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Objectives

* The Pollard p-1 Algorithm
* The Pollard RHO Algorithm

» Dixon’s Random Squares Algorithm
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Factoring Algorithms

* Most obvious way to attack RSA would be
to try to factor the public modulus, n

* Modern Algorithms: Quadratic Sieve,
Elliptic Curve Factoring Sieve, Number
field Sieve.

» Other well-known algorithms: p-1
algorithm, Pollard’s rho algorithm etc.

* Of course we have trial division.

Complexity of Trial Division

 If n is composite, then n has a prime factor
less than Vn.

« Good if nis less than 249,

* We need to do better than trial division for
larger composite numbers

* We shall study two algorithms.

* Note we are just searching for a non-trivial
factor.

 If we desire for complete prime
factorizations, then we need to test for
primality of the obtained factors, and if
composite further factorize them
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The Pollard p-1 algorithm

|:| POLLARD p — 1 FACTORING ALGORITHM(n, B)

a+2
forj —2to B
doa + o/ modn
d + ged(a — 1,n)
ifl<d<n
then return (d)
else return (“failure”)

* Two inputs:
n: odd integer
B: Prescribed bound

Explanation of the Algorithm

» Suppose p is a prime divisor of n.
» Consider the prime factors of (p-1)

» Suppose for every prime power
ql(p-1), q<B
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Prime Facorization of (p-1):
(P-D =00y ...q
wlog letq* < gy <...<q <B
then, (p-1) | B!
This is because, all the prime powers exist in the
terms of B! at least once.
At the end of the for loop, the algorithm computes:
a=2%(mod n).
Hence, a=kn+2%, where K is an integer.
Now, n=pg. Thus, a=kpg+2®'.
Thus, a =2%(mod p).
Since, we have 2°* =1(mod p) and (p-1)|B!
=a=2%=1(mod p)
Thus, p|(a-1) and p|n, thus p|gcd(a-1,n).
Thus we have a non-trivial factor of n, unless a=1.

Example

n=15770708441

Set, B=180
a=11620221425
d=gcd(a-1,n)=135979

1577078441=135979x115979
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Finer Points

There are B-1 modular exponentiations each
requiring at most 2log,B modular multiplications,
using square and multiply.

The gcd can be computed in O(log,n)3 using the
Extended Euclidean algorithm.

Overall complexity=0(BlogB(log n)2+(log n)3). If
B=0O(log n), then we have a polynomial time
algorithm.

However, if B increases the success probability

increases, but the algorithm becomes as slow as
the trial division.

Hence, the modulus n should be such that p-1
does not have all prime powers small.

Pollard’s Rho Method
« Say, n=7171

— What is p|n? (We know that p < Vn)

— A possible method: Start picking up a and
b at random (0 <a,b<n). Since, p is small
there is a good chance that a=b (mod p).
Thus p|(a-b) and we know pJn.

— Thus, gcd(a-b,n) gives a non-trivial
factor of n.

— From Birthday paradox, if the number of

elements picked are O(\p), then we
have a large chance of a collision.
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Number of gcd
computations too large
» Pick a and b: compute gcd(a,b)
* Pick up c: compute gcd(a,c), gcd(b,c)
* Pick up d: compute
gcd(d,a),gcd(d,b),gcd(d,c)
* Thus if |[X|=O(\p) is the number of
elements chosen, number of gcds is:

C}'=0(p) =0(N)
Memory :O(\/W)
Time=0(/N)

Improvement

* We wish to compute less gcd’s.

« We choose a polynomial f(x)=x2+a, to
randomly choose the numbers mod n.
— note a is not 0 or -2 mod n. Why?

Suppose, x; = x;(mod p) = f(x)= f(x;)mod p

X%, = T (x)modn, we have x;,, mod p =[f (x,)modn]mod p = f(x;) mod p
Similarly, x;,, mod p =[f (x;) modn]mod p = f (x;) mod p = x;,, mod p
Repeating, if x; = x; mod p, we have x;,; = X;,; mod p, V6 >0
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Looks like the letter p (rho)

{ /"
R R
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/ E ¥
mod 1387 mod 19 mod 73

Reducing number of gcds

* Our goal is to find two terms x;=x;(mod p),
i<j.
X5 = Xj,;mod p,Vo >0
I = j—i, and | is the length of the cycle.
Now in I consecutive terms,
Xi1 Xigseees Xjg
there is one index say i which is divisible by I.
Iflli'= 1] @2i'-i"
Thusasi'>iand (2i*-i") is a multiple of I,
Xy = X, (mod p)
Thus we compute gcd only when the current index is even
and d =gcd(x, - X;,n) gives a non-trivial factor of n.
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« Consider, X’;,X’4,X’5 in the cycle for mod 19,
there is one index namely 3 which is divisible
by 3, the cycle length. So, gcd(x;-
X3,1387)=gcd(1186-8,1387)=19.

The Pollard Rho Algorithm
|:] POLLARD RHO FACTORING ALGORITHM(n, x1)

external f
T
'+ f(x) modn
p + ged(x — ', n)
while p = 1
comment: in the ith iteration, » = z; and 2" = zy;

z + f(x) modn
do § ¢ « f(z') mod n
2« f(x') mod n
p & ged(e —2',n)
ifp=n
then return (“failure”)
else return (p)
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Example

Suppose n=7171=71x101, f (x) = x> +1,x, =1
The sequence of x; ‘s begins as follows:

1 2 5 26 677 6557 4105
6347 4903 2218 219 4936 4210 4560
4872 375 4377 4389 2016 5471 88 574
The above values when reduced modulo 71 are:

1 2 5 26 38 25 58
28 4 17 6 37 21 16
44 20 46 58 28 4 17
The first collision in the above list is:

X, mod 71= x,, mod 71=58
Since, (18-7)=11, therefore the algorithm computes
at some stage gcd(x,, — X,,, 71) =gcd(574 — 219,7171)
=71

Complexity

* You have to compute gcd j number
of times.

* From Birthday Paradox, maximum
value of j is O(\Vp)=0(n"4)
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Dixon’s Random Squares Algorithm
« Simple Idea

Suppose we can find, x # y(mod n), st. x> = y*(modn).
Then, n| (x—y)(x+Y).

But neither (x-y), nor (x+y) is divisible by n.

Hence, gcd(x+y,n) is a non-trivial factor of n.

So, is gcd(x-y,n).

Consider, n=77. Choose 10 and 32, as

10% = 32%(mod 77), but 10 # 32(mod 77).

Computing gcd(10+32,77)=7 gives us one factor

of n=77.

Dixon’s Random Squares Algorithm

Suppose, n=1829.

Consider a factor base, B={-1,2,3,5,7,11,13}
Compute, vkn ={42.77,60.48,74.07,85.53}.
We take, z={42,43,61,74,85,86}.

Consider the following congruences modulo n,
7’ =42° =-65=(-1)(5)(13)

22 =43 =20=(2)(5)

72 =61 =63=(3)°(7)

22 =74 =-11=(-1)(1D

72 =85% =-91=(-1)(7)(13)

22 =862=80=(2)"(5)

Considering the congruence,

(42x 43x61x85)? = (2x3x5x 7 x13)?(mod1829) =
= 14592 = 9012 = gcd(1459 +901,1829) = 59
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