k),tk]

2. return (d[i] ⊕B(X,k))

}
}

5.2.2 Security Analysis

Theorem:GM encryption scheme for multiple bits is MI secure.

Proof
Suppose the multiple bit encryption scheme is not MI secure, then using the
alternative definition of (t,2ε)- MI from definition 1.4
∃ PPT A and ∃ m,m′ ∈ {0, 1}n such that

Pr[A(E′GM (m, k), k) = 1]− Pr[A(E′GM (m′, k), k) = 1] > 2ε(n) (10)

consider the following hybrid construction

Pr[A(EGM (m[1]))(EGM (m[2]))....(EGM (m[n])) = 1] = p1

Pr[A(EGM (m′[1]))(EGM (m[2]))....(EGM (m[n])) = 1] = p2

Pr[A(EGM (m′[1]))(EGM (m′[2]))....(EGM (m[n])) = 1] = p3

.

.

.

.
Pr[A(EGM (m′[1]))(EGM (m′[2]))....(EGM (m′[n])) = 1] = pn

where EGM is the single bit GM encryption
and E′GM is the multiple bit GM encryption

12



Hence from (10)
p1 − pn > 2ε(n)

⇒
n−1∑
i=1

(pi − pi+1) > 2ε(n)

⇒ ∃ l such that (pl − pl+1) > 2ε(n)
n

which translates to

Pr[A(EGM (m′[1]))(EGM (m′[2]))....
...(EGM (m′[l]))(EGM (m[l + 1]))...(EGM (m[n])) = 1]

− Pr[A(EGM (m′[1]))(EGM (m′[2]))..
.........(EGM (m′[l]))(EGM (m′[l + 1]))...(EGM (m[n])) = 1] > 2ε(n)

n

now consider the algorithm A′,

A′(c, k){
compute, c1 = EGM(m[1])

c2 = EGM(m[2])
.
.

cl = EGM(m[l])
cl+2 = EGM(m[l + 2])

.

.
cn = EGM(m[n])

return A(c1c2c3...clccl+2...cn)
}

clearly A’ is a PPT algorithm , and

Pr[A′(EGM (m[l + 1]), k) = 1]− Pr[A′(EGM (m′[l + 1]), k) = 1]

= Pr[A(EGM (m′[1]))(EGM (m′[2]))....
...(EGM (m′[l]))(EGM (m[l + 1]))...(EGM (m[n])) = 1]

− Pr[A(EGM (m′[1]))(EGM (m′[2]))..
.........(EGM (m′[l]))(EGM (m′[l + 1]))...(EGM (m[n])) = 1]

> 2ε(n)
n

⇒ Pr[A′(EGM (m[l + 1]), k) = 1]− Pr[A′(EGM (m′[l + 1]), k) = 1] > 2ε(n)
n

Hence by definition 1.4 EGM or single bit encryption is not MI secure which is a
direct contradiction to the theorem 5.1.3 which was proved independent of this
theorem.
Hence the assumption was wrong and multiple bit GM encryption is MI secure.�

13



6 A hp for any one way function: Goldrich Levin
theorem

As we have seen in example 4.4.1 that to define a hp given any OWF is not
an easy task. But at the same time the natural question that comes to us is
there any such predicate exists given an OWF in the first place. The answer is
positive and our next and last result of this chapter, the Goldrich Levin theorem
of the G-L theorem states just that.

6.1 G-L Theorem

Informal statement
Given (G,F,I) a family of trapdoor permutations, define (G,F ′, I ′),another fam-
ily of trapdoor permutations as

I ′((z, r), tk) = I((z, tk), r)

F ′((x, r), k) = F ((x, k), r)

then the inner product of x and r mod 2 i.e.

B(x, r) =
n
⊕
i = 1

xiri

is a hard core predicate for (G,F ′, I ′)

Formal statement
Let F be an arbitrary strong one-way function, and let G be defined by G(x, r) =
(F (x), r),where |x|= |r |.Let B(x, r) denote the inner product mod 2 of the bi-
nary vectors x and r.Then the predicate B is a hard-core of the function G.

We would like to point out some interesting aspects of this theorem.

1. The immediate question that comes to anybody what is r and where does
it come from ? The answer is that just be content thinking of r as a
random string over {0, 1}n .

So, the theorem translates to the fact that if F is strongly one-way, then
it is infeasible to guess the exclusive-OR (XOR) of a random subset of the
bits of x when given F(x) and the subset itself .Because when r is random

B(x, r) =
n
⊕
i=1

xiri just represents the xor of random bits of x.

2. We stress that the theorem requires that F be strongly one-way and that
the conclusion is false if F is only weakly one-way.

3. G is also strongly one-way. We point out that G maintains other properties
of F, such as being length-preserving and being one-to-one.

14



We prove this theorem using its contrapositive,namely if there is an algorithm
that can compute B(x, r) from only the knowledge of (F (x), r) with a high prob-
ability, then there will be some algorithm which computes x from the knowledge
of F (x) only ,with a high probability, i.e. F (x) is not a strong OWF in that
case.For providing insight into the proof we provide three stages of the proof,
in each stage we lower the probability bound for the algorithm that computes
B(x, r) from only the knowledge of (F (x), r) .But before we state all these
proofs we would like to state and prove some very important results in proba-
bility which will be proven really helpful not only in this chapter but also in the
coming lessons.

6.2 Important results from probability

6.2.1 Markov Inequality

Let X be a non-negative random variable and v a real number. Then

Pr[X ≥ v] ≤ E(X)
v

Proof
E(X) =

∑
x

Pr[X = x].x

≥
∑
x<v

Pr[X = x].0 +
∑
x≥v

Pr[X = x].v

= Pr[X = x].v

⇒ Pr[X ≥ v] ≤ E(X)
v �

6.2.2 Chebyshev’s Inequality

Let X be a random variable and δ > 0, Then

Pr[|X − E(X)| ≥ δ] ≤ V ar(X)
δ2

Proof:
Define a new random variable Y = (X − E(X))2 Using Markov’s inequality

Pr[Y ≥ δ2] ≤ E(Y )
δ2

⇒ Pr[(X − E(X))2 ≥ δ2] ≤ E((X−E(X))2)
δ2

⇒ Pr[|X − E(X)| ≥ δ] ≤ V ar(X)
δ2 Since,V ar(X) = E

(
(X − E(X))2

)
�

15



6.2.3 Chernoff Bound

Let X1, X2, ..., Xn be independent 0-1 random variables, so that Pr[Xi = 1] = p
for each i . Then for all ε, 0 < ε ≤ p (1 - p),and all p ≤ 1

2 we have

Pr


∣∣∣∣∣∣∣∣

n∑
i=1

Xi

n
− p

∣∣∣∣∣∣∣∣ > ε

 < 2.e−
ε2

2p(1−p) .n

6.3 Proof of G-L Theorem: Case 1

6.3.1 Statement

If F is an OWF then there is no such PPT algorithm A for which

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] = 1

Proof
We have a PPT algorithm A such that

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] = 1

We define another algorithm A’ as follows

A′(F (x)) {

e1 = 000.....01
e2 = 000.....10

.
en = 100.....00

for (i = 1 to n)

return(A(F (x), ei) = B(x, ei))

}

observe, B(x, ei) = xi, hence A’ computes all the bits of x
also A′ is a PPT algorithm since it calls A polynomial times.
Hence A′ is a PPT algorithm which computes all the bits of x.

Pr[A′(F(x), r) = x] = 1

Hence F is not an OWF .This is a contradiction .
So no such A exist which can compute B(x, r) from only the knowledge of F(x,
r) and r with such high probability. �

16



6.4 Proof of G-L Theorem: Case 2

Now we lower the probability bound from 1 to ( 3
4 +ε(n) ) on the PPT algorithm

A which can now compute B(x, r) from F(x) and r with a probability more that
( 3
4 +ε(n)) .In that case we have to prove the existence of another PPT algorithm
A′ which can compute x from F(x) only with a high probability.
So we are given a PPT algorithm A such that

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] >
3
4

+ ε(n)

Now first we take a look why the strategy that we have followed in the proof
6.1 does not work here, i.e. merely giving n inputs of ei does not work here.
The reasons are :

1. It may be that A was not succeeded to compute B(x, r) when r = ei since
A is probabilistic.

2. The algorithm A’ in 6.1 has no means to understand A has succeeded or
not in computing xi

To overcome these difficulties here is the idea

Run A “multiple times” and take the majority.

But there are two things to prove here

1. When you run A multiple times the majority of the results really gives
the correct result with a high probability.

2. Multiple times are fine .But what exactly is the order of the no. Of
iterations? It should be polynomial to prove our result.

We shall prove these points in this section.That is in this process we really have
a majority of results equal to the correct result. The second point will be proven
at the section 6.2

6.4.1 Lemma:

B (x, r)⊕ B (x, r⊕ ei) = B (x⊕ ei) = xi

Proof

B (x, r)⊕ B (x, r⊕ ei) =
n
⊕
j=1

xjrj ⊕
n
⊕
j=1

xj(rj ⊕ ei)

=
(

n
⊕
j=1

xjrj ⊕
n
⊕
j=1

xjrj

)
⊕

n
⊕
j=1

xjei

=
n
⊕
j=1

xjei = B(x,ei) = xi

Hence Proved �

17



So what we can do is that calculate both the predicates and from that calculate
xi.Our next two theorems show that for a lots of x ’s chosen from the message
space i.e. {0, 1}n the probability that A answers both the queries correctly is
fairly high.

6.4.2 Theorem:

If Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ p+ ε(n) , 0 < p < 1

Then ∃ a set Sn ⊆ {0, 1}n of size at least ε(n)
2 2n , where ∀x ∈ {0, 1}n

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ p+
ε(n)

2
, p ∈ (0, 1)

Proof
Define

Sn = {x ∈ {0, 1}n | Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ p+
ε(n)

2
}

We have to show

|Sn| ≥
ε(n)

2
2n

Now,
Pr

(r,x)∈{0,1}n
[A(F(x), r) = B(x, r)]

= Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)
⋂

x ∈ Sn] + Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)
⋂

x /∈ Sn]

= Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)|x ∈ Sn] Pr
x

[x ∈ Sn]+

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)|x /∈ Sn] Pr
x

[x /∈ Sn]

≤ Pr
x

[x ∈ Sn] + Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)|x /∈ Sn]

⇒ Pr
x

[x ∈ Sn] ≥ Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)]− Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)|x /∈ Sn]

Since, Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ p+ ε(n)

and, Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)|x /∈ Sn] < p+ ε(n)
2

so, Pr
x

[x ∈ Sn] ≥ (p+ ε(n))−
(
p+ ε(n)

2

)
⇒ Pr

x
[x ∈ Sn] ≥ ε(n)

2

⇒ Expected value of |Sn| ≥
ε(n)

2 2n

Since, x
U←− {0, 1}n �

18



Alternative proof

In this proof we shall use the results of section 6.2
Define a new random variable, Y as follows.

Y = Pr[A(f(x), r) = B(x, r)]

=⇒ 0 < Y < 1.
Given , Pr

(r,x)∈{0,1}n
[A(F(x), r) = B(x, r)] ≥ p + ε(n)

Therefore, Y ≥ p + ε(n)

Now,

E(Y) =
∑
y
y.Pr[Y = y]

≥ (p + ε(n))
∑
y

Pr[Y = y]

Since,
∑
y

Pr[Y = y] = 1

⇒ E(Y) ≥ (p + ε(n))

So, Pr
[
Y < (p+ε)− ε

2

]
= Pr

[
1−Y > 1− (p+ε) + ε

2

]
Observe the fact that since ε is negligible so 1− (p+ε) + ε

2 > 0

now use markov inequality from 6.2.1 on (1−Y) > 0, to get

Pr
[
Y < (p+ε)− ε

2

]
≤ E(1−Y)

1−(p+ε)+ ε
2

= 1−E(Y)
1−(p+ε)+ ε

2
≤ 1−(p+ε)

1−(p+ε)+ ε
2

= 1−
ε
2

1−(p+ε)+ ε
2

Since, 0 < 1− (p+ε) + ε
2 < 1, Pr

[
Y < (p+ε)− ε

2

]
≤ 1−

ε
2

1−(p+ε)+ ε
2
< 1− ε

2

Hence, Pr
[
Y ≥ (p+ε(n))− ε(n)

2

]
≥ ε(n)

2

By definition , Sn = {x ∈ {0, 1}n| Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ p+ ε(n)
2 }

⇒ Sn = {x ∈ {0, 1}n| Y ≥ p+ ε(n)
2 }

⇒ Pr
x

[x ∈ Sn] = Pr
[
Y ≥ p+ ε(n)

2

]
≥ ε(n)

2

Since any value from {0, 1}n can belong to Sn with the probability ε(n)
2

And there are total 2n values in {0, 1}n

Hence ,expected value of |Sn| ≥
ε(n)

2 2n �

19



6.4.3 Theorem

If Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ 3
4

+ ε(n)

Then ∃ a set Sn ⊆ {0, 1}n of size at least ε(n)
2 2n, where ∀ x ∈ {0, 1}n such that

Pr
(r,x)∈{0,1}n

[(A(F(x), r) = B(x, r)) ∧ (A(F(x), r⊕ ei) = B(x, r⊕ ei))] ≥ 1
2+ε(n)

Proof

We apply theorem 6.4.2 with the parameter p = 3
4 , then ∀ x ∈ Sn

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ 3
4 + ε(n)

2

⇒ Pr
(r,x)∈{0,1}n

[A(F(x), r) 6= B(x, r)] < 1
4 −

ε(n)
2

Also if i is fixed then, r U←− {0, 1}n ⇒ r⊕ ei
U←− {0, 1}n

Then, Pr
(r,x)∈{0,1}n

[A(F(x), r⊕ ei) 6= B(x, r⊕ ei)] < 1
4 −

ε(n)
2 ,

Let us define the following events,

X1 : A(F(X1), r) 6= B(X1, r)

X2 : A(F(X2), r⊕ ei) 6= B(X2, r⊕ ei)

Then,

Pr[X1 = x] ≤ 1
4 −

ε(n)
2

Pr[X2 = x] ≤ 1
4 −

ε(n)
2

Now,
Pr[X1 = x

⋃
X2 = x] = Pr[X1 = x] + Pr[X2 = x]− Pr[X1 = x

⋂
X2 = x]

≤ Pr[X1 = x] + Pr[X2 = x]

≤
(

1
4 −

ε(n)
2

)
+
(

1
4 −

ε(n)
2

)
= 1

2 − ε(n)

20



Hence,
Pr

(r,x)∈{0,1}n
[(A(F(x), r) = B(x, r)) ∧ (A(F(x), r⊕ ei) = B(x, r⊕ ei))]

= Pr
(r,x)∈{0,1}n

[
(X1 = x)

⋂
(X2 = x)

]
= 1− Pr

(r,x)∈{0,1}n
[X1 = x

⋃
X2 = x]

≥ 1−
(

1
2 − ε(n)

)
= 1

2 + ε(n)

Hence proved �

Now we present the final result of this section, namely the case 2 of the G-L
theorem.

6.4.4 Statement

If F is an OWF then there is no such PPT algorithm A for which

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ 3
4

+ ε(n)

Proof

We have a PPT algorithm A such that,

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] >
3
4

+ ε(n)

We define another algorithm A′ as follows -

A′(F (x)) {

For (i = 1 to n){

1. Choose a random r {0, 1}n uniformly and calculate

xi = A(F(x), r) ⊕A(F(x), r⊕ ei)

2. Repeat step 1 for k number of times and return the majority as the correct
guess.

}
}

21



Define the following random variables,

Mj = 1 , if xi = A(F(x), r) ⊕A(F(x), r⊕ ei) is correct in j th trial

= 0 , otherwise.
j = 1, 2...k

So, Pr[Mj = 1] = p > 1
2 + ε(n), using theorem 6.4.3

now, Pr[A′ gives wrong result in case of guessing a bit]

= Pr[maximum of Mj s have value 0]

= Pr

[∑
j

Mj ≤ k
2

]

Since Mjs are independent and p ≈ 1
2 then using chernoff ′s bound,

Pr

[∑
j

Mj ≤ k
2

]
≤ Pr

∣∣∣∣∣∣
k∑

j=1
Mj

k −
(

1
2 + ε

) ∣∣∣∣∣∣ > ε

 < 2e
− ε2

2( 1
2 +ε)(1−( 1

2−ε))
.k

= 2e
− ε2

2( 1
4−ε2)

.k

< 2e− 2ε2k

Now if we put,

k = ln 4n
2ε2 = a polynomial in n

Pr

[∑
j

Mj ≤ k
2

]
< 2e− (ln 4n) = 1

2n

Which implies A′ is a PPT algorithm since it uses A polynomial times.

So, Pr[A′ will guess wrong about one bit of x ∈ Sn] < 1
2n

=⇒ Pr[A′ will guess wrong about at least one bit of x ∈ Sn] < n. 1
2n = 1

2

=⇒ Pr[A′ will guess correctly about all bits of x ∈ Sn] ≥ 1
2

=⇒ Pr[A′ will guess correctly about all bits of x] ≥

Pr[A′ will guess correctly about all bits of x ∈ Sn]× Pr[x ∈ Sn]

> 1
2 ×

ε
2 , from theorem 6.4.2

22



⇒ Pr
(r,x)∈{0,1}n

[A′(F(x), r) = x] > ε(n)
4

Which is a contradiction to the definition of OWF since A′ is a PPT algorithm

Hence our primary assumption was wrong and no such PPT algorithm A’ exists

Hence proved. �

6.5 Proof of G-L Theorem: Case 3

Now we lower the probability bound from 1 to
(

1
2 + ε(n)

)
on the PPT algorithm

A which can now compute B(x, r) from F(x) and r with a probability more that
1
2 + ε(n).
In that case we have to prove the existence of another PPT algorithm A′ which
can compute x from F(x) only with a high probability.
So we are given a PPT algorithm A such that

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] >
1
2

+ ε(n)

We shall use a little different strategy here to construct A′ from A compare to
6.4. In 6.4 we computed two B(.) values in each trial which effectively doubles
the error probability ε(n).

Thus this A′ does not actually invert x given F(x) with a significant probability.
Hence in this proof we use just guess just one B(.) value using A in each trial and
we shall compute the other B(.) value as a combination of some pre-computed
B(.) values.
Next we define some notations which are instrumental in proving the result of
this section. Then we shall carry on with the proof.

1. Set m = h(n) and l = log2 (m + 1) , later we prove h = polynomial(n)

2. Choose l strings uniformly and randomly from {0, 1}nand denote them as
s1, s2..., sl

3. Guess B
(
x, si

)
, i = 1, 2, .., l using the PPT algorithm A and denote those

guesses as σ1, σ2..., σl

4. Since, Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] > 1
2 + ε(n)

So, Pr [all σ1, σ2..., σl are correct guesses]

= Pr
(r,x)∈{0,1}n

 l⋂
j=1

(
A(F(x),sj) = B(x,sj)

)

23



=
l∏

j=1

Pr
(r,x)∈{0,1}n

[(
A(F(x),sj) = B(x,sj)

)]

>

(
1
2

+ ε(n)
)l
≈ 1

2l
=

1
m+ 1

=
1

polynomial(n)

5. Let J ⊆ {0, 1, ...,l},define, rJ = ⊕
j∈J

sj

6. Observe B
(
x, rJ

)
= B

(
x, ⊕

j∈J
sj
)

= ⊕
j∈J

B
(
x, sj

)
= ⊕

j∈J
σj hence we can say

that given σjs we can compute ρJ = ⊕
j∈J

σjas our guess for B
(
x, rJ

)
7. Claim: rJs are pair wise independent and uniformly distributed over
{0, 1}n

Proof

For all unequal subsets J and K there exist j∈ J and k ∈ K – J

Hence for every α, β ∈ {0, 1}n

Pr[rK = β|rJ = α] = Pr[sk = β|sj = α]
= Pr[sk = β]
= Pr[rK = β]

Hence rJs are pair wise independent.

Observe that if rJ = α then we can have any choice of strings for the first
(|J|- 1) elements of rJand the last string will be fixed accordingly.

So, Pr[rJ = α] = (2n)|J|−1

(2n)|J|
= 1

2n

Hence rJs are uniformly distributed over {0, 1}n �

6.5.1 Theorem

If Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ 1
2

+ ε(n)

Then ∃ a set Sn ⊆ {0, 1}n of size at least ε(n)
2 2n, where ∀ x ∈ {0, 1}n

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ 1
2

+
ε(n)

2

Proof

The proof is exactly similar as 6.4.2 with p = 1
2 �

24



6.5.2 Theorem

∀x ∈ Sn and 1 ≤ i ≤ n

Pr
[∣∣∣{J | B

(
x, rJ

)
⊕A

(
F(x), rJ ⊕ ei

)
= xi

}∣∣∣ > 1
2
(
2l − 1

)]
> 1− 1

2n

Proof

∀J ⊆ {1, 2, ...,l} define a random variable MJ ∈ {0, 1}

MJ = 1 iff B
(
x, rJ

)
⊕A

(
F(x), rJ ⊕ ei

)
= B(x,ei) = xi

= 0 otherwise

⇒ MJ = 1 iff A
(

F(x), rJ ⊕ ei
)

= B
(
x, rJ ⊕ ei

)
⇒ Pr

[
MJ = 1

]
≥ 1

2 + ε(n)
2 , where x ∈ Sn

now, there may be
(
2l − 1

)
different J s and

(
2l − 1

)
= m

⇒ Pr
[∣∣∣{J | B

(
x, rJ

)
⊕A

(
F(x), rJ ⊕ ei

)
= xi

}∣∣∣ > 1
2

(
2l − 1

)]
= Pr

[∑
J

MJ > 1
2

(
2l − 1

)]
= Pr

[∑
J

MJ > m
2

]
now, E

(
MJ
)

= 1.Pr[MJ = 1] + 0.Pr[MJ = 0]

≥
(

1
2 + ε(n)

2

)
thus E

(∑
J

MJ

)
=
∑
J

E
(
MJ
)
≥
(

1
2 + ε(n)

2

)
m

Var
(
MJ
)

= E
((

MJ
)2)− (E (MJ

))2
= 12.Pr[MJ = 1] + 02.Pr[MJ = 0]−

(
Pr[MJ = 1]

)2
=
(
Pr[MJ = 1]

) (
1− Pr[MJ = 1]

)
Since the function f(x) = x− x2 is decreasing in the domain 1

2 ≤ x < 1

thus for MJ ≥
(

1
2 + ε(n)

2

)
V ar(MJ) ≤

(
1
2 + ε(n)

2

)(
1−

(
1
2 + ε(n)

2

))
Now MJdepends on the choice of rJ.Since rJ’s are chosen pair wise independently
so MJ s are also pairwise independent.

25



Hence, Var
(∑

J

MJ

)
=
∑
J

Var
(
MJ
) [

Since, Cov
(
MI ,MK

)
= 0 ∀I,K

]
≤ m

(
1
2 + ε(n)

2

)(
1
2 −

ε(n)
2

)
< m

4

now, Pr
[∑

J

MJ ≤ m
2

]
≤ Pr

[∣∣∣∣∑
J

MJ −
(

1
2 + ε(n)

2

)
m
∣∣∣∣ ≤ ε(n)

2 m
]

≤
Var

(∑
J

MJ
)

( ε(n)
2 m)2 (by Chebyshev′s Inequality from 6.2.2)

<
m
4

( ε(n)
2 m)2 = 1

(ε(n))2m

if we take m = 2n
(ε(n))2

Pr
[∑

J

MJ ≤ m
2

]
≤ 1

2n

⇒ Pr
[∑

J

MJ > m
2

]
≤ 1− 1

2n

Hence proved. �

Next we present the final result of this section,and also of this chapter, namely
the case 3 of the G-L theorem that is proof for the most general case.

6.5.3 Statement

If F is an OWF then there is no such PPT algorithm A for which

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] ≥ 1
2

+ ε(n)

Proof

Suppose we have a PPT algorithm A such that,

Pr
(r,x)∈{0,1}n

[A(F(x), r) = B(x, r)] >
1
2

+ ε(n)

We define another algorithm A’ as follows -

26



A′(F (x)) {

1. Generate s1, s2..., sl ∈ {0, 1}n uniformly and independently and compute
σ1, σ2..., σl .

2. ∀J ⊆ {1, 2, ..,l} − {ϕ} compute rJ = ⊕
j∈J

sj and ρJ = ⊕
j∈J

σj

3. ∀J ⊆ {1, 2, ..,l} − {ϕ} and i = 1, 2, ..,n compute

zJ
i = ρJ ⊕A

(
F(x), rJ ⊕ ei

)
4. For all i = 1,2,...,n set zi = majority of zJ

i values.

5. output z = z1z2...zn

}

Using theorem 6.5.2 zJ
i has a majority equal to xi

and also Pr[A′ is wrong for i th bit of x ] = Pr
[∑

J

MJ ≤ m
2

]
≤ 1

2n

We define the following events,

Xk : A′ is wrong for the k th bit of x, k = 1,2,...,n

Then Pr[A′ is wrong for at least one i]

= Pr [X1

⋃
X2

⋃
..
⋃

Xn] <
n∑
i=1

Pr[Xi] < n. 1
2n = 1

2

⇒ Pr[A′ is correct for all i values] > 1
2

Again from section 6.5

Pr[all σ1, σ2..., σl are correct guesses] ≈ 1
2l

From theorem 6.5.1, Pr[x ∈ Sn] ≥ ε(n)
2

Again from theorem 6.5.2, m = 2n
(ε(n))2

Pr[A′(F(x)) = x
⋂

x ∈ Sn]

= Pr[all σ1, σ2..., σl are correct guesses
⋂

A′ is correct for all i values
⋂

x ∈ Sn]

> 1
2l × 1

2 ×
ε(n)

2

27



= ε(n)
4 ×

1
(m+1)

= ε(n)
4 ×

1(
2n

ε(n)2
+1
)

Now, Pr[A′(F(x)) = x]

= Pr[A′(F(x)) = x
⋂

x ∈ Sn] + Pr[A′(F(x)) = x
⋂

x /∈ Sn]

≥ Pr[A′(F(x)) = x
⋂

x ∈ Sn]

> ε(n)
4 ×

1(
2n

ε(n)2
+1
)

Since ε(n) = 1
p(n) ,p(n) = Some polynomial in n

Ultimately we have the result

Pr[A′(F(x)) = x] >
1
4
× 1(

p(n) + 2n (p(n))3
)

Now A′ is a PPT algorithm, since it invokes the PPT algorithm A 2n
ε(n)2

or

2n (p(n))2 time.
Hence by definition f cannot be a strong OWF.
Which is a contradiction.
So no such PPT algorithm A exists.
We can conclude that B(x, r) is a hardcore predicate. �

28


