The RSA Cryptosystem:
Factoring the public modulus

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Objectives

* The Pollard p-1 Algorithm
* The Pollard RHO Algorithm

» Dixon’s Random Squares Algorithm

Low Power Ajit Pal 1IT Kharagpur

Factoring Algorithms

* Most obvious way to attack RSA would be
to try to factor the public modulus, n

* Modern Algorithms: Quadratic Sieve,
Elliptic Curve Factoring Sieve, Number
field Sieve.

» Other well-known algorithms: p-1
algorithm, Pollard’s rho algorithm etc.

* Of course we have trial division.

Complexity of Trial Division

 If n is composite, then n has a prime factor
less than Vn.

« Good if nis less than 249,

* We need to do better than trial division for
larger composite numbers

* We shall study two algorithms.

* Note we are just searching for a non-trivial
factor.

 If we desire for complete prime
factorizations, then we need to test for
primality of the obtained factors, and if
composite further factorize them

Low Power Ajit Pal 1IT Kharagpur

The Pollard p-1 algorithm

|:| POLLARD p — 1 FACTORING ALGORITHM(n, B)

a+2
forj —2to B
doa + o/ modn
d + ged(a — 1,n)
ifl<d<n
then return (d)
else return (“failure”)

* Two inputs:
n: odd integer
B: Prescribed bound

Explanation of the Algorithm

» Suppose p is a prime divisor of n.
» Consider the prime factors of (p-1)

» Suppose for every prime power
ql(p-1), q<B

Low Power Ajit Pal 1IT Kharagpur

Prime Facorization of (p-1):
(P-D =00y ...q
wlog letq* < gy <...<q <B
then, (p-1) | B!
This is because, all the prime powers exist in the
terms of B! at least once.
At the end of the for loop, the algorithm computes:
a=2%(mod n).
Hence, a=kn+2%, where K is an integer.
Now, n=pg. Thus, a=kpg+2®'.
Thus, a =2%(mod p).
Since, we have 2°* =1(mod p) and (p-1)|B!
=a=2%=1(mod p)
Thus, p|(a-1) and p|n, thus p|gcd(a-1,n).
Thus we have a non-trivial factor of n, unless a=1.

Example

n=15770708441

Set, B=180
a=11620221425
d=gcd(a-1,n)=135979

1577078441=135979x115979

Low Power Ajit Pal 1IT Kharagpur

Finer Points

There are B-1 modular exponentiations each
requiring at most 2log,B modular multiplications,
using square and multiply.

The gcd can be computed in O(log,n)3 using the
Extended Euclidean algorithm.

Overall complexity=0(BlogB(log n)2+(log n)3). If
B=0O(log n), then we have a polynomial time
algorithm.

However, if B increases the success probability

increases, but the algorithm becomes as slow as
the trial division.

Hence, the modulus n should be such that p-1
does not have all prime powers small.

Pollard’s Rho Method
« Say, n=7171

— What is p|n? (We know that p < Vn)

— A possible method: Start picking up a and
b at random (0 <a,b<n). Since, p is small
there is a good chance that a=b (mod p).
Thus p|(a-b) and we know pJn.

— Thus, gcd(a-b,n) gives a non-trivial
factor of n.

— From Birthday paradox, if the number of

elements picked are O(\p), then we
have a large chance of a collision.

Low Power Ajit Pal

1T Kharagpur

Number of gcd
computations too large
» Pick a and b: compute gcd(a,b)
* Pick up c: compute gcd(a,c), gcd(b,c)
* Pick up d: compute
gcd(d,a),gcd(d,b),gcd(d,c)
* Thus if |[X|=O(\p) is the number of
elements chosen, number of gcds is:

C}'=0(p) =0(N)
Memory :O(\/W)
Time=0(/N)

Improvement

* We wish to compute less gcd’s.

« We choose a polynomial f(x)=x2+a, to
randomly choose the numbers mod n.
— note a is not 0 or -2 mod n. Why?

Suppose, x; = x;(mod p) = f(x)= f(x;)mod p

X%, = T (x)modn, we have x;,, mod p =[f (x,)modn]mod p = f(x;) mod p
Similarly, x;,, mod p =[f (x;) modn]mod p = f (x;) mod p = x;,, mod p
Repeating, if x; = x; mod p, we have x;,; = X;,; mod p, V6 >0

Low Power Ajit Pal 1IT Kharagpur

Looks like the letter p (rho)

{ /"
R R
.r N
/ E ¥
mod 1387 mod 19 mod 73

Reducing number of gcds

* Our goal is to find two terms x;=x;(mod p),
i<j.
X5 = Xj,;mod p,Vo >0
I = j—i, and | is the length of the cycle.
Now in I consecutive terms,
Xi1 Xigseees Xjg
there is one index say i which is divisible by I.
Iflli'= 1] @2i'-i"
Thusasi'>iand (2i*-i") is a multiple of I,
Xy = X, (mod p)
Thus we compute gcd only when the current index is even
and d =gcd(x, - X;,n) gives a non-trivial factor of n.

Low Power Ajit Pal

1T Kharagpur

« Consider, X’;,X’4,X’5 in the cycle for mod 19,
there is one index namely 3 which is divisible
by 3, the cycle length. So, gcd(x;-
X3,1387)=gcd(1186-8,1387)=19.

The Pollard Rho Algorithm
|:] POLLARD RHO FACTORING ALGORITHM(n, x1)

external f
T
'+ f(x) modn
p + ged(x — ', n)
while p = 1
comment: in the ith iteration, » = z; and 2" = zy;

z + f(x) modn
do § ¢ « f(z') mod n
2« f(x') mod n
p & ged(e —2',n)
ifp=n
then return (“failure”)
else return (p)

Low Power Ajit Pal 1IT Kharagpur

Example

Suppose n=7171=71x101, f (x) = x> +1,x, =1
The sequence of x; ‘s begins as follows:

1 2 5 26 677 6557 4105
6347 4903 2218 219 4936 4210 4560
4872 375 4377 4389 2016 5471 88 574
The above values when reduced modulo 71 are:

1 2 5 26 38 25 58
28 4 17 6 37 21 16
44 20 46 58 28 4 17
The first collision in the above list is:

X, mod 71= x,, mod 71=58
Since, (18-7)=11, therefore the algorithm computes
at some stage gcd(x,, — X,,, 71) =gcd(574 — 219,7171)
=71

Complexity

* You have to compute gcd j number
of times.

* From Birthday Paradox, maximum
value of j is O(\Vp)=0(n"4)

Low Power Ajit Pal

1T Kharagpur

Dixon’s Random Squares Algorithm
« Simple Idea

Suppose we can find, x # y(mod n), st. x> = y*(modn).
Then, n| (x—y)(x+Y).

But neither (x-y), nor (x+y) is divisible by n.

Hence, gcd(x+y,n) is a non-trivial factor of n.

So, is gcd(x-y,n).

Consider, n=77. Choose 10 and 32, as

10% = 32%(mod 77), but 10 # 32(mod 77).

Computing gcd(10+32,77)=7 gives us one factor

of n=77.

Dixon’s Random Squares Algorithm

Suppose, n=1829.

Consider a factor base, B={-1,2,3,5,7,11,13}
Compute, vkn ={42.77,60.48,74.07,85.53}.
We take, z={42,43,61,74,85,86}.

Consider the following congruences modulo n,
7’ =42° =-65=(-1)(5)(13)

22 =43 =20=(2)(5)

72 =61 =63=(3)°(7)

22 =74 =-11=(-1)(1D

72 =85% =-91=(-1)(7)(13)

22 =862=80=(2)"(5)

Considering the congruence,

(42x 43x61x85)? = (2x3x5x 7 x13)?(mod1829) =
= 14592 = 9012 = gcd(1459 +901,1829) = 59

Low Power Ajit Pal 1T Kharagpur

10

References

» D. Stinson, Cryptography: Theory
and Practice, Chapman & Hall/CRC

Next Days Topic

« Some Comments on the
Security of RSA

Low Power Ajit Pal 1T Kharagpur

11

