
Low Power Ajit Pal IIT Kharagpur 1

The RSA Cryptosystem:
Factoring the public modulus

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and

Engineering
Indian Institute of Technology Kharagpur

INDIA -721302

Objectives

• The Pollard p-1 Algorithm

• The Pollard RHO Algorithm

• Dixon’s Random Squares Algorithm

Low Power Ajit Pal IIT Kharagpur 2

Factoring Algorithms

• Most obvious way to attack RSA would be
to try to factor the public modulus, n

• Modern Algorithms: Quadratic Sieve,
Elliptic Curve Factoring Sieve, Number
field Sieve.

• Other well-known algorithms: p-1
algorithm, Pollard’s rho algorithm etc.

• Of course we have trial division.

Complexity of Trial Division
• If n is composite, then n has a prime factor

less than √n.
• Good if n is less than 240.
• We need to do better than trial division for

larger composite numbers
• We shall study two algorithms.
• Note we are just searching for a non-trivial

factor.
• If we desire for complete prime

factorizations, then we need to test for
primality of the obtained factors, and if
composite further factorize them

Low Power Ajit Pal IIT Kharagpur 3

The Pollard p-1 algorithm

• Two inputs:
n: odd integer
B: Prescribed bound

Explanation of the Algorithm

• Suppose p is a prime divisor of n.

• Consider the prime factors of (p-1)

• Suppose for every prime power
q|(p-1), q≤B

Low Power Ajit Pal IIT Kharagpur 4

1 2

1 2

1 2

1 2

Prime Facorization of (p-1):
 (1)

wlog let
then, (1) | !
This is because, all the prime powers exist in the
terms of B! at least once.
At the end of the f

k

k

ee e
k

ee e
k

p q q q

q q q B
p B

− =

< < < ≤
−

K

K

B!

B!

B!

B!

p-1

B!

or loop, the algorithm computes:
a 2 (mod n).
Hence, a=kn+2 , where k is an integer.
Now, n=pq. Thus, a=kpq+2 .
Thus, a 2 (mod p).
Since, we have 2 1(mod p) and (p-1)|B!

a 2 1(mod p)
Thus, p|(a-1)

≡

≡

≡

⇒ ≡ ≡
and p|n, thus p|gcd(a-1,n).

Thus we have a non-trivial factor of n, unless a=1.

Example

• n=15770708441
• Set, B=180
• a=11620221425
• d=gcd(a-1,n)=135979

• 1577078441=135979x115979

Low Power Ajit Pal IIT Kharagpur 5

Finer Points
• There are B-1 modular exponentiations each

requiring at most 2log2B modular multiplications,
using square and multiply.

• The gcd can be computed in O(log2n)3 using the
Extended Euclidean algorithm.

• Overall complexity=O(BlogB(log n)2+(log n)3). If
B=O(log n)I, then we have a polynomial time
algorithm.

• However, if B increases the success probability
increases, but the algorithm becomes as slow as
the trial division.

• Hence, the modulus n should be such that p-1
does not have all prime powers small.

Pollard’s Rho Method
• Say, n=7171

– What is p|n? (We know that p ≤ √n)
– A possible method: Start picking up a and

b at random (0 ≤a,b<n). Since, p is small
there is a good chance that a≡b (mod p).
Thus p|(a-b) and we know p|n.

– Thus, gcd(a-b,n) gives a non-trivial
factor of n.

– From Birthday paradox, if the number of
elements picked are O(√p), then we
have a large chance of a collision.

Low Power Ajit Pal IIT Kharagpur 6

Number of gcd
computations too large

• Pick a and b: compute gcd(a,b)
• Pick up c: compute gcd(a,c), gcd(b,c)
• Pick up d: compute

gcd(d,a),gcd(d,b),gcd(d,c)
• Thus if |X|=O(√p) is the number of

elements chosen, number of gcds is:
|X|
2 () ()

()

()

C O p O N

Memory O N

Time O N

= =

=

=

Improvement

• We wish to compute less gcd’s.
• We choose a polynomial f(x)=x2+a, to

randomly choose the numbers mod n.
– note a is not 0 or -2 mod n. Why?

1 1

1 1

Suppose, (mod p) () () mod

() mod , we have mod [() mod]mod () mod
Similarly, mod [() mod]mod () mod mod

Repeating, if mod , we have mod ,

i j i j

i i i i i

j j j i

i j i j

x x f x f x p

x f x n x p f x n p f x p
x p f x n p f x p x p

x x p x x pδ δ δ

+ +

+ +

+ +

≡ ⇒ ≡

≡ ≡ ≡
≡ ≡ ≡

≡ ≡ ∀ ≥

Q

0

Low Power Ajit Pal IIT Kharagpur 7

Looks like the letter ρ (rho)

mod 1387 mod 19 mod 73

Reducing number of gcds
• Our goal is to find two terms xi≡xj(mod p),

i<j.

1 1

mod , 0

, and is the length of the cycle.
Now in consecutive terms,

, ,...,

there is one index say ' which is divisible by .
If | ' | (2 ' ')
Thus as ' and (2 '- ') is a

i j

i i j

x x p

l j i l
l

x x x

i l
l i l i i

i i i i

δ δ δ+ +

+ −

≡ ∀ ≥

= −

⇒ −
>

2 ' '

2

 multiple of ,
(mod)

Thus we compute gcd only when the current index is even
and gcd(- ,) gives a non-trivial factor of .

i i

i i

l
x x p

d x x n n

≡

=

Low Power Ajit Pal IIT Kharagpur 8

• Consider, x’3,x’4,x’5 in the cycle for mod 19,
there is one index namely 3 which is divisible
by 3, the cycle length. So, gcd(x6-
x3,1387)=gcd(1186-8,1387)=19.

The Pollard Rho Algorithm

Low Power Ajit Pal IIT Kharagpur 9

Example
2

1Suppose n=7171=71 101, () 1, 1
The sequence of ' begins as follows:
 1 2 5 26 677 6557 4105
6347 4903 2218 219 4936 4210 4560
4872 375

i

f x x x
x s

× = + =

 4377 4389 2016 5471 88 574
The above values when reduced modulo 71 are:
 1 2 5 26 38 25 58
 28 4 17 6 37

7 18

 21 16
 44 20 46 58 28 4 17
The first collision in the above list is:
 mod 71 mod 71 58
Since, (18-7)=11, therefore the algorithm computes
at some

x x= =

11 22stage gcd(,71) gcd(574 219,7171)
 = 71

x x− = −

Complexity

• You have to compute gcd j number
of times.

• From Birthday Paradox, maximum
value of j is O(√p)=O(n1/4)

Low Power Ajit Pal IIT Kharagpur 10

Dixon’s Random Squares Algorithm
• Simple Idea

2 2Suppose we can find, (mod), . (mod).
Then, | ()().
But neither (x-y), nor (x+y) is divisible by n.
Hence, gcd(x+y,n) is a non-trivial factor of n.
So, is gcd(x-y,n).
Consider, n=77. Choose

x y n st x y n
n x y x y

≠ =
− +

2 2

 10 and 32, as
10 32 (mod 77), but 10 32(mod 77).
Computing gcd(10+32,77)=7 gives us one factor
of n=77.

≡ ≠

Dixon’s Random Squares Algorithm

2 2
1
2
2

Suppose, n=1829.
Consider a factor base, B={-1,2,3,5,7,11,13}

Compute, {42.77,60.48,74.07,85.53}.
We take, z={42,43,61,74,85,86}.
Consider the following congruences modulo n,

42 65 (1)(5)(13)

kn

z

z

=

≡ ≡ − = −

≡ 2 2

2 2 2
3

2 2
4
2 2
5
2 2 4
6

2 2

2 2

43 20 (2) (5)

61 63 (3) (7)

74 11 (1)(11)

85 91 (1)(7)(13)

86 80 (2) (5)
Considering the congruence,
(42 43 61 85) (2 3 5 7 13) (mod1829)

1459 901 gcd(1459 901,1829) 59

z

z

z

z

≡ =

≡ ≡ =

≡ ≡ − = −

≡ ≡ − = −

≡ ≡ =

× × × ≡ × × × × ⇒

⇒ ≡ ⇒ + =

Low Power Ajit Pal IIT Kharagpur 11

References

• D. Stinson, Cryptography: Theory
and Practice, Chapman & Hall/CRC

Next Days Topic

• Some Comments on the
Security of RSA

