The RSA Cryptosystem:
 Factoring the public modulus

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and
Engineering
Indian Institute of Technology Kharagpur
INDIA -721302

Objectives

- The Pollard p-1 Algorithm
- The Pollard RHO Algorithm
- Dixon's Random Squares Algorithm

Factoring Algorithms

- Most obvious way to attack RSA would be to try to factor the public modulus, n
- Modern Algorithms: Quadratic Sieve, Elliptic Curve Factoring Sieve, Number field Sieve.
- Other well-known algorithms: p-1 algorithm, Pollard's rho algorithm etc.
- Of course we have trial division.

Complexity of Trial Division

- If \mathbf{n} is composite, then \mathbf{n} has a prime factor less than \sqrt{n}.
- Good if \mathbf{n} is less than 2^{40}.
- We need to do better than trial division for larger composite numbers
- We shall study two algorithms.
- Note we are just searching for a non-trivial factor.
- If we desire for complete prime factorizations, then we need to test for primality of the obtained factors, and if composite further factorize them

The Pollard p-1 algorithm

```
        Pollard p-1 FACtORING ALGORITHM( }n,B
a\leftarrow2
for }j\leftarrow2\mathrm{ to }
    do }a\leftarrow\mp@subsup{a}{}{j}\operatorname{mod}
d}\leftarrow\operatorname{gcd}(a-1,n
if 1<d<n
    then return (d)
    else return ("failure")
```

- Two inputs:
n : odd integer
B: Prescribed bound

Explanation of the Algorithm

- Suppose p is a prime divisor of n.
- Consider the prime factors of (p-1)
- Suppose for every prime power $q \mid(p-1), q \leq B$

Prime Facorization of ($\mathrm{p}-1$):

$$
(p-1)=q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{k}^{e_{k}}
$$

wlog let $q_{1}^{e_{1}}<q_{2}^{e_{2}}<\ldots<q_{k}^{e_{k}} \leq B$
then, $(p-1) \mid B$!
This is because, all the prime powers exist in the
terms of B! at least once.
At the end of the for loop, the algorithm computes:
$a \equiv 2^{B!}(\bmod n)$.
Hence, $\mathrm{a}=\mathrm{kn}+2^{\mathrm{B}!}$, where k is an integer.
Now, $n=p q$. Thus, $\mathrm{a}=\mathrm{kpq}+2^{\mathrm{B}!}$.
Thus, $a \equiv 2^{B!}(\bmod p)$.
Since, we have $2^{p-1} \equiv 1(\bmod p)$ and $(p-1) \mid B$!
$\Rightarrow \mathrm{a} \equiv 2^{\mathrm{B}!} \equiv 1(\bmod \mathrm{p})$
Thus, $\mathrm{p} \mid(\mathrm{a}-1)$ and $\mathrm{p} \mid \mathrm{n}$, thus $\mathrm{p} \mid \operatorname{gcd}(\mathrm{a}-1, \mathrm{n})$.
Thus we have a non-trivial factor of n, unless $a=1$.

Example

- $n=15770708441$
- Set, B=180
- $a=11620221425$
- $d=\operatorname{gcd}(a-1, n)=135979$
- $1577078441=135979 \times 115979$

Finer Points

- There are B-1 modular exponentiations each requiring at most $2 \log _{2} B$ modular multiplications, using square and multiply.
- The gcd can be computed in $\mathrm{O}\left(\log _{2} \mathrm{n}\right)^{3}$ using the Extended Euclidean algorithm.
- Overall complexity= $O\left(B \log B(\log n)^{2}+(\log n)^{3}\right)$. If $B=O(\log n)^{\prime}$, then we have a polynomial time algorithm.
- However, if B increases the success probability increases, but the algorithm becomes as slow as the trial division.
- Hence, the modulus \mathbf{n} should be such that $\mathrm{p}-1$ does not have all prime powers small.

Pollard's Rho Method

- Say, n=7171
- What is $p \mid n$? (We know that $p \leq \sqrt{ } n$)
- A possible method: Start picking up a and b at random ($0 \leq a, b<n$). Since, p is small there is a good chance that $a \equiv b(\bmod p)$. Thus $\mathrm{p} \mid(\mathrm{a}-\mathrm{b})$ and we know $\mathrm{p} \mid \mathrm{n}$.
- Thus, gcd(a-b,n) gives a non-trivial factor of n.
- From Birthday paradox, if the number of elements picked are $O(\sqrt{ }$ p), then we have a large chance of a collision.

Number of gcd computations too large

- Pick a and b: compute gcd(a,b)
- Pick up c: compute gcd(a,c), gcd(b,c)
- Pick up d: compute $\operatorname{gcd}(d, a), \operatorname{gcd}(d, b), \operatorname{gcd}(d, c)$
- Thus if $|X|=O(\sqrt{p})$ is the number of elements chosen, number of gcds is:

$$
\begin{aligned}
& C_{2}^{|\mathrm{X}|}=O(p)=O(\sqrt{N}) \\
& \text { Memory }=O(\sqrt{N}) \\
& \text { Time }=O(\sqrt{N})
\end{aligned}
$$

Improvement

- We wish to compute less gcd's.
- We choose a polynomial $f(x)=x^{2}+a$, to randomly choose the numbers mod n.
- note a is not 0 or $\mathbf{- 2} \bmod \mathrm{n}$. Why?

Suppose, $x_{i} \equiv x_{j}(\bmod p) \Rightarrow f\left(x_{i}\right) \equiv f\left(x_{j}\right) \bmod p$
$\because x_{i+1} \equiv f\left(x_{i}\right) \bmod n$, we have $x_{i+1} \bmod p \equiv\left[f\left(x_{i}\right) \bmod n\right] \bmod p \equiv f\left(x_{i}\right) \bmod p$
Similarly, $x_{j+1} \bmod p \equiv\left[f\left(x_{j}\right) \bmod n\right] \bmod p \equiv f\left(x_{j}\right) \bmod p \equiv x_{i+1} \bmod p$
Repeating, if $x_{i} \equiv x_{j} \bmod p$, we have $x_{i+\delta} \equiv x_{j+\delta} \bmod p, \forall \delta \geq 0$

Looks like the letter ρ (rho)

Reducing number of gcds

- Our goal is to find two terms $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}}(\bmod \mathrm{p})$, i<j.
$x_{i+\delta} \equiv x_{j+\delta} \bmod p, \forall \delta \geq 0$
$l=j-i$, and l is the length of the cycle.
Now in l consecutive terms,
$x_{i}, x_{i+1}, \ldots, x_{j-1}$
there is one index say i ' which is divisible by l.
If $l\left|i^{\prime} \Rightarrow l\right|\left(2 i^{\prime}-i^{\prime}\right)$
Thus as $i^{\prime}>i$ and $\left(2 i^{\prime}-i^{\prime}\right)$ is a multiple of l,
$x_{2 i^{\prime}} \equiv x_{i^{\prime}}(\bmod p)$
Thus we compute gcd only when the current index is even and $d=\operatorname{gcd}\left(x_{2 i}-x_{i}, n\right)$ gives a non-trivial factor of n.

(a)

(b)

(c)
- Consider, $\mathbf{x}^{\prime}{ }_{3}, x^{\prime}{ }_{4}, x^{\prime}{ }_{5}$ in the cycle for mod 19, there is one index namely 3 which is divisible by 3 , the cycle length. So, $\operatorname{gcd}\left(\mathrm{x}_{6}{ }^{-}\right.$ $\left.x_{3}, 1387\right)=\operatorname{gcd}(1186-8,1387)=19$.

The Pollard Rho Algorithm

```
\square
    POLLARD RHO FACTORING ALGORITHM( }n,\mp@subsup{x}{1}{}
external f
x\leftarrow\mp@subsup{x}{1}{}
x
p}\leftarrow\operatorname{gcd}(x-\mp@subsup{x}{}{\prime},n
while p=1
            comment: in the ith iteration, }x=\mp@subsup{x}{i}{}\mathrm{ and }\mp@subsup{x}{}{\prime}=\mp@subsup{x}{2i}{
    {}{x\leftarrowf(x)\operatorname{mod}
    do }{\begin{array}{l}{\mp@subsup{x}{}{\prime}}\\{\leftarrow}
    {}\begin{array}{l}{\mp@subsup{x}{}{\prime}\leftarrowf(\mp@subsup{x}{}{\prime})\operatorname{mod}n}\\{p\leftarrow\operatorname{gcd}(x-\mp@subsup{x}{}{\prime},n}
if }p=
    then return ("failure")
    else return (p)
```


Example

Suppose $\mathrm{n}=7171=71 \times 101, f(x)=x^{2}+1, x_{1}=1$
The sequence of $x_{i}{ }^{\prime} s$ begins as follows:

1	2	5	26	677	6557	4105	
6347	4903	2218	219	4936	4210	4560	
4872	375	4377	4389	2016	5471	88	574
The above values when reduced modulo 71 are:							
1	2	5	26	38	25	58	
28	4	17	6	37	21	16	
44	20	46	58	28	4	17	

The first collision in the above list is:
$x_{7} \bmod 71=x_{18} \bmod 71=58$
Since, (18-7)=11, therefore the algorithm computes
at some stage $\operatorname{gcd}\left(x_{11}-x_{22}, 71\right)=\operatorname{gcd}(574-219,7171)$

$$
=71
$$

Complexity

- You have to compute gcd j number of times.
- From Birthday Paradox, maximum value of j is $O(\sqrt{p})=O\left(n^{1 / 4}\right)$

Dixon's Random Squares Algorithm
 - Simple Idea

Suppose we can find, $x \neq y(\bmod n)$, st. $x^{2}=y^{2}(\bmod n)$.
Then, $n \mid(x-y)(x+y)$.
But neither ($\mathrm{x}-\mathrm{y}$), nor $(\mathrm{x}+\mathrm{y})$ is divisible by n .
Hence, $\operatorname{gcd}(x+y, n)$ is a non-trivial factor of n.
So, is $\operatorname{gcd}(x-y, n)$.
Consider, $\mathrm{n}=77$. Choose 10 and 32, as
$10^{2} \equiv 32^{2}(\bmod 77)$, but $10 \neq 32(\bmod 77)$.
Computing $\operatorname{gcd}(10+32,77)=7$ gives us one factor of $n=77$.

Dixon’s Random Squares Algorithm

$$
\begin{aligned}
& \text { Suppose, } n=1829 \text {. } \\
& \text { Consider a factor base, } B=\{-1,2,3,5,7,11,13\} \\
& \text { Compute, } \sqrt{k n}=\{42.77,60.48,74.07,85.53\} \text {. } \\
& \text { We take, } \mathrm{z}=\{42,43,61,74,85,86\} \text {. } \\
& \text { Consider the following congruences modulo } \mathrm{n} \text {, } \\
& z_{1}^{2} \equiv 42^{2} \equiv-65=(-1)(5)(13) \\
& z_{2}^{2} \equiv 43^{2} \equiv 20=(2)^{2}(5) \\
& z_{3}^{2} \equiv 61^{2} \equiv 63=(3)^{2}(7) \\
& z_{4}^{2} \equiv 74^{2} \equiv-11=(-1)(11) \\
& z_{5}^{2} \equiv 85^{2} \equiv-91=(-1)(7)(13) \\
& z_{6}^{2} \equiv 86^{2} \equiv 80=(2)^{4}(5) \\
& \text { Considering the congruence, } \\
& (42 \times 43 \times 61 \times 85)^{2} \equiv(2 \times 3 \times 5 \times 7 \times 13)^{2}(\bmod 1829) \Rightarrow \\
& \Rightarrow 1459^{2} \equiv 901^{2} \Rightarrow \operatorname{gcd}(1459+901,1829)=59
\end{aligned}
$$

References

- D. Stinson, Cryptography: Theory and Practice, Chapman \& Hall/CRC

Next Days Topic

- Some Comments on the Security of RSA

