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Objectives

• The Pollard p-1 Algorithm

• The Pollard RHO Algorithm

• Dixon’s Random Squares Algorithm
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Factoring Algorithms

• Most obvious way to attack RSA would be 
to try to factor the public modulus, n

• Modern Algorithms: Quadratic Sieve, 
Elliptic Curve Factoring Sieve, Number 
field Sieve.

• Other well-known algorithms: p-1 
algorithm, Pollard’s rho algorithm etc.

• Of course we have trial division.

Complexity of Trial Division
• If n is composite, then n has a prime factor 

less than √n.
• Good if n is less than 240.
• We need to do better than trial division for 

larger composite numbers
• We shall study two algorithms.
• Note we are just searching for a non-trivial 

factor.
• If we desire for complete prime 

factorizations, then we need to test for 
primality of the obtained factors, and if 
composite further factorize them
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The Pollard p-1 algorithm

• Two inputs:
n: odd integer
B: Prescribed bound

Explanation of the Algorithm

• Suppose p is a prime divisor of n.

• Consider the prime factors of (p-1)

• Suppose for every prime power   
q|(p-1), q≤B
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Prime Facorization of (p-1):
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or loop, the algorithm computes:
a 2 (mod  n).
Hence, a=kn+2 ,  where k is an integer.
Now, n=pq. Thus, a=kpq+2 .
Thus, a 2 (mod  p).
Since, we have 2 1(mod  p) and (p-1)|B!

a 2 1(mod  p)
Thus, p|(a-1) 

≡

≡

≡

⇒ ≡ ≡
and p|n, thus p|gcd(a-1,n). 

Thus we have a non-trivial factor of n, unless a=1.

Example

• n=15770708441
• Set, B=180
• a=11620221425
• d=gcd(a-1,n)=135979 

• 1577078441=135979x115979
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Finer Points
• There are B-1 modular exponentiations each 

requiring at most 2log2B modular multiplications, 
using square and multiply.

• The gcd can be computed in O(log2n)3 using the 
Extended Euclidean algorithm.

• Overall complexity=O(BlogB(log n)2+(log n)3). If 
B=O(log n)I, then we have a polynomial time 
algorithm. 

• However, if B increases the success probability 
increases, but the algorithm becomes as slow as 
the trial division.

• Hence, the modulus n should be such that p-1 
does not have all prime powers small.

Pollard’s Rho Method
• Say, n=7171

– What is p|n? (We know that p ≤ √n)
– A possible method: Start picking up a and 

b at random (0 ≤a,b<n). Since, p is small 
there is a good chance that a≡b (mod p). 
Thus  p|(a-b) and we know p|n.

– Thus, gcd(a-b,n) gives a non-trivial 
factor of n.

– From Birthday paradox, if the number of 
elements picked are O(√p), then we 
have a large chance of a collision.
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Number of gcd
computations too large

• Pick a and b: compute gcd(a,b)
• Pick up c: compute gcd(a,c), gcd(b,c)
• Pick up d: compute 

gcd(d,a),gcd(d,b),gcd(d,c)
• Thus if |X|=O(√p) is the number of 

elements chosen, number of gcds is: 
|X|
2 ( ) ( )

( )

( )

C O p O N

Memory O N

Time O N

= =

=

=

Improvement

• We wish to compute less gcd’s.
• We choose a polynomial f(x)=x2+a, to 

randomly choose the numbers mod n.
– note a is not 0 or -2 mod n. Why?

1 1

1 1

Suppose, (mod  p) ( ) ( ) mod

( ) mod ,  we have mod [ ( ) mod ]mod ( ) mod
Similarly, mod [ ( ) mod ]mod ( ) mod mod

Repeating, if mod ,  we have mod ,

i j i j

i i i i i

j j j i
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Looks like the letter ρ (rho)

mod 1387 mod 19 mod 73

Reducing number of gcds
• Our goal is to find two terms xi≡xj(mod p), 

i<j. 

1 1

mod , 0

,  and  is the length of the cycle.
Now in  consecutive terms, 

, ,...,

there is one index say '  which is divisible by .
If | ' | (2 ' ')
Thus as '  and (2 '- ') is a

i j

i i j

x x p

l j i l
l

x x x

i l
l i l i i

i i i i

δ δ δ+ +

+ −
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= −
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>

2 ' '

2

 multiple of , 
(mod )

Thus we compute gcd only when the current index is even 
and gcd( - , ) gives a non-trivial factor of .

i i

i i

l
x x p

d x x n n

≡

=
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• Consider, x’3,x’4,x’5 in the cycle for mod 19,
there is one index namely 3 which is divisible 
by 3, the cycle length. So, gcd(x6-
x3,1387)=gcd(1186-8,1387)=19. 

The Pollard Rho Algorithm
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Example
2

1Suppose n=7171=71 101, ( ) 1, 1
The sequence of '  begins as follows:
      1          2         5       26     677    6557    4105
6347    4903   2218     219   4936    4210    4560
4872      375

i

f x x x
x s

× = + =

   4377   4389   2016   5471        88    574
The above values when reduced modulo 71 are:
    1          2         5       26       38       25       58
 28          4       17         6        37     

7 18

  21       16
 44        20       46       58        28         4       17
The first collision in the above list is:
        mod 71 mod 71 58
Since, (18-7)=11, therefore the algorithm computes 
at some 

x x= =

11 22stage gcd( ,71) gcd(574 219,7171)
                                                =  71

x x− = −

Complexity

• You have to compute gcd j number 
of times.

• From Birthday Paradox, maximum 
value of j is O(√p)=O(n1/4)
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Dixon’s Random Squares Algorithm
• Simple Idea

2 2Suppose we can find, (mod ), . (mod ).
Then, | ( )( ).
But neither (x-y), nor (x+y) is divisible by n.
Hence, gcd(x+y,n) is a non-trivial factor of n.
So, is gcd(x-y,n).
Consider, n=77. Choose

x y n st x y n
n x y x y

≠ =
− +

2 2

 10 and 32, as 
10 32 (mod 77),  but 10 32(mod 77).
Computing gcd(10+32,77)=7 gives us one factor 
of n=77.

≡ ≠

Dixon’s Random Squares Algorithm

2 2
1
2
2

Suppose, n=1829.
Consider a factor base, B={-1,2,3,5,7,11,13}

Compute, {42.77,60.48,74.07,85.53}.
We take, z={42,43,61,74,85,86}.
Consider the following congruences modulo n,

42 65 ( 1)(5)(13)

kn

z

z

=

≡ ≡ − = −

≡ 2 2

2 2 2
3

2 2
4
2 2
5
2 2 4
6

2 2

2 2

43 20 (2) (5)

61 63 (3) (7)

74 11 ( 1)(11)

85 91 ( 1)(7)(13)

86 80 (2) (5)
Considering the congruence, 
(42 43 61 85) (2 3 5 7 13) (mod1829)

1459 901 gcd(1459 901,1829) 59

z

z

z

z

≡ =

≡ ≡ =

≡ ≡ − = −

≡ ≡ − = −

≡ ≡ =

× × × ≡ × × × × ⇒

⇒ ≡ ⇒ + =
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