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Abstract

Mathematical models are valuable tools used to understand and predict the behaviour of

complex physiological systems. In this thesis, ordinary differential equation (ODE) modelling

is applied to the following two areas: (i) the development of digital twins for human physiolog-

ical systems, specifically modelling drug metabolism in in vitro liver systems and simulating

cardiovascular blood flow using lumped parameter models (LPMs); and (ii) modelling of

biochemical processes, focusing on insulin-glucose (IG) regulatory systems in the context of

type 2 diabetes mellitus (T2DM).

The drug testing process faces challenges such as high costs, lengthy timelines, and poor

predictability of human responses, especially in estimating first-in-human doses. While

advancements in microphysiological systems (MPS) and organ-on-chip (OoC) technologies

offer more human-relevant testing, they still rely on conventional mathematical models that

fail to capture biological processes adequately. This study aims to enhance the predictive

power of MPS and OoC by integrating them into a digital twin framework (DigiLoCs) for

better prediction of liver clearance. A compartmental physiological model of the liver using

ODEs is developed to estimate pharmacokinetic parameters for in vitro liver-on-chip systems.

Digital twinning is also applied to model the blood flow in the human circulatory system using

zero-dimensional LPMs. LPMs approximate the cardiovascular network as a set of discrete

compartments accounting for vascular pressure of blood flow, impedance to the flow of blood,

the volume of blood in the vessels and the elasticity of the vessels. By applying electrical

circuit principles, these models predict cardiovascular dynamics. The simulations facilitate

the exploration of scenarios that are difficult to observe experimentally, such as blood flow in

internal organs, making them useful for diagnosing and monitoring disease progression.

The thesis then explores biochemical processes starting with clustering-based methods to

study T2DM. Using an unsupervised clustering algorithm three subgroups of uncontrolled

T2DM patients were identified and characterised based on patho-clinical features. The signifi-

cance of heterogeneity in T2DM is uncovered, challenging the assumption of its homogeneity

and emphasising the need to reconsider uniform treatment protocols. Given obesity as a

significant risk factor in T2DM, a distinction between estimated oral minimal model (OMM)

parameters for obese and non-obese T2DM subjects is identified. Furthermore, the existing

OMM is augmented to include the role of body mass index (BMI) and leptin (a hormone

secreted by adipose tissue), leading to better simulation results.

Keywords: Mathematical modelling, Parameter estimation, Organ-on-chip, Lumped param-

eter model, Cardiovascular modelling, Oral minimal model, Type-2 diabetes mellitus
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CHAPTER 1
Introduction

Chapter outline

• Introduction to topics relevant to this thesis

• Contributions of this thesis

– Mathematical modelling of drug distribution in liver-on-chip device

– Lumped parameter modelling of the cardiovascular system

– Clustering-based methods to identify type 2 diabetes mellitus (T2DM) sub-

groups

– Oral minimal model estimation of parameters for obese and non-obese T2DM

– Mathematical modelling of leptin in insulin-glucose regulatory system

• Organisation of the thesis

Mathematical models are valuable tools used to understand and predict the behaviour

of complex physiological systems. This modelling process begins with a well-formulated

hypothesis derived from prior observations, which is then translated into mathematical equa-

tions that describe the system’s behaviour. The model formulation is an iterative process of

developing an initial model, comparing its predictions with experimental data and refining

the model based on the results and available theory to achieve satisfactory conformance [4].

These models are driven by data and act as digital twins, which are the virtual representations

or simulations that mirror the dynamics of the modelled physiological system [5]. One of

the advantages of computational modelling is the ability to bridge the gap between theoreti-

cal understanding and experimental observations, providing a systematic and quantitative

framework for exploring physiological processes. This approach aids in understanding the

system as a whole and predicts how it behaves in altered states (e.g., disease), leading to more

1
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effective therapeutic strategies and personalised treatments. In this thesis, mathematical

modelling has been applied to the following two areas (i) the development of digital twins for

human physiological systems, specifically modelling drug metabolism in in vitro liver systems

and simulating cardiovascular blood flow using lumped parameter models; and (ii) modelling

of biochemical processes, focusing on the insulin-glucose regulatory system in the context of

type 2 diabetes mellitus (T2DM).

1.1 Introduction on topics explored in this thesis

Traditional drug development relies heavily on animal models and clinical trials, which are

costly and time-consuming and often fail to predict human responses accurately. In vitro

models have emerged as a promising alternative, offering a controlled, ethically acceptable

and cost-effective means to study biological processes. The liver plays an important role in

the clearance of drugs from the body. However, studying this in a human population using

traditional in vitro methods is challenging. Recent developments in organ-on-chip technology

have opened up new vistas of exploration. Liver-on-chip devices provide a physiologically

reliable platform to investigate liver function predicting in vivo drug clearance. By leverag-

ing kinetic data from liver-on-chip experiments, a computational model is developed that

effectively simulates drug distribution and clearance in the liver. This is an example of digi-

tal twinning, where a computational model is used to mimic certain aspects of a biological

system. In this case, the mathematical model for drug clearance mimics the drug clearance

behaviour of actual liver cells.

Another example of digital twinning is the mathematical model that mimics the behaviour

of the human circulatory system, accounting for vascular pressure of blood flow, impedance to

the flow of blood, the volume of blood in the vessels and the elasticity of the vessels. This can

be modelled at various levels of detail, from simple zero-dimensional (0D) lumped parameter

models (LPM) to more complex one-dimensional (1D) and three-dimensional (3D) models

that simulate blood flow dynamics with increasing levels of spatial and structural detail [6, 7].

The LPMs approximate the cardiovascular network as a set of discrete compartments, which

makes the model computationally efficient and practical for real-time simulations or quick

assessments. These models can be enhanced to simulate various cardiovascular diseases by

tuning the model parameters to match observed physiological behaviour, allowing for the

replication of blood flow patterns in different compartments. These simulations facilitate

the exploration of scenarios that are difficult to observe experimentally, such as blood flow in

internal organs, making them useful in personalised medicine for diagnosing and monitoring

disease progression.

Application of computational modelling to the insulin-glucose regulatory system to inves-
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tigate the dynamics of T2DM has also been carried out as part of this work. T2DM affects a

significant number of people worldwide. Achieving adequate glycemic control is important

to prevent diabetic complications such as retinopathy, nephropathy and neuropathy, which

remain a significant challenge globally, particularly in low-income and middle-income coun-

tries. T2DM has traditionally been viewed as a homogeneous disease entity characterised by

insulin resistance (IR) and β-cell dysfunction. However, recent research suggests that T2DM is

a heterogeneous mix of pathological conditions, with IR and β-cell dysfunction varying across

subtypes. To further understand obesity as a risk factor in T2DM, parameter estimation on

obese and non-obese T2DM data is performed with established insulin-glucose regulatory

models. Understanding the differences between obese and non-obese T2DM by estimating

key parameters allows for identifying distinct characteristics of each group, ultimately inform-

ing personalised treatment strategies. The existing insulin-glucose model is augmented to

include the role of obesity indicators, namely BMI and leptin (a hormone secreted by adipose

tissue), to enhance our understanding of insulin-glucose dynamics in the body. The model

is built on several theoretical studies on the association of leptin with insulin and glucose

concentrations.

Common mathematical modelling approaches for physiological systems include differ-

ential equations, difference equations, delay differential equations and agent-based models

[8, 9]. The work in this thesis focuses on modelling using ordinary differential equations

(ODEs). A key aspect of model development is validating the model’s behaviour by comparing

its predictions with observed data from the system being studied. The models are usually

parameterised, and the parameters need to be determined based on available observations

and may require re-estimation using subject-specific data. The parameters could represent

physical constants, biological rates, coefficients of a system, or any other factors that govern

the model’s behaviour. Parameter estimation infers the most likely values of these parameters

by comparing the model predictions with observed data. Exploring the parameter space

through model simulations facilitates the identification of optimal conditions and critical

factors that influence system behaviour. Optimisation methods are used to systematically

explore the best combination of parameters that maximise or minimise an objective function,

typically representing the goodness of fit between model simulations and observed data.

Alongside parameter estimation, sensitivity analysis is performed to assess how changes

in these values affect model outcomes, providing insights into the model’s robustness and

reliability.

Background concepts, a study of literature on the topics discussed above and research

gaps on which the work in this thesis is based are presented in Chapter 2. The contributions

from this thesis are given in the next Section.
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1.2 Contributions from this research

The first part of this thesis explores the realm of digital twins by developing a realistic liver

chip using data and mathematical modelling. A compartmental physiological model of the

liver using ODEs is developed to estimate pharmacokinetic (PK) parameters for liver-on-chip.

Published data on metabolism and toxicology studies are used to determine parameters. The

model is used to predict in vivo liver clearance, assessing in vitro to in vivo extrapolation

(IVIVE) of estimated on-chip clearance through time series kinetic data.

The following segment of the thesis investigates lumped parameter modelling of the

cardiovascular system. It is a mathematical approach that simplifies the dynamics of blood

flow and pressure by representing the system as a network of interconnected compartments.

This method aggregates spatially distributed parameters into discrete elements, enabling the

analysis of cardiovascular dynamics through simplified mathematical equations.

Moving forward, this thesis discusses clustering-based methods to study T2DM subgroups,

aiming to identify distinct patterns and characteristics within the patient population. This

study addresses a gap in T2DM management by recognising the heterogeneity of the disease,

leading to effective standardised treatments. Focusing on uncontrolled T2DM patients in

rural India, this work considers clustering on longitudinal data to identify subtypes and lay

the groundwork for a more personalised T2DM management protocol.

The following section of the thesis focuses on parameter estimation of the oral minimal

model (OMM), explicitly considering the differences between obese and non-obese indi-

viduals with T2DM. This study uses Oral Glucose Tolerance Test (OGTT) data to classify

model parameters between control groups and subjects with T2DM. Parameter variations in

obese and non-obese individuals with T2DM are also examined. Through sensitivity analysis

and statistical tests, the study offers a better understanding of the role of obesity in T2DM,

correlating specific parameters with physiological findings. The final section of this thesis

is on the mathematical modelling of leptin in the insulin-glucose regulatory system. This

ODE-based model, incorporating both leptin and BMI, extends insulin-glucose modelling to

accommodate the role of obesity.

1.2.1 Prediction of in vivo drug clearance in liver-on-a-chip device using PBPK

modelling

This study explores the concept of digital twins, driven by data and mechanistic modelling, to

develop a liver chip that serves as a realistic digital twin mimicking the functionalities of the

human liver. A compartmental physiological model of the liver is developed using ODEs and

physiologically based pharmacokinetic (PBPK) modelling. This digital liver-on-chip simulator

(DigiLoCs) aims to estimate PK parameters associated with on-chip liver clearance using
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time-series data. DigiLoCs uses published data [10, 11] on metabolism-related PK parameters

and toxicology studies (IC50) to estimate parameters.

This model has been applied to predict the in vitro liver clearance for thirty-two drugs

using a three-compartment model of the liver-on-chip. The study also explores IVIVE, where

the on-chip clearance values are scaled to human values. Three ODEs in the model define

drug concentrations in media, interstitium and intracellular compartments based on biologi-

cal, hardware and physicochemical information. A key issue in determining liver clearance

appears to be insufficient drug concentration within the intracellular compartment. The

digital twin establishes a connection between the hardware chip structure and an advanced

mapping of the underlying biology, specifically focusing on the intracellular compartment.

This modelling approach offers several advantages, including a superior prediction of intrinsic

liver clearance compared to single-compartment or conventional models, an explainable

behaviour based on physiological parameters, and the ability to predict intracellular drug

concentration, even for difficult-to-measure cases. This work may represent the most exten-

sive cross-organ-on-chip platform study, analysing and predicting human clearance values

through data from diverse in vitro liver-on-chip systems.

1.2.2 Lumped parameter modelling of cardiovascular system

The cardiovascular system (CVS) is a network of organs and vessels responsible for pumping

and transporting blood throughout the body. One common method for modelling its hemo-

dynamics is the zero-dimensional (0D) lumped parameter model (LPM), which simplifies

the system by dividing it into compartments that represent different aspects of blood flow,

pressure and volume dynamics [6]. These models use hydraulic-electrical analogies, where

pressure gradients drive blood flow similarly to how voltage drives current in electrical circuits.

Blood flow is governed by the principles of mass, momentum and energy conservation. This

analogy allows for the modelling of vascular resistance, compliance and inertance, enabling a

detailed analysis of pressure and flow rate over time. By applying electrical circuit principles,

these models offer a mathematical framework for predicting cardiovascular dynamics.

Modelling the entire CVS is a complex task due to its intricate nature. The complexity of

the model can range from zero dimensions to higher dimensions, depending on the study

goals and the required accuracy. LPMs abstractly model sets of body organs as electrical

analogues, a process known as compartmental modelling. These models assume uniform

variations in key variables (pressure, flow and volume) within each compartment (such as an

organ, vessel or part of a vessel) at any given time. In contrast, higher-dimensional models

provide a distributed variation of these variables across space and time [12]. LPMs are suitable

for real-time simulations and can be adapted to model individual organs to entire circulatory

networks, making them versatile across various research and clinical applications.
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1.2.3 Clustering based methods to study T2DM sub groups

The study addresses a gap in T2DM management by recognising the heterogeneity within the

disease that challenges the effectiveness of a uniform treatment protocol. Despite the diverse

nature of T2DM subtypes, current guidelines for T2DM management remain standardised,

leading to inadequate glycemic control in a significant number of patients. This research

aims to bridge this gap by employing an unsupervised clustering workflow on longitudinal

cohort data from T2DM patients in rural India. The objective is to identify and characterise

subtypes among uncontrolled T2DM patients, thereby opening the possibility for a more

personalised and precise T2DM management protocol. By exploring the heterogeneity of

the uncontrolled T2DM population, the study seeks to extract translational insights that can

reform the approach to diabetes management and contribute to the emerging era of precision

medicine in diabetes care.

In this study, the traditional view of T2DM as a homogenous disease entity with insulin

resistance (IR) as the primary pathology is investigated. Recent research suggests that T2DM

is a heterogeneous mix of different pathological conditions, with the contributions of IR and

β-cell dysfunction varying among subtypes. The precise determination of the underlying

pathology is important as the field transitions to precision medicine for diabetes management.

Inadequate glycemic control poses a significant challenge, particularly in low and middle

income countries, leading to an increase in diabetic complications. The primary aim of

this work is to investigate the heterogeneity among the uncontrolled T2DM population and

identify patho-clinical features that contribute to this diversity. The ultimate goal is to pave

the way toward precision therapy by developing a more tailored T2DM management protocol

based on the identified subtypes among uncontrolled T2DM patients.

1.2.4 Oral minimal model estimation of parameters for obese and non-obese

T2DM

The Oral Glucose Tolerance Test (OGTT) is a standard diagnostic tool for identifying T2DM in

clinical settings. Clinical OGTT data from obese and non-obese individuals are used to study

the influence of obesity in the insulin-glucose regulatory system using the simplest model, the

Oral Minimal Model (OMM). The OMM is based on the Bergman minimal model [13], where

glucose analysis is done using an intravenous glucose tolerance test (IVGTT). Identification of

subject-specific oral minimal models is carried out for the insulin-glucose regulatory system

from the observed glucose and insulin readings in the OGTT data and inferring the rate of

appearance of ingested glucose from the OMM. The model parameters of the participating

subjects are studied to suggest differences in obese and non-obese diabetic physiology. By

studying the differences in model parameters between control groups and those with T2DM,
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the study aims to understand the behaviour and physiology of T2DM. Sensitivity analysis is

used to examine the relationship between parameter changes and model outputs, and then

statistical tests are applied to validate and confirm the robustness of these findings.

By correlating sensitive parameters with established physiological findings, the study

enhances our understanding of the complexities associated with T2DM. Furthermore, sensi-

tivity analysis and statistical tests add value to the investigation, ensuring that the identified

parameter differences are clinically significant. Overall, this study marks a significant step in

the application of the OMM for providing a comprehensive framework to investigate T2DM

and its relationships with both obesity and physiological parameters.

1.2.5 Mathematical modelling of leptin in insulin-glucose regulatory system

This study focuses on understanding the insulin-glucose regulatory system, specifically ad-

dressing the limitations of existing models that overlook the influence of body weight in-

dicators, such as body mass index (BMI) and leptin. Leptin, a hormone derived from fat

cells, is recognised for its role in satiety, body weight regulation, and its regulatory impact on

glucose metabolism and energy homeostasis in the insulin-glucose system. To bridge this gap,

the ODEs of the OMM are augmented by including the role of leptin and BMI. Through the

estimation of model parameters using data from the OGTT, the augmented model conforms

better with observed glucose, insulin and leptin levels in individuals with T2DM. The study

also introduces revised indices formulated from OGTT data, including BMI and fasting leptin

values, revealing a stronger correlation with existing indices. Furthermore, parameter sensitiv-

ity analysis results show the impact of model parameters on observed variables, emphasising

the associations between leptin, glucose and insulin concentrations.

The validation of the augmented model with clinical data, even in the absence of leptin

measurements, demonstrates a superior fit to glucose and insulin data compared to the

model without augmentation. This significant improvement underscores the potential of

the proposed model to enhance the understanding of the interplay between leptin, glucose

and insulin concentrations. This work introduces the first ODE-based model incorporating

both leptin and BMI in the insulin-glucose system, paving the way for developing targeted

interventions and therapies for T2DM.

1.3 Organisation of the thesis

The thesis is organised as follows.

• Chapter 1 [Introduction] presents the motivation and objectives of this work along with

a summary of the contributions from this research.
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• Chapter 2 [Background concepts and literature survey] gives an overview of the basic

concepts used in the research along with a summary of the background study and

literature review related to each contribution.

• Chapter 3 [Mathematical modelling of drug distribution in liver-on-chip device] pro-

vides data-driven mechanistic approaches to predict human in vivo drug clearance

using a digital liver-on-chip simulator (DigiLoCs).

• Chapter 4 [Lumped parameter cardiovascular modelling] develops and applies zero-

dimensional models to simulate and analyse cardiovascular hemodynamics.

• Chapter 5 [Clustering based methods to study T2DM sub groups] identifies and char-

acterises subtypes among uncontrolled T2DM patients in rural India, leading to person-

alised and precise T2DM treatment protocols.

• Chapter 6 [Oral minimal model (OMM) estimation of parameters for obese and non-

obese T2DM] explores relationships between obesity and insulin-glucose dynamics

through parameter estimation of OMM.

• Chapter 7 [Mathematical modelling of leptin in insulin-glucose pathway] augments

the OMM by incorporating obesity indicators, leptin and BMI, to better understand the

insulin-glucose regulatory system.

• Chapter 8 [Conclusion] summarises the work done and concludes the thesis while

identifying possible directions for future work.



CHAPTER 2
Background concepts and literature

survey

Chapter outline

• Organ-on-chip technology and its importance in drug development

• Physiologically based pharmacokinetic modelling of in vitro systems

• Lumped parameter modelling of the cardiovascular system

• Insulin-glucose regulatory system and oral minimal model

• Parameter estimation and optimisation methods

This chapter covers some background topics for the work presented in this thesis. Organ-

on-chip has found several biomedical applications. The application of organ-on-chip towards

expediting drug development by mimicking human physiology and providing more accurate

predictions of pharmacokinetics and pharmacodynamics is discussed in Sections 2.1 and

2.2. The approach followed here may be considered a form of digital twinning to study the

clearance of drugs in the liver. Another form of digital twinning, focusing on the circulatory

system through a network of electrical components, has also been explored. The lumped

parameter modelling approach for the cardiovascular system to study the pressure and flow

in different compartments is discussed in Section 2.3. An overview of the insulin-glucose

regulatory system and the oral minimal model are given in Section 2.4. Parameter estimation

and optimisation methods are discussed in Section 2.5.

9
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2.1 Organ-on-chip technology and its importance in drug

development

Organ-on-chip (OoC) is a microfluidic cell culture device, which reproduces the physiological

and pathological characteristics of organs or tissues by reconstructing the structure and

function in vitro. OoC has reformed the field of drug development by providing a novel,

robust and accurate platform for testing drug efficacy and toxicity. OoCs are microfluidic

devices that capture the functionality of human organs along structural lines, allowing for

the creation of a personalised, miniaturised model of human physiology. By mimicking

the complex interactions between cells, tissues and organs, OoCs enable the simulation of

human disease mechanisms and the testing of drug candidates in a realistic and controlled

environment. OoC technology is of significant importance in drug development. Traditional

drug development methods rely on animal models and two-dimensional cell cultures, which

often fail to accurately predict human responses to drugs. This has led to high attrition rates in

clinical trials, resulting in significant financial and resource demands. OoCs offer a promising

solution to this problem by providing a more accurate and predictive model of human drug

responses, enabling researchers to identify potential drug failures earlier in the development

process and accelerate the discovery of new, more effective treatments.

One of the key focuses of this thesis is on the liver-on-chip system. The liver is the main

site of drug metabolism and is composed of a series of complex hepatic lobules. Maintaining

the long-term physiological function of liver cells is a challenging problem. The liver-on-chip

technology has exhibited significant applicability in the realm of clinical trials. Kanebratt et

al. [14], Hultman et al. [15] and Bonn et al. [16] have used regression curve fitting to analyse

kinetic data in 3D spheroid models and calculate intrinsic clearance by determining the slope

of the fitted curve. In the works of Docci et al. [10] and Tsamandourous et al. [11] the kinetic

data from a liver-on-chip device is used to predict the in vivo intrinsic clearance.

A key challenge for the development of a new pharmaceutical compound is the accurate

prediction of in vivo clearance from in vitro data. In vivo clearance, or the rate at which a

drug is eliminated from the body, is a critical parameter that influences the dosing regimen,

efficacy and safety of a drug. It is a fundamental aspect of drug development, as an inade-

quate understanding of the clearance of a compound can lead to unexpected and undesirable

outcomes in clinical trials, ranging from underdosing to toxicity. However, the prediction of

in vivo clearance is challenging and frequently described as giving an underprediction even

when scaling factors or regression lines are applied. This is primarily due to the inherent

complexity of biological systems, the influence of various physiological factors and the dy-

namic nature of drug metabolism and disposition within the human body. To address these
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issues, researchers are turning to digital twinning [17, 18, 19], computer models employing

mathematical equations as tools for simulating real-world systems.

(a) Single compartment model

Clearance

Plasma

k2k1

Media Binding

Interstitium

k4k3

Intracellular

(b) Three-compartment model

Figure 2.1: Organ-on-chip model configurations

2.2 Physiologically based pharmacokinetic modelling and in-vitro

systems

Physiologically based pharmacokinetic modelling (PBPK) studies drug pharmacokinetics by

viewing human organs as separate compartments and integrating them into a system accord-

ing to physiological and anatomical knowledge. Compared to the traditional pharmacokinetic

model, the compartments and model parameters of the PBPK model have physiological mean-

ing. Thus, PBPK modelling is believed to reflect the absorption, distribution, metabolism and

excretion (ADME) of drugs or other substances in the body in vivo more accurately. These

models use differential equations to describe the physiological processes that govern the
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concentration of substances in the body, such as drug clearance, blood flow and enzyme

kinetics. PBPK models have several key features. These are mechanistic and quantitative in

nature, meaning they are based on the underlying physiology of the body and they provide

numerical predictions of drug concentrations in different tissues and organs. Additionally,

PBPK models are dynamic, simulating the time course of drug absorption, distribution and

elimination.

PBPK models have a wide range of applications in drug development, drug safety, person-

alised medicine, regulatory submissions and research. In drug development, PBPK models

can be used to predict drug pharmacokinetics and pharmacodynamics in different popula-

tions. In drug safety, PBPK models can be used to predict drug interactions and toxicities.

In personalised medicine, these models can be used to predict drug response in individual

patients based on their physiological characteristics.

The development of in vitro liver-on-chip models, coupled with PBPK modelling, has

emerged as a cutting-edge approach to replicate and study liver function in a more physiolog-

ically relevant manner. Our approach is to build a PBPK model for determining in vitro liver

clearance that uses ordinary differential equations (ODEs) and parameter estimation. Firstly,

we use an empirical single ODE model by considering the whole liver as a single compartment

(Figure 2.1(a)) that describes the dynamics of the drug within the whole liver compartment.

Subsequently, we develop a more complex three-compartment liver model, which includes

distinct compartments for plasma, interstitium and intracellular spaces (Figure 2.1(b)). This

model is explained in detail in Chapter 3. These models will utilise published data on phar-

macokinetics (metabolism) or toxicology studies (IC50) to more effectively determine PK

parameters than current state-of-the-art methods. By achieving this, we anticipate better

predictions of clinical outcomes, leading to reduced time, cost and patient burden associated

with drug development [20, 21].

2.3 Lumped parameter modelling of the cardiovascular system

The cardiovascular system (CVS), also known as the circulatory system, is a complex network

of organs and vessels responsible for transporting blood throughout the body. Comprising the

heart, arteries, veins and blood vessels, this vital system plays a crucial role in maintaining

the body’s homeostasis and overall health. The lumped parameter or zero-dimensional (0D)

cardiovascular system is a simplified model that describes the hemodynamics of the CVS. This

approach simplifies the complex distributed system into a finite number of compartments,

enabling the analysis of blood flow, pressure and volume dynamics. A typical cardiovascular

model consists of the heart chamber compartments that simulate blood pumping and vascular

networks that distribute blood throughout the body [22]. This system can be represented
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electrically using a combination of resistors, capacitors and inductors to mimic its physical

properties. Specifically, resistors represent blood’s viscous resistance in vessels, capacitors

account for vessel compliance and inductors represent blood inertia. By modifying these

elements, models of varying complexity can be created. Additionally, this approach enables

the simulation of various cardiovascular diseases, including peripheral and vascular disease,

coronary artery disease, valvular disease and others.

Ohm’s and Kirchhoff’s laws govern the electrical equivalents of fluid behaviour, enabling

mathematical representation of each compartment through ODEs that capture pressure-

volume relationships based on compliance. Numerical methods solve these equations, allow-

ing examination of blood flow and pressure throughout the network. The lumped parameter

modelling approach offers key advantages, including minimal computation time for solving

ODEs and algebraic equations and simple model structure facilitating automated personalised

simulations. 0D cardiovascular modelling has its roots in the Windkessel model of arterial

flow and has since been expanded to include the heart, heart valves and veins [23]. Various

0D models have been developed to capture the unique characteristics of each circulatory

subsystem, which are explained in detail by Yubing Shi et al. [6] and Louis Garber et al. [24].

Lumped parameter models (LPMs) have been applied to various cardiovascular research

areas, including hemodynamic simulation, cardiovascular disease diagnosis and cardiac assist

device development. While lumped parameter modelling simulates global hemodynamics and

cardiac function, other advanced modelling approaches, such as one-dimensional (1D) and

three-dimensional (3D) computational models of fluid dynamics [25, 26, 27], are better suited

for studying local flow dynamics. These higher-order models use numerical methods like

finite difference methods to solve Navier-Stokes equations and offer enhanced spatial detail.

Unlike LPMs, which vary only with time (zero-dimensional), higher-order models account for

variations in time and three-dimensional space within specific structures. Mathematically,

this distinction translates to higher-order models represented by non-linear partial differential

equations (PDEs), whereas LPMs rely on ODEs.

2.4 Insulin-glucose regulatory system and oral minimal model

The human body maintains a balance of glucose levels in the bloodstream through complex

processes involving various hormones and physiological processes. Central to this process

is the insulin-glucose regulatory system, a network of interactions between insulin, glucose

and other metabolic factors. Dysfunction in this system causes metabolic disorders, namely

type 2 diabetes mellitus (T2DM), where the body struggles to regulate blood glucose levels

effectively. To understand the dynamics of the insulin-glucose system, studies with tests

such as intravenous glucose tolerance test (IVGTT), oral glucose tolerance test (OGTT) and
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short-term modelling using ODEs are performed.

OGTT involves measuring plasma glucose and insulin levels at specific intervals (0, 30,

60, 90 and 120 minutes) after consuming a standardised 75g oral glucose load. This test is

commonly used in clinical settings to diagnose glucose intolerance and T2DM. The OGTT

minimal model, an extension of the model initially proposed for IVGTT, adapts the basic

framework by replacing the bolus dose of glucose with an input function representing the

rate of appearance of oral glucose in plasma. This modification allows for a more accurate

assessment of glucose-insulin dynamics during the oral test, for evaluating the ability to

metabolise exogenous glucose and return to baseline glucose levels (glucose tolerance [28])

and the level of insulin that is necessary to keep a constant blood glucose level (insulin

sensitivity [29]).

ODE modelling started with the minimal model for the IVGTT. Bergman’s minimal model

is a well-accepted coupled model from the original model [13]. Bolie [30] introduced another

simpler model with two coupled ODEs. A detailed feedback model with fourteen equations,

introduced by Sturis et al. [31, 32], is regulated by three variables, namely the amount of

glucose in plasma and intercellular space, the amount of insulin in the plasma and the amount

of insulin in the intercellular space. The Hovorka model consists of a glucose subsystem to

model absorption, distribution and disposal of glucose, an insulin subsystem (to model insulin

absorption, distribution, disposal) and an insulin action subsystem (insulin action on glucose

transport, disposal and endogenous production) [33].

Even though these models are widely used, a quantitative physiological model for the

insulin glucose regulatory system is more suitable for epidemiological studies. This is achieved

in the oral minimal model (OMM) developed by Dallaman et al. [34] based on OGTT. The

simplest form of OMM [34] represented using ODE are as follows

dG

dt
= − k1 · (G−Gb)−X ·G+

Ra(t)

V
, (2.1)

dX

dt
= − k2 ·X + k3 · (I − Ib), (2.2)

dI

dt
= γ · (G−GT )

+ − k4 · I, (2.3)

where G, I denotes blood glucose concentration and blood insulin concentration (suffix b

denotes basal values) at time t, respectively. Here, X is an auxiliary variable to model the

time delay in insulin-dependent glucose uptake activity. The initial values of G and I are

taken at the time when the glucose is orally ingested. The initial value of X is taken as 0

and (G − GT )
+ = (G − GT ), if G > GT and 0 otherwise. Ra is the rate of absorption of

ingested glucose; V is the volume of distribution; k1 is the fractional glucose effectiveness,

i.e. the ability to promote glucose disposal and inhibit glucose production, k2 is the insulin-

dependent increase in glucose uptake ability in tissue per unit of insulin concentration above
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Ib, k3 is a scale factor for the amplitude of insulin action and k4 is the first-order decay rate for

insulin in plasma. There are several complex IG models that have evolved over time ([33, 32]).

The OMM is based on the Bergman minimal model [13] in which the glucose analysis is done

using IVGTT. The variable X in the minimal model could be more accurately understood

as representing the incremental insulin response within the interstitial space in response to

a bolus stimulus rather than being directly proportional to the interstitial insulin level, as

it was conventionally assumed [35]. A quantitative physiological model for insulin glucose

regulatory system will be more suitable for epidemiological studies and this is achieved in the

OMM developed by Dallaman et al. [34] based on OGTT.

The parameter Ra, for the rate of appearance of oral glucose in plasma, is coupled with

a minimal model of glucose kinetics. Various Ra models have been developed based on

gastric emptying data. Lehmann and Deutsch [36] proposed a trapezoidal gastric emptying

function with a single compartment for the intestine, whereas Elashoff et al. [37] considered

exponential gastric emptying. Another linear model (Model 1 in [38]) with two compartments

for the stomach and a single compartment for the intestine was proposed where the gastric

emptying rate was constant. Yet, another parametric description of Ra as a piece-wise linear

function was proposed [34] with a known number of break times where there is a shorter

interval towards the beginning and longer intervals towards the end.

qsto

dt
= − k21 · qsto1(t) + D · δ(t), (2.4)

qsto2

dt
= − kempt · qsto2(t) + k21 · qsto1(t), (2.5)

qgut

dt
= − kabs · qgut(t) + kempt · qsto2(t), (2.6)

Ra(t) = f · kabs · qgut, (2.7)

where qsto1 and qsto2 are the amounts of glucose in the stomach (solid and liquid phase,

respectively), δ(t) is the impulse function, D is the amount of ingested glucose, qgut is the

glucose mass in the intestine, k21 the rate of grinding, kempt is the rate of gastric emptying, kabs

is the rate constant of intestinal absorption and f is the fraction of the intestinal absorption

which actually appears in plasma.

kempt(qsto) = kmin +

(
kmax − kmin

2

)
· {tanh (α · qsto − b ·D)

− tanh (β · (qsto − c · D)) + 2}, (2.8)

α =
5

2 ·D · (1− b)
,

β =
5

2 ·D · c,

qsto = qsto1 + qsto2.
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The gastric emptying rate, kempt is a function of the amount of glucose in the stomach (qsto,

Eqn 2.8). It equals kmax when the stomach contains the amount of the ingested glucose, D,

then it decreases to a minimum value of kmin. The constant b is the percentage of the dose for

which kempt decreases at (kmax - kmin)/2 and c is the percentage of the dose for which kempt is

back to (kmax − kmin)/2.

2.5 Optimisation-based parameter estimation

The unknown model parameters are estimated using experimental and observational data to

adequately identify the modelled biochemical system or processes. A common estimation

mechanism is to simulate the model with a prospective set of parameters and determine the

gap (distance) between values predicted by the model and actual experimental observations.

Parameters are iteratively re-estimated to reduce the gap between predicted and actual obser-

vations. Optimisation involves finding the optimal values of model parameters that maximise

or minimise a specific objective function. Optimisation techniques, such as gradient descent

or genetic algorithms are used to search the parameter space and identify the optimal values.

In many cases, parameter estimation and optimisation are performed iteratively, with the

results of parameter estimation serving as inputs to the optimisation process. The distance is

usually taken as the L2 norm. Consider a dynamic system

dy

dt
= f(y, t, p), (2.9)

where f describes how y changes over time t and p is the parameters in the system. The

objective function for optimisation is as follows

minimise
p

n∑
i=1

(
yiobs − yicomp

)2
,

where n is the number of observed data points, yiobs is the observed data point, and yicomp

is the computed value at time i, which can be estimated using analytical methods (using

eigenvalues and eigenvectors for simple models) or numerical methods.

Some parameters can be measured experimentally, while others need to be estimated

from available observations as it may not be feasible to determine them experimentally. The

parameters which are not directly measurable can be estimated using least squares or any

other fitting methods to analyse the model quantitatively. This way, the behaviour of the

model is captured effectively.

A good parameter estimation algorithm is to be chosen when fitting a model to experimen-

tal data. The challenge is that no single optimal estimation technique exists for all models.

Many different estimation methods have been developed to determine the best strategy for

a given problem. The commonly used parameter estimation methods include maximum
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likelihood estimation [39], least squares estimation and Nelder-Mead optimisation [40]. The

Nelder-Mead algorithm [41] is a simplex-based optimisation method that uses a set of vertices

to search for the minimum of a function, iteratively replacing the worst vertex with a better

one through reflection, expansion, and contraction operations. This process continues until

convergence, allowing the algorithm to find the optimal solution without requiring derivative

information. Least squares estimation minimises the sum of the squared differences between

the observed data and the model’s predictions. Other approaches are Bayesian estimation,

which uses Bayes’ theorem to update the probability of the parameter values based on the

observed data and maximum a posteriori estimation, which finds the parameter values that

maximize the posterior probability given the data. Many other evolutionary methods of

parameter estimation, namely genetic algorithms, also exist.

Sensitivity Analysis One of the crucial aspects of modelling is to understand how parameter

values change with model output. The parameter variations affect the output of a model when

dealing with critical data specific to biochemical systems. The interpretation of parameter

values in these systems is important to understand the relationship to their physiological

properties. To achieve this, sensitivity analysis is performed. Two broad categories of sen-

sitivity analysis are the local and global approaches. To obtain the local response of each

parameter to a model, local approaches are used which is specific to a region in parameter

space. For global response of parameters a global approach which spans the entire parameter

space is used.

Local sensitivity analysis is a simple technique which involves calculating the partial

derivative of output with respect to the parameter considered. Since single point derivatives

are taken, this method is suitable for less complex cost functions. The parameter interactions

are not considered. The local sensitivity is estimated by changing one input parameter by 10%

at a time while the other parameters are held constant, and the changes in output variable

V are compared. Eqn 2.10 shows the local sensitivity index for V with respect to the varying

model parameter (Pi), which is approximated by a small perturbation ∆Pi,

δV

δPi
= lim

∆Pi→+0

V (Pi +∆Pi, Pn̸=i)− V (Pi)

∆Pi
, (2.10)

where V (P ) is the model prediction of the intracellular concentration for parameter set P .

The local sensitivity index is normalised to eliminate the effect of units,

Si =
δV

δPi

Pi

V (P)
. (2.11)

Global sensitivity analysis captures sensitivity over the entire parameter range. In biological

systems, most of the models are non-linear, and variability and uncertainty of the inputs are to

be considered over a wide range to estimate actual model sensitivities. As the global approach
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relies on sampling the parameter space, this method becomes computationally expensive, but

the method captures the relative ranking of parameter influence. Global sensitivity analysis

evaluates the effect of potential interactions of the input parameters in an output variable.

Morris’s screening method [42] is a sampling-based global sensitivity analysis technique. In

this method, elementary effects are averaged to rank the parameter importance by computing

sensitivity measures. The individual effects of parameters are evident from the mean and

variance of elementary effects. Fisher Information Matrix (FIM) is another measure to capture

changes in parameter values which is based on calculated output sensitivities. FIM also gives

an idea of how much information can be extracted by the parameters from the experimental

data [43].

The general formulation of a non-linear dynamic system is shown as

ẋ = f(x, t, p, u); y = g(x, t, p, u);x(0) = u,

where ẋ ∈ Rns is the vector of ns number of state variables , u ∈ Rnu is the vector of nu

number of initial values of state variables, p ∈ Rnp is the parameter vector of length np and

y ∈ Rny is the output vector of length ny. The first-order sensitivity function is a sampling

time dependent matrix Sit(tk) such that the sensitivity value of ith output variable concerning

jth parameter at time tk is defined as

Sit(tk) =
δyi(tk)

δpj
.

To determine which of the parameters has a higher influence on the output, the Morris

screening method [42] is applied. It is a derivative-based approach to analyse the sensitivity

of a model function h : Rm → R to variations of m parameters pj ∈ R where j = 1, . . . ,m.

Under the assumption that h is at least once differentiable, partial derivatives δh
δpj

(p) can be

computed to define elementary effect directly. The elementary effect of the jth parameter pj

on h is defined as

dj(p) =
h(p+∆ej)− h(p)

∆
,

with step size ∆ ∈
{

1
l−1 ,

1
l−2 , . . . ,

(l−1)−1
l−1

}
, ej ∈ Rm is a small perturbation to parameter pj and

l can be any even number.

Sensitivity analysis helps in understanding model behaviour by identifying which pa-

rameters have the most impact on model output. Parameters can be prioritised, and model

robustness can be evaluated in different scenarios. More sensitive parameters are those for

which small changes significantly impact the model’s output, making them critical to the

model’s behaviour and accuracy. Less sensitive parameters are those for which changes have

a minimal impact on the model’s output, indicating the model’s relative insensitivity to these

parameters and their limited influence on its behavior and accuracy.
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Mathematical modelling of drug

distribution in liver-on-chip device

Chapter outline

• PBPK modelling of drug distribution in in vitro systems

• Three-compartment model for liver-on-chip device

• Prediction and translation of in vitro clearance to human pharmacokinetics

The drug testing dilemma presents a significant challenge in pharmaceutical development,

marked by high costs and a distressing attrition rate in accurately predicting human responses

[44, 45]. A pivotal element in preclinical drug development is the accurate estimation of the

first-in-human dose and different dosing regimens to keep drug levels within a therapeutic

range. This demands precise assessments of hepatic clearance of the drug and human phar-

macokinetics [46, 47]. Typically, the gold standard in drug development is the use of simpler

in vitro systems to study drug metabolism, including liver microsomes [48] and suspension

or plated hepatocytes [49]. The drug depletion data (time-concentration profile) are then

analysed to determine the in vitro drug clearance rate. A simple mathematical model has

been employed in earlier work, and it considers the in vitro system as a single compartment,

the one-compartment PK model [50]. Well-mixing and instantaneous drug distribution is

assumed and all biological processes, e.g., permeability and partitioning from cell culture

media into intracellular milieu are lumped into drug clearance. This approach also cannot

differentiate between compounds actually being metabolised and compounds bound to me-

dia proteins or hardware. The so determined in vitro clearance value is then extrapolated to

humans (in vitro – in vivo extrapolation) and integrated into human physiologically-based

pharmacokinetic (PBPK) models [47, 51] to predict human pharmacokinetics (absorption,

19



20 Chapter 3. Mathematical modelling of drug distribution in liver-on-chip device

distribution, metabolism and excretion (ADME)), before actually testing a new compound in

humans. Although this approach is well-established in drug development and easy to use, it

also systematically underpredicts human PK [52] by 5-10 fold across studies and compounds.

Microphysiological systems (MPS) and organ-on-chips, as well as 3D organoids, hold great

promise to address more complex in vitro ADME (Absorption, Distribution, Metabolism and

Excretion), toxicology and pharmacology questions offering miniature, biomimetic systems

that replicate key aspects of human organ physiology [53, 54, 55]. These technologies create an

environment where human cells can grow and interact in an organ-specific context, providing

insights into human biology and disease that were previously unattainable in conventional

in vitro models or animal studies. Organ-on-chip (OoC) and MPS-based systems are not

only used in today’s drug development for pharmacokinetics (PK) but also for assessing drug

efficacy and toxicity [10, 53, 56, 57]. While the emulated in vitro biology of MPS and OoCs is

getting ever more complex and produces more human-relevant data, these systems still fall

short in considerably improving the prediction power of in-human situations, like PK [10, 58].

However, MPS and OoC data are also still analysed using the conventional mathematical

model (one-compartment) that does not account for advanced biology. It remains unclear

whether the OoC and MPS biology is still not human-relevant enough (and thus not producing

human-relevant data) or the conventional mathematical analysis is the cause for the under-

prediction. Potentially, a digital twin framework that enables the mapping of complex on-chip

biology to advanced mathematical models could provide a useful approach to enable OoC

and MPS translation to humans and increase the prediction power, but it is currently lacking.

3.1 Need for a digital twin to predict drug clearance in liver

The drug testing dilemma presents a significant challenge in pharmaceutical development,

marked by high costs and a distressing attrition rate in accurately predicting human responses

[44, 45]. A pivotal element in preclinical drug development is the accurate estimation of the

first-in-human dose and different dosing regimens to keep drug levels within a therapeutic

range. This demands precise assessments of hepatic clearance of the drug and human phar-

macokinetics [46, 47]. Typically, the gold standard in drug development is the use of simpler

in vitro systems to study drug metabolism, including liver microsomes [48] and suspension

or plated hepatocytes [49]. The drug depletion data (time-concentration profile) are then

analysed to determine the in vitro drug clearance rate. A simple mathematical model has

been employed in earlier work, and it considers the in vitro system as a single compartment,

the one-compartment PK model [50]. Well-mixing and instantaneous drug distribution is

assumed, and all biological processes, e.g., permeability and partitioning from cell culture

media into intracellular milieu, are lumped into drug clearance. This approach also cannot
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differentiate between compounds actually being metabolised and compounds bound to me-

dia proteins or hardware. The so determined in vitro clearance value is then extrapolated to

humans (in vitro – in vivo extrapolation) and integrated into human physiologically-based

pharmacokinetic (PBPK) models [47, 51] to predict human PK (ADME), before actually testing

a new compound in humans. Although this approach is well-established in drug development

and easy to use, it also systematically underpredicts human PK [52] by 5-10 fold across studies

and compounds.

The current study aims to develop a digital twin approach integrating MPS and OoC

data within advanced computational models of biology to improve the prediction of clinical

clearances. DigiLoCs, our developed digital liver-on-chip simulator, facilitates the accurate

description of on-chip complex biology to disentangle biological processes, namely clearance,

permeability, and partitioning. The tool comprises and utilises information on complex

biological processes (clearance, permeability, partitioning), hardware-specific information

from the studied in vitro system, and compound-specific information. By accounting for more

multi-dimensional information, the tool enables differentiation between active biological

processes, such as metabolism, and passive ones, such as permeability and partitioning

of a compound from cell culture media into the cellular environment. This tool offers a

significant advancement over conventional approaches, which fail to explicitly consider

passive biological processes and conflate them into a singular clearance mechanism. By

providing a more detailed understanding of biological processes, our tool has the potential to

reveal better insights into liver-chip biology. Drug depletion kinetics of 32 compounds were

taken from literature covering commercially available liver-on-chips (CnBio [10, 11], Javelin

[59]), and 3D spheroids [14, 16], including fast and slow-cleared compounds. According to

these studies, DigiLoCs outperform the conventional prediction approach considerably. The

impact of a more accurate description of clinical clearance values on predicting human PK

was investigated in a proof-of-concept study using propranolol. The kinetics of propranolol

was predicted in humans using the conventional approach, DigiLoCs and literature approach.

The results obtained from DigiLoCs for propranolol in the proof-of-concept study were much

closer to the actual observed human values than those of other approaches.

From the survey of the literature, this appears to be the first and most extensive study so

far, comparing head-to-head the performance of different hepatic in vitro systems to predict

human clearance and demonstrating the impact OoC and MPS systems can have in the drug

development process, enhanced through the modelling and prediction features of DigiLoCs.
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3.2 Methodology

In this section, the following are described: i) data used in the study for predicting human

clearance, ii) DigiLoCs, digital twin for liver-on-chip, iii) mathematical model, parameter

estimation and sensitivity analysis for DigiLoCs and iv) translation to humans and prediction

of human pharmacokinetics.

3.2.1 Dataset used for parameter estimation

In this work, published data on pharmacokinetics (metabolism) or toxicology studies of 32

drugs are used (See Table 3.1) to predict human PK.

Study Drugs
Used in

this
study

In vitro system
cell

number
[a.u.]

Media
volume

[ml]
Flow

On-chip
compart-

ments
Docci et al. [10] 9 9 CnBio Liver-Chip 3E5 1.60 Recirculation 1
Tsamandouras et al. [11] 6 3 CnBio Liver-Chip 3E5 1.60 Recirculation 1
Rajan et al. [59] 12 8 Javelin Liver-Chip 2.15E5 1.30 Recirculation 2
Kanebratt et al. [14] 4 4 3D Spheroid (Hurel) 6E3 0.05 No 1
Bonn et al. [16] 8 8 3D Spheroid (Hurel) 3E4 0.10 No 1
Total 38 32

Table 3.1: Overview of literature reports providing on-chip pharmacokinetic information on
compound clearance

3.2.2 Mathematical model

A typical single-compartment model is described as follows. Let C(t) be the drug concentra-

tion in the chip at time t, V the volume of the chip, and CLc the clearance parameter. Then we

have
dC

dt
= −CLc

V
· C,

with initial value C(t = 0) = C0. The solution to this ODE is

C(t) =C0 · e−
CLc
V ·t. (3.1)

Taking the logarithm on both sides,

log C(t) =− CLc

V
· t+ log C0, (3.2)

which is equivalent to regression on log-transformed kinetic data.

A digital twin of liver-on-chip with three compartments that incorporate much more

information on parameters related to both on-chip characteristics and drug-specific prop-

erties was developed. The three-compartment model considering media, interstitium and

intracellular compartment is described as follows: Let Cm(t), Ci(t), Cc(t) and Vm, Vi, Vc be the
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concentration of the drug at time t, and volume of the media, interstitium, and intracellular

compartment respectively. CLc is the clearance parameter. Then we have

dCm

dt
= − k1

Vm
· Cm +

k2
Vm

· Ci; (3.3)

dCi

dt
=

k1
Vi

· Cm −
(
k2 + k3

Vi

)
· Ci +

k4
Vi

· Cc; (3.4)

dCc

dt
=

k3
Vc

· Ci −
(
k4 +CLc

Vc

)
· Cc. (3.5)

The parameters here are defined as follows,

k1 =Funbound · Pendothelial · SAmed_int_liver, (3.6)

k2 =
k1

Kint_med
,

k3 =Kwater_int · PAint_cell and

k4 =Kwater_cell · PAcell_int.

where Kint_med is the partition coefficient for the transfer of drug between the media and

interstitium, Pendothelial is the permeability coefficient of the drug between the endothelial

layer, SAmed_int_liver is the surface area of the interstitium, Kwater_int is the partition coefficient

for water exchange or movement within the interstitium, Kwater_cell is the partition coefficient

for water exchange or movement within the intracellular compartment, PAint_cell is the product

of the surface area and permeability coefficient of the cellular membrane in the interstitium

compartment, PAcell_int is the product of the surface area and permeability coefficient of the

cellular membrane in the intracellular compartment and Funbound is the fraction unbound

(media, reference value). All the relevant variables and parameters with descriptions are given

in Table 3.2.

We can write this system of linear ordinary differential equations (ODEs) in matrix form,

C ′ =A · C, where (3.7)

A =


− k1

Vm
k2
Vm

0

k1
Vi

−
(
k2+k3

Vi

)
k4
Vi

0 k3
Vc

−
(
k4+CLc

Vi

)
 .

The general solution for the system of ODEs at time t is:

C(t) =eA·t = eX·Λt·X−1 · C0 = X · eΛt ·X−1 · C0, (3.8)

where X is the matrix of eigenvectors of A, Λ is the diagonal matrix with λ1, λ2, λ3 (eigenvalues

of A) as diagonal entries, and C0 is the initial value of variables at time 0.
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Parameter Description Unit Status

Kint_med
Partition coefficient for the transfer of drug between
the medium and interstitium

dimensionless calculated

Kwater_int
Partition coefficient for water exchange or movement
within the interstitium

dimensionless calculated

Kwater_cell
partition coefficient for water exchange or
movement within the intracellular compartment

dimensionless calculated

Pendothelial

The rate of passive diffusion across the endothelial layer,
which is the product of surface area and the permeability
coefficient of the drug

cm/min estimated

PAint_cell
Permeability coefficient of the cellular membrane in
the interstitium compartment

mL/min calculated

PAcell_int
Permeability coefficient of the cellular membrane in
the intracellular compartment

mL/min calculated

Funbound Fraction unbound (medium, reference value) dimensionless calculated
SAmed_int_liver Surface area of the interstitium cm2 calculated
CLc Intrinsic on-chip clearance mL/min estimated
Variables
Cm Concentration of the drug in the media compartment µmol/mL simulated
Ci Concentration of the drug in the interstitium compartment µmol/mL simulated
Cc Concentration of the drug in the intracellular compartment µmol/mL simulated

Table 3.2: Names and description of all relevant variables and parameters in the three-
compartment digital twin

The objective function for optimisation is as follows:

minimise
CLc

n∑
i=1

(
yiobs − yia

)2


yia = eA·ti · C0

computed using eigenvalues

and eigenvectors,

where yiobs is the observed data point and yia is the computed value at time i respectively and

n is the number of observed data points.

3.2.3 DigiLoCs: Digital Twins for cell-based liver assays

DigiLoCs is a software tool, developed within this work that describes the on-chip complex

biology more accurately in the context of use to predict clinical clearance values. The software

comprises (Figure 3.1):

• modelling of complex biological processes (clearance, permeability, partitioning),

• hardware-specific information from the studied in vitro system and

• compound-specific information.

The tool differentiates between active biological processes, such as metabolism, and pas-

sive ones, like permeability and partitioning of a compound from cell culture media into

the cellular milieu. This contrasts with conventional approaches, where passive biologi-

cal processes are not considered especially and lumped together into a single process, i.e.,

clearance.
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Figure 3.1: Digital twin (DT) approach. Contrasting conventional approach, the DT approach
uses biological, hardware, and physicochemical information to map the biological processes
on liver-on-chip more accurately to in silico, thereby maximising the information leveraged.
This results in the disentanglement of active (metabolism) and passive (permeability, parti-
tioning) processes. Image adapted from [60].

Liver-on-chip technology provides a more physiologically relevant environment compared

to traditional cell cultures or animal models, enhancing the simulation of drug responses

using mathematical models. Hence, a more accurate mathematical description is needed. The

three primary compartments of the liver chip considered in the model are media, interstitium,

and intracellular space, which serve as dynamic environments where drugs are distributed,

metabolised, and interact with hepatic cells. This compartmentalisation is based on concepts

applied in human whole-body PBPK modelling.

The software tool is developed in the open-source programming language R [61] and

seamlessly communicates with PK-Sim (https://www.open-systems-pharmacology.org/) via

in-house developed functions. For more information, see esqlabsR package (https://github.

com/esqLABS/esqlabsR). All analysis and plotting were also done in R. The proposed workflow

does not interfere with existing wet lab standard operating procedures (SOPs) for performing

biological experiments and does not add an extra considerable burden to the user. Dig-

iLoCs uses existing biological data, and its performance may be improved by measuring

cell-associated compound concentrations in addition to the compound media depletion time

course, which would add a minor extra step in the lab SOP. This, however, is negligible given

the improvement in performance power and the confidence in the prediction.

Implementation of hardware specifications DigiLoCs map the chip architecture to a com-

partmental model to describe the time-dependent distribution of a compound on-chip. The

compartment models use time-dependent ODEs and assume well-mixing within compart-

ments. These are generally accepted to describe the distribution of exogenous and endoge-

https://www.open-systems-pharmacology.org/
https://github.com/esqLABS/esqlabsR
https://github.com/esqLABS/esqlabsR
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nous compounds and molecules. A physical chamber separated by a membrane or connected

by flow to another chamber is represented by a compartment in the software. Serial compart-

ments are connected via media flow rates (typically in ml/min) between the compartments

describing mass transport via gradients and diffusion and normalised by the volume of the

originating compartment.

Implementation of biological specifications The biology (more precisely, the cell type

exerting the biological function under investigation; here: metabolism) is mapped by two

additional compartments representing the interstitial and intracellular space of the investi-

gated biology (Figure 3.1). Transport rates from the cell culture media into the interstitial and

intracellular milieu are described by two core processes:

• passive diffusion (driven by concentration gradients between compartments)

• thermodynamic equilibrium (distribution of compound between two phases)

These processes are then described by two main parameters in the computational model: per-

meability (how fast is a compound taken up?) and partitioning (how much of the compound is

taken up by cells?). Lastly, the metabolism rate is reallocated to the intracellular compartment

and corrected by the unbound fraction of the compound in the intracellular compartment.

Similarly, in pharmacokinetics, the distribution of compounds is often described using a

compartmental framework, which involves dividing a system into distinct compartments and

modelling the processes that govern the movement of compounds between them.

Implementation of compound-specific information The following physicochemical prop-

erties of the investigated compounds are used in the software: i) lipophilicity (logP), ii) molec-

ular weight (MW) and iii) fraction unbound (fu); to calculate up to six dependent downstream

parameters (listed below). These parameters describe the partitioning from the main media

compartment into the interstitial space and between the water fraction and both interstitial

and intracellular space. Additionally, permeability across the endothelial barrier and between

interstitial and intracellular spaces are calculated.

Partitioning: i) Kint_med ii) Kwater_cell iii) Kwater_int

Permeability: i) Pendothelial ii) PAcell_int iii) PAint_cell

Here int refers to interstitial space, med refers to media, water refers to water exchange

fraction, and cell refers to intracellular space. These parameters are calculated based on

well-established and documented equations implemented in PK-Sim software [46], which is

a comprehensive software tool for whole-body PBPK modelling. It enables rapid access to

all relevant anatomical and physiological parameters for humans and common laboratory

animals contained in the integrated database for model building and parameterisation. The
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same partition coefficient calculation methods as implemented in PK-Sim are also readily

available and can be investigated:

• PK-Sim standard

• Poulin and Theil

• Rodgers and Rowland

• Schmitt

• Berezhkovskiy

Further, only the unbound fraction of a compound can be taken up by cells and be

metabolised by cells. The unbound fraction in the cell culture media is typically informed by

biological experiments. However, the intracellular unbound fraction is not often available

or measured. Thus, two established QSAR models (quantitative structure-activity relation-

ship) are implemented in the software to predict the unbound intracellular fraction of the

investigated compound as a function of its physicochemical properties [62, 63].

Implementation of software Methodologically, DigiLoCs is implemented in the open-source

programming environment R with its own package. A library of two common chip architec-

tures and two cell types with six different chip-specific settings has already been implemented.

1. One chamber, no media flow

2. Two chamber, recirculating flow

3. Organ-on-chip (hepatocytes)

a. CnBio

b. Hurel 1

c. Hurel 2

d. Dynamic42

e. Javelin

The most straightforward system is a single, perfused microfluidic chamber containing one

kind of cultured cell (e.g., hepatocytes) that exhibits functions of one tissue type linked to

channels for fluid transport. In more complex designs, two or more microchannels are

connected by porous membranes, lined on opposite sides by different cell types, to recreate

interfaces between different tissues. The CnBio and Javelin chip settings are shown in Figure

3.2. For detailed information on the processes and modelling, readers are directed to Bhatia

et al. [65]. These building blocks can be interchangeably used and connected, similar to the
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Figure 3.2: Common chip architectures: Chip 1 is for CnBio [10] and 3D spheroids [64] and
chip 2 is for Javelin [59] architectures. Qmix is the mixing flow rate in mL/min.

building blocks in PK-Sim. While the R code and its package provide a step-by-step guide to

generate and run a simulation, the code communicates seamlessly with a generic PK-Sim

model to determine partitioning and permeability values as described above, which are used

in the simulation.

3.2.4 Parameter estimation

Parameter estimation aims to find unknown parameters in a computational model and is

estimated using experimental data collected from well-defined and standard conditions. By

minimising the distance of theoretical function values and experimentally known data, the

set of parameters in the model can be estimated. The parameters which are not directly

measurable can be estimated using least squares or any other fitting methods to analyse the

model quantitatively. Nominal parameter values are obtained from PK-Sim software.

Parameter estimation in DigiLoCs is a two-step process. Firstly, a customised cost function

is implemented. This cost function calculates the weighted difference (ssq) between the

model simulation (pred) from a specific compartment and the corresponding observed data

(obs) for each time point according to the equation

ssq =
obs− pred

pred
. (3.9)

Common parameter estimation methods include maximum likelihood estimation and Nelder-

Mead optimisation. Nelder-Mead, a non-linear optimisation method, is used to find the

minima of the objective function in this work. Additionally, the partition coefficient between

the intracellular (IC) and the main media compartment is estimated using the area under the
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curve (AUC) of simulated time-concentration profile of the IC and interstitial (Ist) compart-

ment. This value is corrected for by the QSAR-predicted cellular unbound fraction (fucell) and

the unbound fraction in the media (measured, fumedia) as follows

Kpuu,pred =
AUC(Ist + IC)

AUC(media)
· fucell
fumedia

. (3.10)

Kpuu,obs is calculated from literature [66], where media and intracellular concentrations

in hepatocytes were determined. Initially investigated for suspension hepatocytes in a 2D

setting, the authors provide a scaling factor (∼4.9) to apply to human hepatocytes. Further,

the ionisation state of the investigated compound (-1, 0, 1) results in a different partitioning.

Otherwise, a range of possible partition coefficients are investigated. This is an additional

anchor point for estimating the cost function value and links the simulated intracellular

and main media compartment concentrations. Eventually, both differences are squared and

summed up, resulting in the final sum of residuals. Based on this, a compound-specific scaling

factor (SF) is calculated and used to scale the predicted human clearance:

SF(drug) =
Kpuu,obs
Kpuu,pred

. (3.11)

Specifically for the liver use cases, on-chip liver clearance and surface area between the

main media compartment and the cell layer are estimated. It is possible to estimate other

parameters, such as pre-calculated permeability or partition coefficient values.

3.2.5 Translation to humans

Drug-related parameters extracted from OoC or any other in vitro studies can be scaled to

predict clinical parameters using in vitro-in vivo extrapolation (IVIVE) [10, 11]. The typical

value of unbound intrinsic clearance CLint(u) determined for each drug from the pharmacoki-

netic analysis of the in vitro depletion data is scaled up to a human liver equivalent unbound

intrinsic clearance CLint(u),H using

CLint(u),H =
CLint(u) · HC · LW

fuinc
, (3.12)

where HC is the human hepatocellularity of 120 million cells / g of liver, LW is the average

human liver weight of 25.7g / kg of body weight [11] and fuinc is the unbound fraction of drug

in the incubation medium. The hepatic clearance (referring to whole blood concentrations) is

then predicted (CLH,pred) using the Well-Stirred (WS) model:

CLH(pred,WS) =
QH · fub · CLint(u),H

QH + fub · CLint(u),H
, (3.13)

where QH is the average hepatic blood flow of 20.7 mL/min/kg of body weight and fub is the

fraction of the drug unbound in blood. The fraction unbound in the blood was calculated for
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each compound from the known fraction unbound in the media (fup) and blood-to-plasma

ratio (Rbp) according to the equation fub = fup/Rbp or directly used, if available from the

literature. The predicted hepatic clearance (CLH,pred) values were then compared to observed

hepatic clearance (CLH,obs) values (referring to whole blood concentrations). Following, the

ratio of predicted (either via conventional or digital twin approach) and observed clinical

clearance values for all investigated compounds was calculated. Using these ratios, a density

distribution function was computed (function geom_density from ggplot [67]) for visual

purposes only.

3.2.6 Prediction of human pharmacokinetics

Initially, a PBPK model is developed using qualified installations of the software PK-Sim

that ensures the software has been installed correctly and thoroughly validated according to

established procedures. A whole-body PBPK model includes an explicit representation of the

organs most relevant to the uptake, distribution, excretion, and metabolism of the drug. These

typically include the heart, lungs, brain, stomach, spleen, pancreas, intestine, liver, kidney,

gonads, thymus, adipose tissue, muscles, bones, and skin. More information can be found in

Appendix A.

The tissues are interconnected by arterial and venous blood compartments, and each

is characterised by an associated blood flow rate, volume, tissue partition coefficient, and

permeability. If applicable, R (Distribution 4.0) and RStudio (Version 1.2.5) are used in the

analysis for preprocessing and post-processing of data and model outputs [68]. The analytical

approach is based on the principles set out in the EMA, FDA, and/or OECD guidelines for

reporting on PBK M&S [54]. The developed PBPK model is used to describe the human kinetics

of propranolol. Key kinetic parameters are informed by either clinical data, literature values

or on-chip predictions. The translational workflow that integrates organ-on-chip results to

predict human pharmacokinetics is shown in Figure 3.3.

3.3 Results of DigiLoCs

We report the following results in this section. First, results from a simulation model based on

a digital twin for selected compounds; second, sensitivity analyses; third, prediction of human

clearance values; and finally, translation to human PK using propranolol as a proof-of-concept

study. The liver clearance and surface area of the chip are estimated after fitting the drug

kinetic data. The Poulin and Theil method of partition coefficient calculation was used due to

its superior fit to observed drug kinetics, which outperformed alternative methods.
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Figure 3.3: Translational workflow plan that integrates results from organ-on-chip with com-
puter modelling to predict the kinetics of drugs in humans. The digital twins of the humanised
organ-on-chip systems, together with chip-specific information and physicochemical infor-
mation, are developed in R.

3.3.1 Simulating on-chip compound depletion

The digital twins for the investigated in vitro liver systems were successfully implemented in R

and used to simulate the on-chip kinetics. After parameter estimation, the resulting model

simulations describing the observed compound depletion data were visually inspected. The

final parameter values can be found in Table A.2. Additionally, the squared sum of residuals

was evaluated and deemed acceptable as it was less than < 0.01, which was the case for all

simulations (data not shown). An example of on-chip kinetics is presented in Figure 3.4.

As can be seen, the digital twin approach (violet line) captures the on-chip kinetics (blue

dots) very well. Simultaneously, the intracellular (IC) kinetics are plotted (red lines), clearly

highlighting the difference in compound uptake and, thus, clearance rates. The remaining

figures are presented in Appendix (See Figures A.1, A.2, A.3 and A.4).

3.3.2 Sensitivity analysis of three-compartment model

The sensitivity analysis, both local and global, was conducted to quantify the sensitivity

of model output intracellular concentration with input parameters. The input parameters

Kint_med, Pendothelial, SAmed_int_liver, Kwater_int, Kwater_cell, PAcell_int, PAint_cell, fu and CLc are var-

ied to evaluate the sensitivity of the output variable intracellular concentration (Cc). The Sobol

sensitivity analysis of the SALib package in Python is used to perform the global sensitivity

analysis. Input parameters are sampled using the Saltelli sampler. The lower and upper bound



32 Chapter 3. Mathematical modelling of drug distribution in liver-on-chip device

(a) Diclofenac (b) Midazolam

(c) Oxazepam (d) Propranolol

Figure 3.4: Digital twin-based model simulation of on-chip kinetics after fitting parameters
for selected compounds. Observed data are shown in blue dots, where the data for diclofenac,
midazolam, and oxazepam are from Docci et al. [10], while propranolol is from Tsamandouras
et al. [11]. The red, violet and green curve plots the drug concentration in the intracellular,
medium and interstitium compartments, respectively: IC = intracellular, Ist = interstitium.

of the parameters are set as 0.1-fold and 10-fold of the baseline parameter values, respectively.

The first-order and total-order indices are estimated using the Sobol sensitivity analysis. The

analyses were performed for various parameters, and the results indicated that the output is

more sensitive to parameters such as the permeability coefficient of the endothelial layer, sur-

face area of the liver sinusoids and clearance. These parameters were estimated or calculated

from clinical data/ experimental results. Clearance (CLc) is identified as the most sensitive

parameter with respect to intracellular concentration. The results imply that accurate values

of these sensitive parameters are crucial for the model’s accuracy.
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(a) Local sensitivity analysis

(b) Global sensitivity analysis

Figure 3.5: Local and global sensitivity of the parameters with respect to output intracellular
concentration. (a) Blue bars indicate that the output and the input change in the same
direction, and the red bar indicates that the output decreases when the input increases. (b)
The blue and orange bars represent first-order and total-order indices, respectively.
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Figure 3.6: Impact of DigiLoCs on predicting clinical clearance values compared to the con-
ventional approach. In total, a set of 32 compounds across three different in vitro liver systems
have been investigated. The x-axis presents the ratio of predicted/observed clinical clearance
values using either the DigiLoCs or the conventional approach, and the y-axis shows the
frequency of the ratio observed.

The normalised local sensitivity indices (Figure 3.5(a)) and the first-order and total-order

global sensitivity indices (Figure 3.5(b)) for intracellular concentration across the input pa-

rameter set are shown. The results from both local and global sensitivity analyses show that

the output is more sensitive to parameters Pendothelial, SAmed_int_liver, fu and CLc. SAmed_int_liver

and CLc were estimated and nominal values were used for all other parameters. SA results

imply that we need correct values of the constants Pendothelial, fu as they are more sensitive.

3.3.3 Predicting human clearance

The on-chip estimated clearance values were translated to total human clearance according

to Eqn 3.13. More detailed information is available in the Appendix (see Tables A.1 and A.2).

Likewise, from the investigated studies (Table 3.1), in vitro unbound clearance values were

available and scaled to human equivalents.

The conventional approach is a single-compartment model explained in Section 3.2.2

using a single ODE. The ratio of clinical observed human clearance values and either predicted

human clearances using conventional mathematical modelling or the digital twin approach
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were estimated and converted into a density function for easier graphical visualisation as

described in Section 3.2.5. As can be seen in Figure 3.6, the digital twin approach (DigiLoCs)

outperforms the conventional approach considerably. The centre of the distribution is around

1, indicating a non-biased prediction of clinical clearance values, while the width of the distri-

bution is very small. Quantitatively, the ratio for the digital twin approach overall compounds

is 1.04 ± 0.31, with a coefficient of variation of 30%. In contrast, the conventional approach

(red curve) majorly under-predicts the clearance values while maintaining a broad distri-

bution and thereby adding to uncertainty in the prediction (0.56 ± 0.44, CV = 79.3%). The

correlation plot between the observed and herein predicted clinical clearance values high-

lights the improved prediction performance of the DigiLoCs approach on an individual drug

level. As can be seen in Figure 3.7 (example graph for CnBio Liver-on-Chip data), most of the

compounds fall within the 1.5-fold line (Average fold error, AFE = 0.965). Similar correlation

plots are presented in the Appendix (See Figures A.5, A.6 and A.7) for the other in vitro systems.

3.3.4 Translation to human PK

The impact of accurately predicting human clearance values based on in vitro cell-based as-

says on predicting human PK was assessed using propranolol as a proof-of-concept case study.

First, a human PBPK model describing the human kinetics of propranolol was implemented

in PK-Sim and qualified with clinical observations. Next, the predicted human clearance value

using either the conventional modelling approach or based on the same on-chip kinetic data

was implemented in the human PBPK model, simulating the kinetics after a single oral dose.

Further, a population of n = 1000 patients was simulated to account for inter-patient variabil-

ity. As shown in Figure 5, the implemented human PBPK model describes observed clinical

data well (using clinical clearance values). When substituting only the clearance value with the

conventional or the digital twin-based values, the impact on simulating human PK becomes

apparent, while the conventional approach would overpredict (i.e., the on-chip clearance is

underpredicted) the human PK (3-fold Cmax, up to 6-fold overprediction of AUC). Moreover,

this approach would actually simulate non-negligible concentrations of propranolol left over

after 24 h. Repeated daily dosing would result in the accumulation of propranolol in this hy-

pothetical setting, which would have immediate implications for potential toxicity or efficacy

considerations. On the other hand, the digital-twin-based approach still slightly overpredicts

the AUC and Cmax; however, only by 1.5-fold and captures the terminal phase correctly.
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Figure 3.7: Correlation between observed and predicted in vivo intrinsic clearance (CLint)
using the three-compartment liver chip for 12 drugs (Docci et al. 2022; Tsamandouras et al.
2017). The solid line shows the line of unity, while the dotted line is 1.5-fold, and the dashed
line has a 3-fold deviation.

3.4 Discussion on DigiLoCs

The aim of this work is to improve the current prediction of human clearance values and

to present a framework for translating in vitro findings to relevant clinical situations. The

presented integrated translational approach combined quantitative OoC and cell-based assay

compound depletion kinetics with an OoC-digital twin to simulate drug kinetics in humans.

Initial investigations revealed the potential to describe clinical clearance values more

appropriately than is currently possible with the conventional approach. This simpler ap-

proach lumps biological processes together into a single process – clearance – and uses only

minimal information available, e.g., only the cell number and media volume. While biological

systems have evolved rapidly in the last decade, especially in the field of organ-on-chip and

microphysiological systems, the applied mathematical models to analyse the quantitative
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Figure 3.8: Simulated kinetics of propranolol after a single oral dose (80 mg). Pink dots are
clinical observations (digitised from Borgström et al. [69]), while the blue solid line represents
the mean of the patient population using the clinical observed clearance value. When using
the clearance value (red line) based on conventional approaches, the area under the curve
is 6-fold overpredicted. In contrast, using the digital twin-based clearance, the AUC is only
1.5-fold overpredicted, also simulating the right kinetics at 24 h (black curve). Shaded areas
represent ± 1 SD.

complex biological data have been the same for decades (the early concept of clearance was

introduced by Möllers in 1928, while Well-stirred model was introduced in 1971).

In contrast, the digital twin approach for the organ-on-chip and 3D spheroids comprises

three building blocks described here: biological, hardware, and physicochemical information.

The distinction between active and passive processes is achieved by an explicit description

of uptake, distribution, and metabolism involved in the biological processes. Further, the

digital twin links the architecture of the hardware chip with an advanced mapping of the

underlying biology (intracellular compartment). The on-chip kinetics for 32 compounds (six

compounds were removed from the initial set due to missing information) was well described,

highlighting the drug-specific effects on cellular uptake and, hence, metabolism. Note that

this analysis used the same biological information as used in the conventional approach and

that no additional biological experiments were needed or performed to improve the outcome

of the digital twin approach. The predictive power of organ-on-chip and 3D spheroids over

conventional approaches was revealed when the depletion data was analysed with the digital

twins (Figure 3.6). Not only was the systematic underprediction issue resolved, but the

uncertainty in prediction was also reduced by a factor of 3 (comparing CVs).



38 Chapter 3. Mathematical modelling of drug distribution in liver-on-chip device

Lastly, we aimed to demonstrate the clinical impact of this approach by translating the

results to humans using propranolol as a proof-of-concept example. Here, the head-to-head

comparison clearly demonstrated the superior power of both quantitative biological data

from OoCs and digital twins over conventional approaches in predicting human PK more

appropriately (Figure 3.8). Although only one compound was used to demonstrate clinical

impact, the workflow and process are easily applicable to other compounds. To the best of

our knowledge, this study is the biggest comprehensive report to systematically assess the

predictive power of organ-on-chip in the context of the use of liver clearance.

The mathematical algorithm to determine liver clearance depends on the time-concentration

profiles and, if available, on intracellular or cell-associated compound concentrations. The

algorithm minimises a cost function by identifying a clearance value such that model predic-

tion and data observation match. The cost function takes both the PK profile from cell culture

media and the cell-associated levels into account, which is not the case for the conventional

approach. Further, binding of the compound to the plastic/hardware of the chips, to proteins

contained in the cell culture media, or any other intracellular lipids can be accounted for to

accurately determine liver clearance. DigiLocs, further, also does not depend on a scaling

factor, which overcomes the systematic underprediction of conventional approaches (5-10

fold on average across multiple studies).

So far, limited information is available from the literature or in-house measurements

on the observed partitioning of compounds into the intracellular or cell-associated milieu

of hepatocytes. If that data becomes available, it may be incorporated compared to the

adjustments made in the software to match the clinical clearance values. If the predicted

and observed Kpuu values match, the digital twin approach truly improves the prediction. If

there is a discrepancy between these values, the fitting process can be re-run including the

observed Kpuu value. This would inform the maximum capacity of the system to metabolise

the compound. If this final rate is still lower than the observed clinical clearance value, two

options are possible to understand and improve the prediction:

1. Calculate a correction factor, which is compound-specific and chip-specific and not

generic like in the conventional approaches.

2. Investigate other model-specific parameters to optimise, e.g., permeability or partition-

ing.

Although initially developed for hepatic clearance, the mathematical model can be em-

ployed for toxicity or efficacy-related questions depending on the context of use. In such a

setting, time-concentration profiles will be simulated and linked to other measured biomark-

ers (e.g., ATP (adenosine triphosphate), TEER (barrier integrity)) to determine IC50 (drug

effectiveness) or EC50 (toxic potency of drugs) values, and parameters to assess toxicity
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and efficacy, respectively. Likewise, the same integration of complex biological processes,

hardware-, and drug-specific information can be used to model other cell and chip types,

e.g., a blood-brain-barrier-chip, which is used to determine the permeability of compounds

across the barrier. Eventually, we envision DigiLoCs support the pharmaceutical decision-

making process by reducing animal testing and ultimately streamlining the drug development

process.

3.5 Conclusion

The development of digital twins for organ-on-chips, reported here, incorporating systems

of differential equations-based models and leveraging published data, holds great potential

to enhance our understanding of drug behaviour and clinical outcomes. The in vitro liver

clearance for 32 drugs was predicted using DigiLoCs and a proof-of-concept (translation

to human pharmacokinetics) study on propranolol was done. DigiLoCs are envisioned to

serve as a decision-support tool for pharmaceutical research, aiding in estimating first-in-

human doses, evaluating human pharmacokinetics, and importantly, diminishing reliance

on animal experimentation, thereby fostering more efficient, expedited and sustainable drug

development processes. Our approach is generalisable across various physiological contexts

and not limited to liver metabolism but may be extended to other organs as well, such as gut

metabolism and barrier models such as the brain or placenta.





CHAPTER 4
Lumped parameter modelling of

cardiovascular system

Chapter outline

• Need for a comprehensive lumped parameter model of the circulatory system

• Governing ODEs and simulation for whole-body cardiovascular system

• Quantitative analysis and validation of the developed model

The cardiovascular system (CVS) is a complex network of organs and vessels responsible

for pumping and transporting blood throughout the body. At its core, the CVS is a remarkable

transportation system that delivers oxygen and nutrients to cells and removes waste products.

Comprising the heart, arteries, veins and blood vessels, this vital system maintains body

homeostasis and general health. One common method for modelling its hemodynamics is

the zero-dimensional (0D) lumped parameter model (LPM), which simplifies the system by

dividing it into compartments that represent different aspects of blood flow, pressure and

volume dynamics [6]. These models use hydraulic-electrical analogies, where pressure gradi-

ents drive blood flow similarly to how voltage drives current in electrical circuits. This analogy

allows for the modelling of vascular resistance, compliance and inertance, enabling a detailed

analysis of pressure and flow rate over time [6]. By applying electrical circuit principles, these

models offer a mathematical framework to predict cardiovascular dynamics. Blood flow is

described by equations similar to those governing electric flow, allowing for the application

of established electric circuit analysis methods to investigate cardiovascular dynamics. 0D

models simulate global hemodynamics in the circulatory system using hydraulic-electrical

analogues. While the electrical analogue simplifies nonlinear aspects of cardiovascular me-

chanics, such as nonlinear pressure-volume relationships, these limitations do not undermine

41
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the general analytical approach. This work aims to expand on existing compartment models

by developing a comprehensive whole-body cardiovascular model.

4.1 Need for a comprehensive cardiovascular model

Lumped parameter cardiovascular models draw parallels with hydraulic systems, representing

the cardiovascular system as a network of resistors, capacitors and inductors. The devel-

opment of LPMs has been motivated by the need for a more extensive understanding of

cardiovascular physiology and the desire to simulate various disease states and therapeutic

interventions. Existing LPMs are mostly disease-specific and lack a comprehensive approach.

The pressure and flow are studied only in particular regions of interest, and the effects on

other organs/whole-body are often not considered. There is a need for a whole-body model

that incorporates most vital organs to study diseases and their effects in detail, addressing

the limitations of current models. This study presents a comprehensive 0D model of the CVS,

incrementally developed and validated through a thorough review of existing literature.

Modelling the human CVS is crucial for understanding cardiovascular disorders and can

aid in developing simulations that explore pressure and flow dynamics [7, 70, 71]. LPMs have

evolved from the Windkessel model of arterial flow [23] now to include the heart, heart valves,

and veins. Various 0D models have been developed to capture the unique characteristics

of each circulatory subsystem, which are reviewed in detail in Yubing Shi et al. [6]. These

models are widely applied in various areas of cardiovascular research to simulate hemo-

dynamics, characterise diseases, and develop cardiac medical devices [70, 24]. Advances

such as the combination of LPMs and one-dimensional (1D) models have improved vascular

hemodynamic simulations [72], and more complex models have been created to simulate

systemic and pulmonary circulation, as well as arrhythmias and diseases like COVID-19

[73, 74, 75]. Recent developments also include non-invasive monitoring models for continu-

ous cardiac output, enhancing the accuracy of lumped parameter models through validation

[6, 76]. Subject-specific CVS model parameters are estimated non-invasively from signals like

photoplethysmograph using LPM [12].

The advancements of LPMs underscore the ongoing evolution in cardiovascular research

and their potential for simulating disease states and personalising treatments. However, there

is a need for a unified whole-body model that includes vital organs to study the systemic

effects of diseases and therapies. For instance, patients with complex congenital heart defects

(CHDs) [77] often experience multi-organ failure due to altered circulatory systems. A whole-

body CVS model could simulate the long-term effects of CHDs on liver, kidney and brain

function. A unified model could also predict systemic consequences of heart failure [78] on

other organs, mainly lungs and liver, guiding more effective treatment strategies. Our work
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addresses this gap by developing and validating a comprehensive 0D cardiovascular model

that will serve as a foundation for studying drug transport and cardiovascular dynamics in the

context of personalised medicine.

The base model [75], comprising heart chambers, pulmonary circulation, and systemic

circulation, is expanded to include relevant organs as compartments to form a complete

whole-body closed circuit. The following sections provide a description of the whole-body

model, including its mathematical formulation using ODEs, parameter setting, sensitivity

analysis and validation using L2 norm and a review of existing literature.

4.2 Methodology

The whole-body LPM for the cardiovascular system is developed as a closed-loop comprising

compartments representing body vasculature. The subsections briefly describe the circulatory

anatomy, followed by governing equations, parameter sensitivity, and validation.

4.2.1 Overview of circulatory anatomy

The cardiovascular system were abstracted to form compartments that correspond to specific

organ systems or vascular regions: the four heart chambers, pulmonary circulation, aortic

circulation, cerebral circulation, facial circulation, upper body circulation, renal circulation,

hepatic circulation, mesenteric circulation and lower body circulation. We developed a model

with major vasculature, including the ascending aorta, aortic arch, subclavian, common

carotid artery, internal and external carotid arteries, descending and abdominal aorta, celiac,

renal, mesenteric, splenic, hepatic, and iliac arteries, as well as the inferior and superior vena

cava and portal vein. An illustration of the human body with the compartments (organs) we

have modeled is given in Figure 4.1 and the acronyms used in this work are described in Table

4.1.

The heart acts as a pump, with its four chambers - the left and right atria and ventricles -

working together in a regular rhythm to circulate blood throughout the body. The pulmonary

circulation in our model is divided into pulmonary arteries, left lung, right lung and pulmonary

veins. Oxygen is absorbed from the blood by the tissue in systemic circulation and the

deoxygenated blood is sent back to right heart for re-oxygenation through lungs. The aorta,

arising from the left ventricle, is anatomically divided into the ascending aorta, aortic arch,

descending aorta and abdominal aorta. From the aortic arch, it ascends to supply the common

carotid artery, which directs blood to the cerebral (via internal carotid artery) and facial

circulation (via external carotid artery), while another branch (via subclavian) supplies the

upper limbs. It then continues downward as the descending aorta and supplies blood to the

lower body organs.
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The upper body circulation involves cerebral, facial and upper limb circulation which are

connected to the superior vena cava on the other end. The lower body circulation is through

the abdominal aorta which extensively branches to renal circulation, hepatic circulation,

splanchnic circulation and lower limbs, connected on the other end to the inferior vena

cava. Hepatic tissue receives blood from two sources: the hepatic artery and the portal vein.

The portal vein is formed by the joining of the splenic and superior mesenteric veins, which

together collect blood from the spleen, intestines, and other abdominal organs, and then

deliver this nutrient-rich blood to the liver. The portal vein carries about 75% of the blood to

the liver, while the hepatic artery supplies the rest with oxygen-rich blood. Circulation within

a compartment is modeled by representing smaller arteries as an RLC circuit system, while

the tissue is represented by a resistor. The circuit diagram for the entire network is shown in

Figure 4.3. The color scheme in the diagram is as follows. The heart chambers are displayed

within green boxes, and the lung compartments are shown in salmon-colored boxes. Blue

represents deoxygenated blood, red indicates oxygenated blood, and purple represents areas

where the two blood types mix.

4.2.2 Model development

Time-varying elastances represent heart chambers and the valves are represented using diodes

which ensure unidirectional flow. The model is built by adding compartments incrementally

(say one by one) to the base model with eight compartments described in Regazzoni et al.

[75]. After addition of a compartment the model parameters are manually tuned to ensure

physiological matches. The blood pressure, flow and volume in each compartment are

represented using P , Q and V , respectively. Each compartment is represented using an RLC

(resistor, capacitor, inductor) circuit. The combination of the three elements captures the

dynamics of a compartment in terms of blood storage, flow, and dissipation. Table 4.2 lists

the compartments, parameter acronyms, resistance, capacitance and inductance. Parameter

values are primarily obtained from the literature when available; otherwise, they are manually

adjusted to align with physiological behavior.

4.2.3 Governing equations

The dynamics of the four heart chambers are described by time-dependent elastance [79].

These chambers are denoted by the right and left atria and ventricles, RA, RV, LA and LV,

respectively. We will denote a generic chamber by XX. To run the model we need to capture

the dynamic state of the heart, one where the heart allows passive filling of blood which is the

diastolic phase and other one where the heart pushes blood to the lungs which is the systolic

phase. The elastance E is the sum of these terms involving the active and passive phases. At
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Figure 4.1: Human body anatomy marked with compartments in the comprehensive model

Figure 4.2: Base model of cardiovascular system (adapted from [1])
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Figure 4.3: Entire closed-loop electrical analog model of human cardiovascular system
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time t, the elastance EXX(t) is

EXX(t) = EBXX + EAXX · fXX(t), (4.1)

where fXX(t) is a periodic (with a period of a heartbeat) time-dependent function ranging

from 0 to 1 that accounts for the two phases of the heart. The change in volume with time in

each chamber is the difference in inward and outward blood fluxes. For instance, volume of

blood contained in the left atrium (VLA) is represented by

dVLA(t)

dt
=QPul

Ven(t)−QMV(t), (4.2)

where QPul
Ven, QMV is the blood flow in the pulmonary vein and mitral valve, respectively.

The pressure inside a specific heart chamber (PXX(t)) is computed using EXX and differ-

ence in volume of blood in the chamber (VXX) and the unloaded volume (V 0XX), represented

by

PXX(t) = EXX(t)(VXX(t)− V 0XX). (4.3)

Windkessel model for compartments Let us consider the formulation of the ascending

aorta (AscA) compartment. The ODEs for the pressure and flow in the ascending aorta are

represented using a simple RLC circuit as follows

CAscA
dPAscA

dt
=QAV(t)−QAscA(t),

LAscA
dQAscA

dt
=−RAscA ·QAscA(t) + PAscA(t)−PAArc(t).

The upstream blood flow is from the aortic valve (QAV), and the downstream blood flow is

through the ascending aorta (QAscA). A total of 56 ODEs represent the whole-body cardiovas-

cular model. The equations were solved using the diffrax library [80] with a Just in Time (JIT)

compiled solver using automatic differentiation. We used an initial time step of 1 ms and set

both absolute and relative error tolerances to 1 ∗ 10−8. Detailed descriptions of compartments

and ODEs are provided in Appendix B.1.

4.2.4 Parameter values and manual tuning

The parameters of the whole-body model, summarized in Table 4.2, consist of values from

existing literature (marked with *) and others that are manually tuned. The compliance for the

superior (SVC) and inferior vena cava (IVC) are set high (CSVC = 50.0, CIVC = 160.0) in our model

as it includes all the compliances of the veins in organs. Veins are highly compliant vessels

and can accommodate large changes in blood volume with minimal changes in pressure,

stabilizing venous return to the heart. The aorta (CAscA = 0.3) is assigned a higher compliance

compared to smaller arteries (CDscA = 0.1, CAbdA = 0.08, CCCar = 0.07) to reflect the elastic
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properties. As we move from the aorta to smaller arteries, the compliance of individual vessels

decreases. However, the sum of the compliance across all smaller arteries increases. This

distributed compliance is important for dampening pressure fluctuations for smooth blood

flow to tissues.

The resistance of arteries increases as we move from the aorta to smaller arteries and

arterioles. The aorta has the lowest resistance due to its large diameter, while smaller arteries

and arterioles have progressively higher resistance. The resistance values for organs (for

instance, RULimbT, RFacT, RCerT, RRenT, etc.) are set relatively high. This is because the main

resistance to blood flow in the systemic circulation comes from the arterioles and small

arteries within organ tissues.

Large arteries (e.g., aorta, carotids) have higher inductance values, which allow pressure

waves generated by the heart to propagate more rapidly along arterial walls. Smaller arteries

and veins have lower inductance because the inertia of blood is less significant in these vessels

due to lower flow velocities and smaller diameters. The parameters for pulmonary arteries,

veins, and lung compartments are characterised by lower resistance and higher compliance

compared to systemic arteries, reflecting the low-pressure, high-compliance nature of the

pulmonary circuit. Initial values of hemodynamic variables (flow, pressure and volume) for all

the compartments in the model are presented in Appendix B.1 Table B.1.

4.2.5 Validation methods

To ensure stability and physiological relevance of our comprehensive model, we analysed

quantitative metrics and physiological comparisons as explained below.

1. Volume conservation - the conservation of blood volume across all compartments of the

model is established. The simulation is run for a large number of heart cycles ( > 1000)

and checked for periodic volume stability.

2. Flow conservation metrics - two quantitative metrics are presented: the mean absolute

flow difference and the root mean square error (RMSE) expressed as percentages and

are calculated based on the difference between compartmental inflow and outflow.

- Mean absolute flow difference quantifies the average net imbalance between inflow

and outflow, normalized as a percentage of the mean flow:(∑
|inflow − outflow|∑

mean flow

)
× 100

- Root mean square error (RMSE) captures standard deviation of the flow imbalance, also

normalized to the mean flow:(√
mean(inflow − outflow)2)

mean flow

)
× 100
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Both metrics are expressed as percentages and are calculated for each compartment.

3. L2 norm comparison with base model - We quantified the difference in flow rates and

pressures using L2 norm to evaluate the consistency between the comprehensive and

base model. The L2 norm difference is normalized with respect to the base model

variables for comparison.

L2 norm difference =
|(θcomprehensive − θbase)|2

|θbase|2

where θbase and θcomprehensive are vectors of physiological variables (e.g., flow rates and

pressures) from the base and comprehensive models, respectively.

4. Pressure-volume (PV) loop - simulated pressure-volume (PV) loops for the left and right

ventricles were compared with base model and reference PV loops from the literature.

PV loops are a gold standard for assessing cardiac cycle dynamics, and close agreement

indicates that the model reproduces ventricular hemodynamics.

5. Cardiac output validation - Cardiac output of each compartment is calculated percent-

wise to establish physiological consistency.

Cardiac output percent per compartment =
mean flow in compartment

stroke volume
∗ 100

Stroke volume(mL/s) =
(EDV ˘ESV ) ∗ heart rate (beats per min)

60

where EDV and ESV are end diastolic and end-systolic volume, respectively.

6. Physiological range validation - The range of blood pressure, flow, and volume is val-

idated with the available literature, ensuring consistency with reported physiological

values. However, an exhaustive list of values is unavailable, especially considering blood

flow in internal organs, for instance, in hepatic and splanchnic circulation.

4.3 Results and validation

The comprehensive model is run for 10000 cardiac cycles, with a duration of 0.8 sec per cycle,

and the results from the final cycle are presented. This section presents the outcomes of the

comprehensive model, comparing its performance to the base model through quantitative

and qualitative analyses. The systemic circulation in the comprehensive model is divided

into several compartments, unlike the base model, which has one compartment each for

the systemic artery and veins. Section 3.2 examines the sensitivity of model parameters and

Section 3.3 validates model using quantitative metrics and physiological ranges from the

literature.
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Figure 4.4: Comparison of simulated waveforms from the comprehensive model with refer-
ence ranges. Twelve subplots show pressure (blue), volume (orange), and flow rates (green)
across cardiac chambers and valves over one cardiac cycle. Simulated results (solid lines)
and base model results (dashed lines) are plotted for left ventricle (LV), right ventricle (RV),
left atrium (LA), right atrium (RA), and valves: mitral (MV), tricuspid (TV), aortic (AV), and
pulmonary (PV). Reference regions are shaded: pressure and volume plots include reference
minimum (lighter shade) and maximum (darker shade) bounds; flow plots indicate peak
reference values.
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Acronym Description Acronym Description
RA Right atrium Fac Facial
RV Right ventricle Cer Cerebral
LA Left atrium ULimb Upper limb
LV Left ventricle Cel Celiac
MV Mitral valve Ren Renal
PV Pulmonary valve Spl Splanchnic
AV Aortic valve Mes Mesenteric
TV Tricuspid valve Por Portal vein
RL Right lung Hep Hepatic
LL Left lung Iliac Iliac artery
AscA Ascending aorta LLimb Lower limb
AArc Aortic arch SVC Superior vena cava
DscA Descending aorta IVC Inferior vena cava
AbdA Abdominal aorta Pul Pulmonary
Sub Subclavian Ven Vein
CCar Common carotid Ar Artery
ICar Internal carotid Rmin Open valve resistance
ECar External carotid Rmax Closed valve resistance

Table 4.1: List of Acronyms

Figure 4.5: Pressure waveforms in the ascending aorta (PAscA), pulmonary artery (PPulAr),
cerebral artery (PCer), and renal artery (PRen) over one cardiac cycle. Each colored line
represents the pressure in the corresponding vessel. For each subplot, the shaded horizontal
bands indicate the established physiological reference range: the upper reference limit is
shown by the darker shade (Max ref), and the lower reference limit is shown by the lighter
shade (Min ref), both in the color corresponding to each compartment.
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Compartment
Active

elastance*
Passive

elastance*
Time of

contraction*
Time of

relaxation*
Duration of

contraction*
Unloaded
volume*

[mmHg mL−1] [mmHg mL−1] [s] [s] [s] [mL]
Left atrium 0.22 0.18 0.17 0.17 0.90 2.00
Left ventricle 3.35 0.20 0.25 0.40 0.22 20.00
Right atrium 0.06 0.07 0.17 0.17 0.90 5.00
Right ventricle 0.55 0.05 0.05 0.05 0.20 20.00

(a)

Compartment Abbreviation(s) Resistance (R) Compliance (C) Inductance (L ×10−3)
[mmHg s mL−1] [mL mmHg−1] [mmHgs2mL−1]

Pulmonary Artery XPul
Ar 0.008 10.0 0.87

Pulmonary Vein XPul
Ven 0.0123 30.0 0.0087

Right Pulmonary Artery XRPul
Ar 0.012 — 0.0296

Left Pulmonary Artery XLPul
Ar 0.016 — 0.0331

Right Lung (RL) XRL 0.012 10.0 0.0296
Left Lung (LL) XLL 0.012 8.0 0.0296
Ascending Aorta XAscA 0.02 0.3 1.25
Aortic Arch XAArc — 0.2 —
Common Carotid XCCar 0.06 0.07 1.79
Internal carotid XICar 0.08 — 1.79
External carotid XECar 0.60 — 5.36
Cerebral Artery XCer

Ar 0.1 0.1 1.79
Cerebral circulation XCer, XCerT 0.1, 4.0 0.1 1.79
Facial Artery XFac

Ar 0.30 0.10 5.36
Facial circulation XFac, XFacT 0.3, 6.0 0.10 5.36
Subclavian XSub 1.0 — 2.68
Upper Limb XULimb, XULimbT 2.10, 6.0 0.20 2.68
Descending Aorta XDscA 0.03 0.1 1.25
Abdominal Aorta XAbdA 0.04 0.08 1.25
Celiac artery XCel 0.1 0.05 1.07
Renal Artery XRen

Ar 0.1 0.005 1.07
Renal circulation XRen, XRenT 0.9, 3.0 0.005 1.07
Splenic Artery XSpl

Ar 4.0 0.07 4.29
Splanchnic circulation XSpl, XSplT 4.0, 4.0 0.07 4.29
Mesenteric Artery XMes

Ar 1.2 0.35 1.07
Mesenteric circulation XMes, XMesT 1.2, 2.0 0.35 1.07
Superior Vena Cava XSVC 0.18 50.0 0.08
Inferior Vena Cava XIVC 0.173 160.0 0.04
Portal Vein XPor

Ven 0.6 8.0 1.07
Hepatic Artery XHep

Ar 1.2 0.035 1.07
Hepatic circulation XHep,XHepT 1.2, 6.0 0.035 1.07
Iliac Artery XIliac 0.4 — 0.86
Lower Limb XLLimb,XLLimbT 0.8, 6.0 0.38 0.86

(b)

Table 4.2: Compartment names and parameter values used in the comprehensive cardiovas-
cular model. Each compartment is associated with parameters denoted by X, representing
resistance (R), inductance (L), and compliance (C) within the circulatory network. Values
marked with an asterisk (*) are from literature [75]; all other parameters have been manually
tuned. A ’–’ indicates that the corresponding component is not present in that compartment.

4.3.1 Simulation

Figure 4.4 presents the simulated pressure, flow, and volume waveforms across the heart

chambers, overlaid with physiological minimum and maximum bounds for reference. Figure
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4.5 illustrates the simulated pressures in major vessels, including the pulmonary vein and

artery, the ascending aorta, and the cerebral artery. Results for the remaining compartments

are provided in the Appendix (Figures B1–B6).

The simulated hemodynamic variables closely match the physiological reference values.

The left ventricular end-systolic pressure (PLV) peaks at ∼125 mmHg and the right ventricular

pressure (PRV) reaches a peak of 28 mmHg both within the normal physiological range. The

peak flow through the mitral valve (QMV) is about 600 mL/s, and through the aortic valve (QAV)

is ∼950 mL/s both aligning within the physiological value. The ascending aortic pressure

(PAA) peaks at ∼125 mmHg and 80 mmHg, matching the standard aortic pressure of ∼120/80

mmHg. The mean pulmonary artery pressure (PPul
Ar ) is around 25 mmHg, which is within

the normal range (12–25 mmHg), and the pulmonary venous pressure (PPul
Ven) peaks at about

15 mmHg (reference: 8–15 mmHg).

4.3.2 Sensitivity analysis

A global sensitivity analysis using Sobol indices is performed to quantify the influence of

whole body model parameters on hemodynamic variables - pressure, volume and flow. Each

parameter is sampled uniformly between 0.9 and 1.1 times its nominal value, with 230,000

samples used in the analysis. The influence of each parameter is quantified by measuring

the area under the curve for each variable over a cardiac cycle. Results are presented as bar

plots for selected clinically measurable outputs and as a heatmap summarizing parameter

influence on all variables. Figure 4.6 presents the total Sobol indices for clinically measurable

variables, including left and right ventricular volumes (VLV, VRV), aortic and pulmonary artery

pressures (PAA, PPul
Ar ), flow in ascending aorta (QAA), and superior vena cava pressure (PSVC).

For both VLV and VRV , heart rate (BPM) is the dominant parameter, with total Sobol

indices exceeding 0.6, indicating a strong influence on ventricular filling and ejection. The

elastance of the left and right ventricles (EALV, EARV) and right ventricular resistance (RSVC)

also contribute, but to a much lesser extent (indices ∼0.1). Pressure in ascending aorta (PAA)

is influenced by BPM (index ∼0.35) and RSVC (∼0.15), whereas pulmonary artery pressure

(PPul
Ar ) is more evenly affected by time period of left atrial contraction (tCLA),RSVC, and left

ventricular passive elastance (EBLV), each with indices around 0.2. Flow in ascending aorta

(QAA) is mostly determined by BPM (index > 0.85). In contrast, superior vena cava pressure

(PSVC) is most sensitive to RSVC and RIVC (indices ∼0.25).

An overview of parameter influence across all model outputs is provided in Figure 4.7.

Heart rate (BPM) demonstrates consistently high sensitivity across a wide range of outputs,

particularly for ventricular volumes, ascending aorta flow, and other pressure variables, con-

firming its global impact on the whole model. In contrast, certain resistance parameters (e.g.,

RSV C , RRen) exhibit high sensitivity for specific outputs, such as venous and renal pressures,
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Figure 4.6: Total Sobol sensitivity indices for six clinical variables, showing the five most
influential parameters for each. Bar height indicates the overall impact of each parameter
on the variable, with error bars representing confidence scores. Variables shown are: left
ventricular volume (VLV ), right ventricular volume (VRV ), aortic pressure (PAA), pulmonary
arterial pressure (PPUL

AR ), aortic flow (QAA), and superior vena cava pressure (PSV C).

Figure 4.7: Global sensitivity analysis for comprehensive model. Total Sobol indices for
all model parameters and output variables. Darker colors indicate higher sensitivity. For
readability, indices below a threshold of 0.1 have been omitted in the heatmap.
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Figure 4.8: Stability of compartmental volumes in the comprehensive model. Shown are the
heart, lung, and systemic vascular volumes during the last five cycles in 10,000 simulation
cycles. The volumes remain stable and exhibit periodic oscillation, demonstrating that the
model maintains dynamic steady state

but have minimal influence elsewhere. The timing parameters (tCLA, tCRA) and ventricular

elastances (EALV , EARV ) show moderate output-specific effects particularly on pulmonary

variables. Several parameters display low sensitivity, indicating limited influence within the

tested parameter ranges. A similar sensitivity analysis is performed for the base model, with

the corresponding results included in the Appendix.

4.3.3 Validation

To assess the stability and periodicity of our comprehensive model, we monitored the volumes

in the heart, lungs, and systemic vasculature over 10,000 simulation cycles. As shown in Figure

4.8 (last five cycles), the volumes for all compartments remain stable and shows periodic

oscillation. This demonstrates that the model achieves a dynamic steady state, with no

instability in compartment volumes. The periodic constancy of these volumes indicates

conservation of mass and confirms that the model maintains physiological homeostasis over

extended simulations.

Pressure-volume (PV) loops for the left and right ventricles, comparing the simulated

model (blue), standard reference (black), and base model (red) are shown in Figure 4.9. The

simulated PV loops resemble both shape and range of PV loop from literature [2], indicating

that the comprehensive model reproduces physiological ventricular function. In contrast,

the base model shows clear differences in the size and shape of the loops, highlighting the

improvements achieved with the current model.

The distribution of cardiac output (as a percentage) across vascular compartments as

predicted by the model is presented in Figure 4.10. The y-axis shows the percent of total

cardiac output delivered to each compartment, while the x-axis lists the main compartments.

The model outputs are grouped and color-coded: arteries (green), systemic veins (orange),

and organs (blue). For each compartment, the model’s predicted value is shown as a bar, with
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Figure 4.9: Pressure-volume (PV) loops for the left (left panel) and right (right panel) ventricles.
Simulated model output (blue), standard reference data (black), and base model results (red)
are shown for each ventricle. The simulated PV loops resemble both the shape and range of PV
loops from literature [2, 3], indicating that the comprehensive model reproduces physiological
ventricular function, while the base model exhibits significant deviations in both pressure and
volume.

Figure 4.10: Distribution of cardiac output (%) across major arteries, veins, and organs as
predicted by the model. Bars represent model predictions, grouped by compartment type: ar-
teries (green), systemic veins (orange), and organs (blue). Grey bars indicate the physiological
range from the literature.
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Figure 4.11: Convergence of flow metrics over increasing cardiac cycles for (left) organs,
(center) arteries, and (right) systemic vessels. Bars show mean absolute flow difference (green)
and root mean square error (RMSE, lavender). Both metrics decrease rapidly with more cycles,
approaching zero, and indicating that model flow predictions stabilize as the number of cycles
increases.

Pressure Value Volume Value Flow Value
PLV 0.511 VLV 0.399 QMV 1.101

PLA 0.323 VLA 0.394 QAV 1.221

PRV 0.458 VRV 0.292 QTV 0.639

PRA 0.113 VRA 0.115 QPV 1.162

Table 4.3: L2 norm difference of blood pressure, volume and flow in base and comprehensive
model

bars representing the physiological range reported in the literature. The results demonstrate

that the model reproduces the expected distribution of cardiac output, with major vessels

such as the pulmonary artery, pulmonary vein, and aorta receiving 100% of the output, as

expected. Downstream compartments and organs receive fractions of the total output in

line with physiological norms. For instance, the celiac artery, renal artery, and mesenteric

artery receive 30.9%, 9.2%, and 14.6% of the cardiac output, respectively. Minor deviations are

discussed in detail in the Discussion section.

The convergence of model-predicted flow rates across organs, arteries, and systemic

vessels over increasing numbers of cardiac cycles is shown in Figure 4.11. As shown in all

three panels, both metrics decrease sharply with increasing cycle number. In the early cycles

(21–51), both the mean absolute flow difference and RMSE are relatively high, reflecting initial

model transients and adaptation. By 101 cycles and beyond, both metrics approach zero

for all compartments, indicating that the model has reached a stable periodic solution with

negligible cycle-to-cycle variability. This convergence is most pronounced in systemic vessels,

which initially exhibit higher variability but stabilize with continued simulation. These results

confirm that the model achieves numerical stability, with flow metrics becoming consistent

after sufficient cardiac cycles.

The L2 norm differences for flow rates and pressures for comprehensive and base models



58 Chapter 4. Lumped parameter modelling of cardiovascular system

are reported (after adjusting for phase-shift in curves) in Table 4.3. The larger L2 norm values

for certain variables are justified when considering their reference ranges, which align more

closely with the comprehensive model than the base model. The comparison in base and

comprehensive model simulations with reference ranges are shown in Appendix Figure B9.

Table B.2 in Appendix presents the variables (pressure, volume, and flow) with descriptions,

simulation ranges, reference ranges, and the status of their physiological acceptance. The

status is marked as acceptable/satisfactory if the simulated range is within or close to the

reference range.

4.4 Discussion

The simulations demonstrate that our comprehensive model simulations agree with the refer-

ence range for most of the model variables. The comprehensive model fits the physiological

conditions better than the simplified base model. The extensive and adaptable nature of our

model enables easy replication and modification to simulate various disease states by selec-

tively removing or adjusting specific compartments or variables. This flexibility is important

in capturing the disease state interactions between multiple organs, such as those observed in

sepsis, a multi-organ dysfunction syndrome.

The volume of the left ventricle (LV) is undervalued compared to the normal range, but this

is not a critical issue. Instead, it highlights the challenge of tuning the large system within the

given constraints. Similarly, the flow rate in mitral and pulmonary valves is high in the range

of 1500 mL/s, whereas the comprehensive model captures this at 700-800 mL/s. The volume

in the left ventricle and right ventricle for the base model peaks around 150 mL, whereas the

physiological range is 100- 120 mL, where the comprehensive model is close.

The larger L2 norm values (4.3) for certain variables are understandable, given that the

base model simplifies physiological conditions, resulting in notable deviations from typical

physiological states. For instance, the base model’s PLV peak pressure reaches approximately

150 mmHg, which is 36% higher than the reference range peak of 110 mmHg in Table B.2.

In contrast, PLV peak pressure in the comprehensive model is closer to the reference range,

with a peak value of approximately 120 mmHg. The base model’s peak aortic valve flow rate

(QAV) exceeds the physiological reference value (700 mL/s) by 114% (1500 mL/s), whereas

the comprehensive model’s QAV peak (600 mL/s) shows a modest 14% difference. This

trend persists across other quantities, highlighting that the comprehensive model is more

physiologically consistent.

The present sensitivity analysis reveals that heart rate (BPM) exerts the most influence

across a range of clinically observable variables, including ventricular volumes and ascending

aortic flow, as evidenced by high Sobol indices. Vascular resistances, particularly those affect-
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ing venous return, and chamber elastances are also significant contributors to pressure and

flow dynamics, though their impact was more localized compared to the global effect of heart

rate. These findings highlight that future parameter estimation for the comprehensive model

should focus on heart rate, resistances, and elastances, as these parameters are most likely

to drive changes in model outputs. This way, model calibration can be made more efficient,

while less sensitive parameters may be fixed at nominal values.

Several difficulties make parameter setting a challenging task. These include the invasive

nature of many of the measurements, restricted access to the required measurement sites

due to anatomical configuration, and practical difficulties in the orientation of flow probes

(particularly invasive ones). In this work, parameter estimation is not considered due to the

computational complexity arising from the large number of parameters, which exceeds 118.

Finding a suitable parameter combination for the model is quite difficult. Our solution in this

situation is to first determine reasonable ranges for each parameter. We then assign various

combinations of values within these ranges to the model parameters and assess whether

the resulting model outputs align with the measured pressure and flow data. This trial-and-

error procedure is repeated until an acceptable value combination of parameters is obtained.

Parameter fitting optimization and aggressive tuning can refine the comprehensive model to

better match the physiology.

The comprehensive model effectively captures blood circulation within organs such as the

lungs and liver, and can be extended to simulate disease states involving multiple organ failure.

Future work will focus on fitting the model to real-world data from a maximum number of

observational quantities collected from patients and applying optimization techniques to

refine the model performance.

The present results demonstrate that the comprehensive cardiovascular model success-

fully reproduces physiological pressure-volume (PV) relationships for both the left and right

ventricles, closely matching the shape and range of PV loops reported in the literature. The

base model exhibits notable deviations in both the size and shape of the PV loops, which

highlights the improvements achieved by the comprehensive model. The simulated right

ventricular volume is lower than physiological values, but is better representative of the ac-

tual physiology compared to the base model. The model effectively captures the systemic

distribution of cardiac output, supporting its use for investigating regional hemodynamics

and organ perfusion. The cardiac output to the external carotid artery is higher in our model

due to the inclusion of the muscles of the neck in the facial circulation compartment. Sim-

ilarly, the increased cardiac output to the celiac artery can be attributed to the inclusion of

both muscular and adipose tissues in the abdominal compartments. The decline in both

mean absolute flow difference and RMSE with increasing numbers of simulated cardiac cycles

indicates that the model quickly overcomes initial transients and achieves a stable periodic
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solution (Figure 4.11). This is particularly evident in systemic vessels, which initially show

greater variability but stabilize as the simulation progresses. The larger L2 norms observed

for certain variables in the base model can be attributed to its less detailed representation of

cardiovascular mechanics and flow distribution. The validation against reference ranges, as

visualized in Figure B9(Appendix), further supports the comprehensive model simulation.

To effectively treat disease states, incorporating pharmacokinetic attributes, such as drug

diffusion, into modeling systems enables analysis of how drug distribution affects the cardio-

vascular system response. Pharmacokinetics can be introduced to the current whole-body

network to enhance understanding of the effects of drugs by applying simulation-based test-

ing. Complex models have been built for single-ventricle patients, which mimic vasculature

but fall short in capturing the dynamic responses to various therapies. This complex model

needs to be fabricated in the first place for potential use cases, for instance, in the case of

sepsis, which greatly impacts several compartments. A potential future implementation would

involve calibrating the model using real-world data, using optimization.

Although ours is an expanded model, it still has limitations. A significant limitation is

the lack of extensive literature providing information on how these compartments should

be initially configured (in terms of resistance, inductance and capacitance values). However,

as the model becomes more complex with additional variables and parameters, it opens

opportunities for optimizing the system to achieve proper tuning. The coronary circulation is

not included in the current model. As a result, a portion of the cardiac output is effectively

unaccounted for due to its distribution to the coronary vessels. We still modeled a simplified

version focusing solely on critical compartments, omitting other relevant components in the

cardiovascular system. This deliberate simplification results in a lower-order representation

of the system, potentially overlooking subtle interactions.

In conclusion, our comprehensive model provides an adaptable framework for simulating

blood flow and pressure dynamics in a healthy individual. The developed model acts as a

digital twin for the cardiovascular system, which can be tuned extensively for patient-specific

hemodynamic simulations. The challenges in optimizing this network can be effectively

addressed by fitting the model to clinical data, ensuring better alignment with real-world

physiological conditions. This foundational model has significant potential for future re-

search applications, including the simulation of disease states, evaluation of pharmaceutical

interventions, and personalised medicine approaches.
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Chapter outline

• Identifying subtypes of uncontrolled T2DM

• Clustering workflow using clinical data

• Cluster characterisation and assessment

• Clinical significance of T2DM subtypes

Type 2 Diabetes Mellitus (T2DM) is the most common type of diabetes, contributing

to 90% of the global diabetic population [81]. Despite the rapidly increasing diabetic pop-

ulation across the entire globe [81], inadequate glycemic control still pose an enormous

challenge to the healthcare delivery system [81, 82, 83, 84], especially in the low-income and

middle-income countries. In 2019, a TIGHT (The Investigation of Glycosylated Hemoglobin

on Therapy in Indian diabetics) study conducted in India reported over 75% of the T2DM

population have inadequate glycemic control with a glycated haemoglobin level (HbA1c)

over 7% [84]. However, whether this uncontrolled T2DM population is a heterogeneous mix

of disease subtypes still remains unknown. Heterogeneity among the uncontrolled T2DM

population challenges the efficacy of a uniform treatment protocol [85, 86] recommended for

all T2DM patients.

Drug therapy in T2DM majorly involves modulation of insulin resistance (IR) and β-cell

dysfunction with different groups of anti-diabetic drugs [85] for which treatment algorithms

exist [87]. As improvement in glycemic control reduces the complications of diabetes (such

as retinopathy, nephropathy and neuropathy) thereby translating into an increase of life

expectancy [88], there is an urgent and immense need to re-evaluate the T2DM management

protocol in the context of heterogeneity among T2DM patients.
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Until now, studies have identified T2DM clusters based on a few selective variables from

the first clinical visit and the association with diabetic complications on longitudinal follow-up

[89, 90]. However, studies to identify clusters among uncontrolled T2DM patients receiving

different combinations of anti-diabetic drugs remain undone. This sort of study will not only

reveal the pattern of heterogeneity among uncontrolled T2DM patients but will also help

in the selection of features associated with the identified clusters. Identification of clusters

among uncontrolled T2DM patients may result in a more customised T2DM management

protocol, thereby paving the way towards precision management in T2DM.

In order to explore the patterns in the clinical data, the key step is the dimensionality

reduction technique uniform manifold approximation and projection (UMAP), followed by a

density-based clustering technique. The data collected from a sample of individuals comprises

of characteristics that vary among themselves. A variable is a characteristic that takes different

values in different individuals, places or things [91]. The information on each diabetic patient

is collected using 129 features. Features or variables may be quantitative or qualitative based

on measurements. Quantitative variables may be discrete or continuous, whereas qualitative

variables are categorical variables classified as nominal or ordinal. The features or variables

are classified mainly into three categories in this analysis:

• Continuous features: A continuous variable assumes any value within a specified range

of values assumed by the variables. They are quantitative variables as they can be

measured numerically. Continuous variables can take infinitely many values within

a range. Say, for a measurement of 10-20 kg weight, any value, say 10.1, 12.005, 18.99

kg...etc, can be taken depending on the accuracy required. Some examples of continuous

variables that can be measured in individuals are height, weight, glucose level and waist

circumference.

• Ordinal features: Ordinal variables form rank-ordered categories. These categories can

be assigned numerical values as it is easier in coding and data analysis. Some examples

of ordinal variables are the educational status of subjects (below class 10, above class

10 or illiterate, matriculation, graduate, professional) and the severity of disease (mild,

moderate, severe). The exact difference between the categories cannot be measured,

say, the distinction between mild disease and moderate disease.

• Nominal features: These are qualitative measurements as they can’t be measured nu-

merically and can’t be rank ordered. Typical examples of nominal features are sex, blood

group, religion, etc. For nominal variables, there is no intrinsic ordering. For identifi-

cation, nominal variables are assigned values (Female=0, Male=1). When there are two

categories (alcoholic or non-alcoholic, male or female) for a qualitative variable, it is

called a binary or dichotomous variable [92].
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5.1 Discovering subtypes of uncontrolled T2DM

T2DM is a heterogeneous mix of disease subtypes. However, the guidelines for T2DM man-

agement remain uniform for all patients. Inadequate glycemic control among a great majority

of T2DM patients calls for subtype identification in uncontrolled T2DM. Identifying these

subtypes would result in a customized T2DM management protocol, paving the way towards

precision therapy. Employing an unsupervised clustering workflow on longitudinal cohort

data of T2DM patients from rural India, we discovered subtypes among uncontrolled T2DM

patients and further characterized them to extract translational insights.

For a long time, T2DM has been considered a homogeneous disease entity where IR is the

primary pathology followed by β-cell dysfunction [93]. However, recent studies report T2DM

[89, 90] to be a heterogeneous mix of different pathological conditions with the contribution

of IR and β-cell dysfunction varying among T2DM subtypes [89, 90]. Precise determination

of this underlying pathology is of prime importance as we look forward to entering the era

of precision medicine for managing diabetes [94, 95, 96, 97]. Hence, the aim of this study is

to investigate whether the uncontrolled T2DM population is a heterogenous mix of disease

subtypes and to further identify the patho-clinical features underlying the heterogeneity.

Identification of patient subtypes among uncontrolled T2DM would result in a more cus-

tomized T2DM management protocol, thereby paving the way towards precision therapy and

potentially improving long-term health outcomes for patients.

5.2 Study design and methodology

Anonymised electronic health records from March 2016 to December 2020 were collected

from a community-based primary health clinic located in the district of North 24 Parganas of

West Bengal, India. The clinic is run as a vertical of the Community-based metabolic health

screening programme ‘From Food to Nutrition Security’ [98] with a focus on rendering clinical

services in non-communicable diseases (NCDs), including T2DM, hypertension, ischaemic

heart disease (IHD), dyslipidemia etc. A detailed clinical history of each patient, including

present illness, history of past illness, family history, operative history, personal history,

menstrual and pregnancy history, allergy history and past investigations, are recorded during

the first visit. Enrolled patients are then regularly followed up, and examination data (height,

weight, pulse and blood pressure), investigation data (blood and imaging investigations) and

management data (preventive advice and drugs with dosage) are entered into the digital

database during each visit.

460 T2DM patients either presenting with a known history of T2DM or diagnosed as T2DM

during screening are initially selected among whom 370 patients are followed up regularly and
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Figure 5.1: Study design. Timeline diagram of the prospective study design of subjects with
type 2 diabetes mellitus recruited from the Primary Health Clinic.

has complete medical records. During the last visit, these patients are screened for glycemic

control, out of which 339 patients are found to have uncontrolled T2DM (diagnosed by fasting

plasma glucose over 126 mg/dl, postprandial plasma glucose over 180 mg/dl or glycated

haemoglobin (HbA1c) over 7%). Data of these 339 patients are taken for clustering. The study

design with the timeline is represented in Figure 5.1. For all T2DM patients, anti-diabetic drugs

are modified by a clinician following the American Diabetic Association guideline [86]. The

anti-hypertensive drug dosage for those diagnosed with hypertension is modified according

to the measured blood pressure value during each visit. Co-morbidities like dyslipidemia

and IHD are also managed. For the management of all these co-morbid conditions, the

American Diabetic Association Standard of Medical Care in Diabetes 2016 is followed. All the

features from the first clinic visit combined with the diagnoses (including all the co-morbid

conditions) and drug combinations from the final visit are used in the final analysis. A total

of 339 uncontrolled T2DM patients followed up for a median duration of 14 months (25th

percentile: 7 months, 75th percentile: 24 months) are used in this study.

Both continuous and categorical variables are present in the dataset. The continuous

variables in the dataset are age, duration of known hypertension (in months) and known

T2DM (in months), systolic and diastolic blood pressure, Body Mass Index (BMI) and body fat

percentage. The categorical variables are sex, education, occupation (shopkeepers, farmers,

homemaker), diseases (IHD, dyslipidemia, hypertension, hypothyroid) and prescribed drugs

(metformin, glimepiride, amlodipine etc), family history of diabetes and hypertension. The

dosage of a particular drug is added up and combined into a single column to calculate the

total intake of the drug.

Dimensionality reduction is applied first to the data, followed by clustering. This strategy is
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Figure 5.2: Clustering workflow with clinical data from 339 uncontrolled T2DM patients. PCA:
Principal Component Analysis, t-SNE: t-Distributed Stochastic Neighbour Embedding, UMAP:
Uniform Manifold Approximation and Projection, DBSCAN: Density-Based Spatial Clustering
of Applications with Noise.

used because the performance of clustering algorithms can degrade in the presence of a large

number of input features. Several dimensionality reduction algorithms; principal component

analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE) and uniform manifold

approximation and projection (UMAP) are used for this purpose [99]. The dimensionality re-

duction technique with the best silhouette score is finally accepted. After the data is visualised

in lower dimensions and reasonable patterns are observed, the non-parametric clustering

algorithm, density-based spatial clustering of applications with noise (DBSCAN), is applied to

this dimensionally reduced data. The number of clusters need not be specified explicitly in

DBSCAN as it finds nonlinear structures based on the density of data points, which can vary

in both size and shape.

An oral glucose tolerance test (OGTT) is done in 100 randomly selected patients from the

obtained clusters. Blood samples are collected at fasting and 30 min after intake of 75 gm

of anhydrous glucose dissolved in 200 ml of water. All the patients gave proper informed

consent. The procedure is approved by the Institutional Human Ethics Committee of CSIR-

IICB, Kolkata. HOMA-IR [100], Insulinogenic Index and Matsuda Index [101] are reported
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as indices of IR, HOMA-B [100] and Disposition Index [102] are reported as indices of β-cell

dysfunction.

5.3 Results of clustering

The cluster formations obtained using UMAP followed by DBSCAN is shown in Figure 5.3.

The continuous features are summarised as mean with standard error and the categorical

features as count with percentage contribution for all the clusters separately (Table 5.1). The

post-clustering features for all the clusters obtained from OGTT are summarised as mean with

standard error in Table 5.2. Comparison among the clusters is done using Analysis of Variance.

Variables with non-normal distribution are log-transformed before comparison.

Figure 5.3: Cluster formation using UMAP followed by DBSCAN (A) UMAP visualisation on
using the Euclidean metric on the entire data (B) UMAP clustering of the continuous variables
only, using the Euclidean metric (C) UMAP clustering of the categorical variables only, using
the Canberra metric (D) UMAP applied on the four dimensional reduced representation
followed by DBSCAN to obtain clusters.

UMAP outperformed all the other dimensionality reduction techniques in the given dataset

shown by comparing the silhouette score obtained after performing DBSCAN. The entire

clustering workflow is detailed in Figure 5.2. DBSCAN algorithm (eps= 1.3) is performed

on this UMAP reduced data and three main clusters are obtained with a silhouette score of
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Identified clusters Cluster 1 Cluster 2 Cluster 3 p-value
Cluster size (N) 62 167 107

Variables included from first visit
Continuous variables
Age (years) 43.56 ± 0.47 51.15 ± 0.27 49.68 ± 0.34 0.000
BMI (kg/m2) 24.58 ± 0.14 25.04 ± 0.12 24.26 ± 0.12 0.261
Systolic Blood Pressure (mm of Hg) 119.38 ± 0.58 143.47 ± 0.65 131.15 ± 0.73 0.000
Diastolic Blood Pressure (mm of Hg) 78.72 ± 0.42 83.57 ± 0.32 81.4 ± 0.33 0.009
T2DM duration (in months) 2.24 ± 0.19 20.93 ± 1.43 73.68 ± 1.75 0.000
Hypertension duration (in months) 0.00 ± 0.00 27.85 ± 1.53 0.00 ± 0.00
Body fat percentage 18.48 ± 0.22 20.2 ± 0.18 18.87 ± 0.19 0.072
Category Value Count (%)
Sex Female 62(100.0) 93(55.69) 73(68.22) 0.000

Male 0(0.0) 74(44.31) 34(31.78)
Education Below class 10 9(14.52) 43(25.75) 24(22.43) 0.196
Homemaker Yes 60(96.77) 74(44.31) 61(57.01) 0.000
Shopkeepers Yes 0(0.0) 8(4.79) 1(0.93) 0.055
Farmers Yes 4(6.45) 19(11.38) 12(11.21) 0.527
Alcoholic Yes 0 2(2.7) 3(8.82) 0.317
Smoker Yes 0 40(54.05) 16(47.06) 0.000
Bowel regularity Yes 19(30.65) 46(27.54) 31(28.97) 0.893
Ligation Yes 5(8.06) 6(6.45) 10(13.7) 0.128
Appendectomy Yes 4(6.45) 7(4.19) 11(10.28) 0.139
T2D parent Yes 23(37.1) 42(25.15) 31(28.97) 0.204
Hypertensive parent Yes 10(16.13) 37(22.16) 16(14.95) 0.278

Variables included from final visit
Category Value Count (%)
IHD Yes 0(0.0) 9(5.39) 3(2.8) 0.130
Hypertension Yes 1(1.61) 121(72.46) 44(41.12) 0.000
Dyslipidemia Yes 21(33.87) 41(24.55) 27(25.23) 0.342
ECG Findings Yes 5(8.06) 12(7.19) 4(3.74) 0.417
Hypothyroid Yes 2(3.23) 11(6.59) 5(4.67) 0.562
Metformin 500mg 0(0.0) 4(2.4) 0(0.0) 0.050

1000mg 18(29.03) 60(35.93) 23(21.5)
1500mg 18(29.03) 45(26.95) 30(28.04)
2000mg 26(41.94) 58(34.73) 54(50.47)

Glimepiride Not taking 6(9.68) 15(8.98) 5(4.67) 0.551
1mg 0(0.0) 1(0.6) 1(0.93)
2mg 30(48.39) 79(47.31) 44(41.12)
4mg 26(41.94) 72(43.11) 57(53.27)

Teneligliptin Not taking 58(93.55) 153(91.62) 76(71.03) 0.000
20mg 1(1.61) 6(3.59) 8(7.48)
40mg 3(4.84) 8(4.79) 23(21.5)

Pioglitazone Not taking 53(85.48) 156(93.41) 86(80.37) 0.015
15mg 3(4.84) 4(2.4) 4(3.74)
30mg 6(9.68) 7(4.19) 17(15.89)

Insulin Yes 3(4.84) 8(4.79) 6(5.61) 0.952
Hydrochlorothiazide Yes 0(0.0) 1(0.6) 1(0.93) 0.748
CCB Yes 1(1.61) 53(31.74) 23(21.5) 0.000
ACE inhibitor Yes 0(0.0) 74(44.31) 25(23.36) 0.000
Beta blockers Yes 4(6.45) 7(4.19) 4(3.74) 0.692
ARBs Yes 1(1.61) 26(15.57) 10(9.35) 0.009

Table 5.1: The post-clustering subject characteristics of the uncontrolled T2DM subgroups
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Identified clusters Cluster 1 Cluster 2 Cluster 3 p-value
Variables
HbA1c (%) 7.74±0.31 7.46±0.19 8.41±0.28 0.014
Fasting Glucose(mg/dl) 172.29±20.01 133.14±5.69 180.38±13.29 0.002
30-min Glucose(mg/dl) 251.27±21.37 223.05±7.27 287.12±18.97 0.003
Fasting Insulin(uIU/ml) 4.71±0.69 6.68±0.75 6.05±0.89 0.360
30-min Insulin(uIU/ml) 20.35±4.67 20.79±2.46 17.28±1.94 0.597

Indices of β-cell function
HOMA-B 52.29±32.70 43.96±7.32 26.86±4.22 0.107
Disposition Index (DI) 0.75±0.65 0.36±0.22 0.45±0.10 0.094

Indices of Insulin Resistance
HOMA-IR 3.38±1.43 3.32±1.15 3.0±0.66 0.971
Matsuda Index 6.75±1.96 6.78±1.24 6.58±1.61 0.964
Insulinogenic Index 16.61± 0.63 11.26±0.54 10.77±0.54 0.460

Table 5.2: Summary statistics of the post-clustering features of all the T2DM clusters

Figure 5.4: Anti-diabetic drug combinations and the percentage of patients receiving them in
three clusters. Percentage of patients in Cluster 1 (A), Cluster 2 (B) and Cluster 3 (C) receiving
monotherapy, dual therapy, triple therapy & quadruple therapy along with the specific anti-
diabetic drug combinations for each therapy group.

0.74. Once the clusters are obtained (assigned as C1, C2 and C3), the clinical features are

summarised for each cluster in Table 5.1.

5.3.1 Cluster characterisation

Cluster 1 (C1): C1 is the cluster with recent onset T2DM (diagnosed with T2DM within the last

two months). None of the patients in this cluster presented with hypertension at the first visit,

with only one patient from this group becoming hypertensive at the final visit. This cluster

has the lowest average age (43.56 years) but the highest percentage of patients having T2DM

parents (37.1%). Considering the duration of T2DM, the age of T2DM onset in this group

is around 43 years. Distribution of patients from this cluster receiving monotherapy, dual
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Figure 5.5: Anti-hypertensive drug combinations and the percentage of patients receiving
them for each individual cluster. Percentage of patients in Cluster 1 (A), Cluster 2 (B) and
Cluster 3 (C) receiving no medications, monotherapy, dual therapy & triple therapy along with
the specific anti-diabetic drug combinations for each therapy group.

therapy, triple therapy and quadruple therapy for T2DM is found to be 6.45%, 72.58%, 19.35%

and 1.61% respectively (Figure 5.4A).

Cluster 2 (C2): C2 has the highest average age (51 years), BMI (>= 25) and body fat percent-

age (20.2 %) with history of T2DM and hypertension for around 21 and 28 months, respectively.

Considering the duration of both the diseases, this group has the onset of T2DM and hyperten-

sion between 48 and 50 years. Distribution of patients from this cluster receiving monotherapy,

dual therapy, triple therapy and quadruple therapy for T2DM is found to be 4.79%, 80.24%,

14.37% and 0.6% respectively (Figure 5.4B). This group has the most patients (71.86%) receiv-

ing anti-hypertensive therapy in the final visit, among whom 48.5% received monotherapy,

22.16% received dual therapy, and 1.2% received triple therapy (Figure 5.5B).

Cluster 3 (C3): C3 is found to have a history of T2DM of over 6 years and no history of

hypertension at initial presentation. With a mean age of 49 years, the age of T2DM onset for

this group is around 43 years which is similar to that of C1. Distribution of patients from this

cluster receiving monotherapy, dual therapy, triple therapy and quadruple therapy for T2DM

is found to be 1.87%, 55.14%, 34.58% and 8.41% respectively (Figure 5.4C). Though the mean

systolic blood pressure (SBP) and diastolic blood pressure (DBP) in this group is higher than

that of C1 (SBP: 131.15 mm Hg in C3 vs 119.38 mm Hg in C1, DBP: 81.4 mm Hg in C3 vs 78.72

mm Hg in C1), the values at presentation did not reach the cut-off for hypertension. 41.12%

of the patients from this cluster turned out to be hypertensive at the final visit. Distribution

of patients receiving anti-hypertensive therapy in the final visit is: mono therapy received by

23.36%, dual therapy by 14.95% and triple therapy by 1.87% (Figure 5.5C).
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5.3.2 Assessment of IR and β-cell dysfunction within the clusters

To assess the degree of IR and β-cell dysfunction in all the clusters, 100 patients (17 from C1,

49 from C2 and 34 from C3) are randomly selected out of 339 uncontrolled T2DM patients and

subjected to OGTT. These are the only patients for whom the requisite attributes are on record.

C1 has the maximal β-cell function [HOMA-B = 52.29%, Disposition Index (DI) = 1.55] whereas

C3 is found to have the worst revival with HOMA-B value of 26.7% and DI of 0.55. C2 has a

moderate revival in β-cell function with HOMA-B value of 40.27% and DI of 0.77. Interestingly,

both the IR indices are found to be similar for all the clusters (Table 5.2). Among the three

clusters, C3 has the worst glycemic control (HbA1c = 8.41%) and C2 the best glycemic control

(HbA1c = 7.46%) while C1 has a moderate glycemic control (HbA1c = 7.74%).

5.4 Discussion on uncontrolled T2DM clusters

Using an unsupervised clustering workflow on a clinical dataset of uncontrolled T2DM pa-

tients, we discover 3 subtypes of T2DM with respect to disease duration, presence of hyper-

tension and severity of β-cell dysfunction. Interestingly, we find that the degree of IR remains

similar across all the 3 clusters though β-cell function is different among them. Thus the

ability of anti-diabetic drugs to recover the pancreatic β-cell function remains critical towards

achieving glycemic control in T2DM. Our analysis reveals that Cluster C1 consisting of patients

with recent onset T2DM with no history of hypertension represents an early onset of T2DM

group where majority of the patients (72.58%) received dual therapy (Glimepiride and Met-

formin). As β-cell function remains relatively preserved in the earlier stage of T2DM [103, 104],

this cluster has the best β-cell function among the three clusters. However, standard dual

therapy could not help achieve the HbA1c target of 7% thereby suggesting the need for a more

aggressive protocol for glycemic control. In contrast, Cluster 2 has the highest age and BMI,

the two most important risk factors for T2DM [105, 106] and is the only group presenting

with hypertension. Thus, Cluster C2 represent the classical form of obesity-associated T2DM.

Interestingly, this cluster showed the best glycemic control (HbA1c = 7.46%) with 80.24% pa-

tients having received dual therapy (Glimepiride and Metformin). Cluster C3 has the longest

history of T2DM with an age of onset similar to that of C1 (around 43 years) and no complaint

of hypertension and displays the most severe defect in β-cell function. Though C3 has the

maximum number of patients receiving triple therapy (34.58% in C3 vs 14.37% in C2 vs 19.35%

in C1) and quadruple therapy (8.41% in C3 vs 0.6% in C2 vs 1.61% in C1), it shows the worst

recovery in β-cell function and thereby has the worst glycemic control (HbA1c =8.41%).

Our dataset including the anti-diabetic drug combinations for all patients also reveals a

differential ability of the three clusters to revive the β-cell function. The cluster with recent
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onset T2DM has a modest ability to increase β-cell function in response to anti-diabetic

drugs. However, among the other two clusters with long-standing T2DM, the cluster with

accompanying hypertension showed better glycemic control with dual anti-diabetic therapy

whereas the other one with no clinical history of hypertension has the worst glycemic control

even with triple anti-diabetic therapy. β-cell dysfunction progresses with time in untreated

T2DM [103, 104]. As expected, C1 in our study with recent onset T2DM is found to have the

best β-cell reserve compared to the other clusters. However, the difference in β-cell reserve

between both the clusters with long-standing T2DM may be explained by their obesity status.

Obesity has been shown to positively associate with β-cell function [107] with obese T2DM

patients found to have relatively higher levels of fasting [98] and post-prandial insulin [108] at

diagnosis compared to non-obese T2DM patients. The cluster exhibiting greater revival in

β-cell function as well as better glycemic control is the most obese with the highest body fat

percentage. Though both the clusters have similar degrees of IR, the obese T2DM cluster is

found to have a greater β-cell reserve compared to the non-obese cluster.

The age of onset of T2DM is 43 years for both the recent onset and the long-standing

non-obese cluster while it is 49 years for the obese cluster. Though T2DM occurs mainly in

the fifth decade of life, studies have reported an early age of onset in the fourth decade of life

among Asian Indians [109]. The similarity of the obese T2DM cluster to obesity-associated

T2DM in terms of age of onset (fifth decade of life) indicates that T2DM manifests in this

subgroup as a component of Metabolic Syndrome. Expectedly this subtype presents with

the co-morbidity of hypertension. However, it is observed that achieving glycemic control is

relatively easier in this subgroup. On the other hand, the long-standing non-obese subtype

with no history of hypertension typically manifests in the early fourth decade of life and shows

similarity to the Metabolically Unhealthy Non-obese (MUNO) Phenotype [110]. As seen in our

study, achieving the glycemic target is difficult for this subtype even with triple and quadruple

anti-diabetic therapy.

The strength of the study is defined by the regular clinical follow-up of the T2DM patients.

However one important limitation of this study is its dependence on the rural population

from a single clinic. This may be overcome by making the present study multi-centric and

multi-ethnic.

5.5 Clinical significance and summary of T2DM subtypes

Uncontrolled T2DM comprises of three heterogeneous clusters with respect to duration of

disease, co-morbid condition and β-cell function. While obesity-associated T2DM patients are

relatively amenable to standard therapeutic regimen, achieving glycemic control in the early-

onset non-obese T2DM becomes difficult with increase in disease duration. Stratification
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of uncontrolled T2DM patients on the basis of patho-clinical features remains the first step

towards precision management in T2DM. In addition, specific therapeutic strategies are to be

devised for early and rapid glycemic control for non-obese T2DM patients.

In summary, the following conclusions can be drawn from our study- Cluster 2 and Cluster

3 respectively represent the obesity-associated and Asian-Indian diabetic variants whereas

a considerable number of Cluster 1 patients might transit to Cluster 3 following significant

damage of β-cells. Cluster 2 patients should be prioritised for the management of associated

diseases while Cluster 1 and 3 must have a tighter glycemic control. Current therapy in the

management of diabetes and its associated comorbidities is based on the classical obesity-

associated T2DM. However, there is a need to revisit anti-diabetic therapy in the context of

the Asian-Indian variant.
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Chapter outline

• Augmented oral minimal model with rate of appearance of glucose

• Parameter estimation of obese and non-obese T2DM and sensitivity analysis

• Distribution of parameters and statistical test

• Discussion on estimated parameters for obese and non-obese T2DM

Oral glucose tolerance test (OGTT) is the primary test used to diagnose type 2 diabetes mel-

litus (T2DM) in a clinical setting. Analysis of OGTT data using the oral minimal model (OMM)

along with the rate of appearance of ingested glucose (Ra) is performed to study differences

in model parameters for control and T2DM groups. The differentiation of parameters of the

model gives insight into the behaviour and physiology of T2DM. The model is also studied to

find parameter differences among obese and non-obese T2DM subjects and the sensitive pa-

rameters are co-related to the known physiological findings. Sensitivity analysis is performed

to understand changes in parameter values with model output and to support the findings,

appropriate statistical tests are done. This seems to be the first preliminary application of

the OMM with obesity as a distinguishing factor in understanding T2DM from estimated

parameters of insulin-glucose model and relating the statistical differences in parameters to

diabetes pathophysiology.

6.1 Overview of insulin-glucose regulatory system

Insulin glucose system (IG) is the biochemical regulatory system that helps to maintain a

steady glucose level in the blood. Glucose is stored in liver cells in the form of glycogen.

When the level of glucose falls in the blood (due to exercise or a long gap after the last meal),

73
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pancreatic α-cells secrete glucagon to release glucose (glycogenolysis) from the liver through

the breakdown of glycogen until the glucose level rises to normal. When the level of glucose

rises in the blood (after a meal), pancreatic β-cells secrete insulin to trigger the uptake of

glucose by the peripheral tissue cells in the body, via the GLUT4 (Glucose transporter Type

4), until the glucose level falls back to normal. People suffering from diabetes mellitus (DM)

need to regularly monitor their blood glucose level for hypoglycemia or hyperglycemia. OGTT

is a commonly used test where fasting blood glucose is recorded and the subject is asked to

ingest a certain amount of glucose dissolved in water and subsequently, glucose and insulin

readings are taken at varying intervals [111]. It is a highly sensitive test used for screening and

diagnosis of pre-diabetes and T2DM.

Machine learning (ML) models are used to identify and group data when adequate infor-

mation about the data is not available. Features are extracted from the data in an abstract

way in most of the ML models which makes it not easily explainable [112]. Clustering is an

important ML technique employed to understand data through classification [113, 114, 115].

However, the factors leading to the classification may not be evident from the results. For

example, data on diabetic patients may reveal distinct pathoclinical clusters [116], however,

the causative factors may not be evident. Biological systems can be mathematically mod-

elled using ordinary differential equations (ODEs) utilising expert domain knowledge. These

models are typically parameterised, with each parameter representing a specific aspect of

the system being studied. The values of these parameters are often estimated from available

clinical data, particularly individual-specific information. For instance, the insulin-glucose

regulatory system can be modelled using ODEs, with the model parameters being derived

from data collected from subjects with T2DM as well as a control group. The pool of parameter

sets can then be studied to understand the causative factors with respect to the underlying

model. Furthermore, the model can suggest specific internal processes that may be difficult

to observe directly. This can be a significant advantage if the analytical results are verified

to be reliable. In the current work, as features are not adequate and the available ones are

time-series, there is less scope for using abstract models and we focus on ODE models for the

insulin-glucose system.

In the Indian context, a great majority of people suffering from diabetes are non-obese,

having low body mass index (BMI) [117]. This work is an investigation on the usability of the

OMM, with the rate of appearance of ingested glucose (Ra), for studying differences in obese

and non-obese T2DM. The OMM is based on the Bergman minimal model [13], where glucose

analysis is done using an intravenous glucose tolerance test (IVGTT). The identification of

subject-specific oral minimal models is carried out for the insulin-glucose system from the

observed glucose and insulin readings in the OGTT data and the rate of appearance of ingested

glucose from the OMM is inferred. The model parameters of the participating subjects are
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studied towards suggesting differences in obese and non-obese diabetic physiology. A key

consideration in this analysis is model identifiability. Both the minimal model based on IVGTT

and the rate of glucose appearance (Model 2 as presented in [38]) are globally identifiable

when both glucose and insulin levels are observed.

The problem with physiological models is the estimation of set of parameters both for an

individual and a population. Some of the states in the model are not completely measurable,

so estimating parameters becomes an important step. The unknown states are characterised

by approximating the states and outputs that are measurable. The following sections describe

the mathematical description of the oral minimal model, theory and methodology, followed

by results and discussion.

6.2 Augmented oral minimal model

The OMM with rate of appearance of ingested glucose, Ra, is the computational model used

in the work. This particular Ra model [38] is used as it is non-linear in accordance with the

biphasic nature of gastric emptying of glucose. Initially the stomach contains the amount

of ingested glucose. The gastric emptying rate then decreases to a minimum and rises back

to kmax – this behaviour is also exhibited in the data used in this work. Also, the Ra model

is modified by removing the solid phase glucose compartment from the stomach as it deals

with a grinding rate parameter which is not relevant to our study as glucose solution is orally

ingested. Equations 6.1, 6.2 and 6.3 form the modified Ra model and equations 6.4, 6.5 and

6.6 are same as explained in Section 2.4.

dqsto

dt
= − kempt · qsto(t) +D · δ(t), (6.1)

dqgut

dt
= − kabs · qgut(t) + kempt · qsto(t), (6.2)

Ra(t) = f · kabs · qgut, (6.3)

dG

dt
= − p1 · (G−Gb)−X ·G+

Ra(t)

V
, (6.4)

dX

dt
= − p2 ·X + p3 · (I − Ib), (6.5)

dI

dt
= γ · (G−GT )

+ − p4 · (I − Ib), (6.6)

The amount of glucose in the stomach is described by qsto, δ(t) is the impulse function, D is

the amount of ingested glucose, qgut is the glucose mass in the intestine, kempt is the rate of

gastric emptying, kabs is the rate constant of intestinal absorption and f is the fraction of the
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intestinal absorption which actually appears in plasma.

kempt(qsto) =kmin +

(
kmax − kmin

2

)
· {tanh (α · qsto − b ·D))− tanh (β · (qsto − c ·D)) + 2}

(6.7)

α =
5

2 ·D · (1− b)
, β =

5

2 ·D · c

The gastric emptying rate, kempt is a function of the amount of glucose in the stomach qsto

(Eqn 6.7). It equals kmax when the stomach contains the amount of the ingested glucose,

D, then it decreases to a minimum value of kmin. b is the percentage of the dose for which

kempt decreases at (kmax-kmin)/2. c is the percentage of the dose for which kempt is back to

(kmax − kmin)/2.

6.3 Datasets used for parameter estimation

Two sets of data are used in the study. Dataset I consists of OGTT data of 300 individuals, of

which 129 are normal subjects and others are type 2 diabetics. The outliers were removed and

the final data has 116 normal subjects and 147 subjects with T2DM. These patients were asked

to ingest 25g of glucose dissolved in 100 mL of water after fasting for 8-12 hours. Sample data

from Dataset II are given in Table 6.1(a). FGLU indicates fasting glucose level. GLU⟨t⟩ and

INS⟨t⟩ indicate glucose level and insulin level after time ⟨t⟩ of orally ingesting glucose beyond

fasting glucose measurement (at t = 0), respectively. For example, GLU30 indicates glucose

level after 30 min. The measurements are taken at times 0, 30, 60, 90 and 120 minutes.

Dataset II consists of 40 T2DM patient data collected from a community clinic with 21

non-obese subjects (BMI≤25) and 19 obese subjects (BMI>25) who underwent OGTT. The

outliers were removed and the final data has 15 non-obese subjects with T2DM and 14 obese

subjects with T2DM. These patients were asked to ingest 75g of glucose dissolved in 100 mL

of water after fasting for 8-12 hours. The sample data from dataset-2 are shown in Table

6.1(b). The Dataset II consists of the following columns: Sex, Age, BMI, waist circumference

(WC), Weight, Height and measurements of insulin and glucose at various time points. The

column names are similar to Dataset-1 with only changes in time points. The measurements

in Dataset II are taken at times 0, 15, 30, 45, 60, 90 and 120 minutes. All participants gave

informed consent and the study was approved by the Institutional Human Ethics Committee

of CSIR-IICB. For example, INS45 indicates insulin level after 45 min.

6.4 Sensitivity indicators and parameter estimation

Sensitivity indicators, such as Parameter Importance Index and Collinearity Index, are statisti-

cal measures used to assess the sensitivity of a model’s output to its input parameters. These
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Code FGLU GLU15 GLU30 GLU60 GLU90 GLU120 FINS INS15 INS30 INS60 INS90 INS120
1 202.5 237 279 313.02 384 385.02 90 200 220 170 300 300
2 195.48 263 314 385.92 419 419.04 18 13 21 34 42 38
3 120.96 154 232 311.04 364 383.94 7 21 30 54 69 70
4 148.50 194 249 347.04 376 334.08 40 33 90 150 190 140
5 256.50 299 320 417.96 455 466.02 6.5 13 24 36 31 38

(a) Sample from Dataset I

Code SEX AGE BMI WC Weight Height FINS INS15 INS120 FGLU GLU15 GLU120
DM-24 F 48 23.8 82 47.4 141 0.64 0.47 6.38 167.80 192.50 400.69
DM-09 F 55 21.7 80 47.1 146 5.30 10.00 25.17 159.73 189.39 398.13
DM-28 F 42 24.2 86 51.5 146 2.42 3.42 31.06 145.86 146.23 245.98
DM-34 F 40 24.6 84 50.4 143 7.59 8.08 36.48 140.83 179.63 344.74
DM-06 F 29 20.8 75 45.9 147 7.24 10.43 36.63 154.75 178.68 309.04

(b) Sample from Dataset II

Table 6.1: Sample rows from Dataset I and Dataset II used for parameter estimation of OMM.
Glucose units are in mg/dL and insulin units are in µU/mL

indicators help identify which parameters have the most significant impact on the model

variables and detect potential issues with parameter interactions. The parameter importance

index δl [118] can be calculated using the sensitivity of the l-th parameter pl to the output

vector as follows

δl =

√√√√ 1

m
·

m∑
i=1

S2
il, (6.8)

where m is the number of parameters of the model. The collinearity index is calculated to

analyse whether pairs of parameters have the same influence on the output vector. If two

parameters have the same effect on the output vector, they are likely to be not identifiable.

For this normalised sensitivity matrix is calculated as follows

SN
il =

Sil

δl ·
√
m
. (6.9)

The submatrices are calculated as m× l with first l columns of SN with respect to sensitivities

of first l parameters. Then the smallest eigenvalue λl of each l × l matrix is computed and the

index is defined as follows

γcol =
1√
l
. (6.10)

The parameters p1 to pl are linearly dependent if the collinearity index is larger.

The model parameters in Section 6.2 need to be estimated using the datasets described in

Section 6.3. A parameter optimisation problem is defined that minimises the error between

outputs obtained from solving ODE and the observed data. The methods are implemented and

coded in the Python framework using the Scipy packages odeint(), minimize() and dist() [119].

Parameter estimation runs were performed for each individual data. Different estimation

techniques were tried out and the Nelder-Mead method [40] gave a better fit of the observed
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data. A weighted error function E(n) is defined, which works with Nelder-Mead optimisation,

E(n) =
m∑
i=1

wi ·
(
(yi − yimodel

(n)

σk

)2

, (6.11)

where yi are data points, yimodel
are simulated points and wi are vector of weights associated

with each time-point. In the OMM estimation, the initial time intervals are crucial and so

higher weights are given to initial time intervals (15, 30 and 60 minutes) compared to the later

ones.

6.5 Results from the oral minimal model using OGTT data

Sensitivity indicators The implication of doing sensitivity analysis is to understand the

varying levels of sensitivity among the parameters. The less sensitive parameters are replaced

with nominal values, but the overall fitting is not satisfactory. So, it is understood that the

small variation in less sensitive parameters may be considered unimportant. However, these

parameters cannot be ignored altogether as they may be significant for larger variation among

any disease sub-categories. The range of these parameters may change over sub-groups. For

less sensitive parameters, smaller variation is not considered as they vary significantly across

subgroups. Morris screening algorithm is used to analyse the sensitivity of each individual

data. The sensitivity order of parameters for all the groups remained mostly similar.

The parameter importance index (Eqn 6.8) and collinearity index (Eqn 6.9, 6.10) were

computed for all the patients in each dataset and the order is similar for most of the individuals.

The ordering of parameters based on the parameter importance index is shown in Figure

6.1(a). GT is the parameter to which the output variable is most sensitive. The next set of

important parameters are Gb, p4, γ, f and p1. The least important parameters are Ib and p2.

The collinearity index graph (Figure 6.1(b)) indicates that most of the parameter combinations

close to the x-axis are not strongly collinear with each other. This observation is mostly similar

across all individuals, with variations only among parameters that are less sensitive. The

parameters which are collinear are found to be less sensitive to the output.

Results of parameter estimation The estimation considered 12 different parameters. The

values of initial parameters are mainly from the literature and are used as required to match

the unit of measurement. The initial values of insulin and glucose are taken at time point

0 (the time at which glucose is ingested) in the data and are not estimated. The model is

estimated for parameter values for each of the groups separately. Simulation results of two

random data samples from each of the control and type 2 diabetic groups are shown in Figure

6.2 using Dataset I. Sample results of two random subjects’ data from obese and non-obese

type 2 diabetic groups are shown in Figure 6.3 using Dataset II.



6.5. Results from the oral minimal model using OGTT data 79

(a) Parameter importance index

(b) Collinearity index

Figure 6.1: Parameter order in accordance with parameter importance index and collinearity
index

Distribution of parameters and statistical test The median values of parameters for control

and diabetic groups are shown in Table 6.2. For obese diabetic and non-obese type 2 diabetic

groups, the box plots are shown in Figure 6.4 and median values are shown in Table 6.3. The

box plots of parameters which are distinctive are only shown. Each parameter has a different

distribution and the statistical tests are chosen based on the corresponding distribution. For

instance, in the control and diabetic group, kmin follows the Weibull distribution (Table 6.2)
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(a) Sample from control group (Subject 1) (b) Sample from control group (Subject 2)

(c) Sample from diabetic group (Subject 1) (d) Sample from diabetic group (Subject 2)

Figure 6.2: Sample simulation results for control and diabetic group

Parameter
Control
group

Diabetic
group

p-value Distribution Statistical test
Distinct
feature

kmax [1/min] 0.0179 0.0269 0.000143 lognormal Independent ttest Yes
kmin [1/min] 0.00137 0.00751 7.49e-27 Weibull Mann Whitney U test Yes
kabs [1/min] 0.0289 0.0208 0.0901 lognormal Independent ttest No
p1 [1/min] 0.0609 0.0208 2.45e-26 Weibull Mann Whitney U test Yes
p2 [1/min] 0.0016 0.0016 0.579 Weibull Mann Whitney U test No
p3 [(L/µmol)min−2] 1.5e-07 1.5e-07 0.618 Weibull Mann Whitney U test No
p4 [1/min] 0.154 0.863 5.61e-26 Weibull Mann Whitney U test Yes
f [dimensionless] 0.756 0.891 0.000125 beta Mann Whitney U test Yes
Gb [µmol/L] 4.76e+03 7.3e+03 1.06e-12 beta Mann Whitney U test Yes
Ib [µmol/L] 2.22e-11 2.22e-11 0.232 Weibull Mann Whitney U test No
GT [µmol/L] 4.24e+03 3.57e+03 0.364 gamma (Γ) Mann Whitney U test No
γ [min−2] 2.8e-08 1.27e-08 2.15e-09 Weibull Mann Whitney U test Yes

Table 6.2: Comparison of parameters in control and diabetic group (Dataset I)
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(a) Sample from obese diabetic group (Subject 1) (b) Sample from obese diabetic group (Subject 2)

(c) Sample from non-obese diabetic group (Subject 1) (d) Sample from non-obese diabetic group (Subject 2)

Figure 6.3: Sample simulation results for obese and non-obese diabetic group

Parameter
Obese
diabetic
(median)

Nonobese
diabetic
(median)

p-value Distribution Statistical test
Distinct
feature

kmax [1/min] 0.0166 0.0182 0.561 gamma (Γ) Mann Whitney U test No
kmin [1/min] 0.00563 0.00252 0.000925 t Mann Whitney U test Yes
kabs [1/min] 0.00722 0.00141 1.16e-06 exponential Mann Whitney U test Yes
p1 [1/min] 0.0565 0.15 0.000141 Weibull Mann Whitney U test Yes
p2 [1/min] 0.00153 0.00808 0.451 Weibull Mann Whitney U test No
p3 [(L/µmol)min−2] 2.48e-07 5.97e-08 0.186 Weibull Mann Whitney U test No
p4 [1/min] 0.91 0.921 0.146 Weibull Mann Whitney U test No
f [dimensionless] 0.826 0.784 0.0259 Weibull Mann Whitney U test Yes
Gb [µmol/L] 7.31e+03 5.04e+03 0.0292 beta Mann Whitney U test Yes
Ib [µmol/L] 5.34e-12 5.01e-13 0.533 beta Mann Whitney U test No
GT [µmol/L] 4.58e+03 9.27e+03 0.102 gamma (Γ) Mann Whitney U test No
γ [min−2] 1.65e-08 3.54e-09 0.134 gamma (Γ) Mann Whitney U test No

Table 6.3: Comparison of obese diabetic and non-obese diabetic group (Dataset II)
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Figure 6.4: Box plots of parameters for obese and non-obese diabetic

and a common non-normal distribution test, known as the Mann Whitney U test, is used.

Similarly, based on parameter distribution, appropriate statistical tests are chosen and the

p-value is determined with significance level α = 0.05. The distribution followed and tests

used for the control and diabetic group using Dataset I are shown in Table 6.2 and for the

obese and non-obese diabetic group using Dataset II are shown in Table 6.3.

6.6 Discussion on the findings

Our results emphasise the difference in parameter values in different T2DM groups. From Ta-

ble 6.2 the control group differs from T2DM groups based on parameters kmax, kmin, f, p1, Gb, p4,

and γ. The model parameters conform with the previously published results for diabetic pa-

tients, which are described in detail in this section. The maximum and minimum amount

of glucose emptying (kmax and kmin) for the diabetic group is higher. In support of this ob-

servation, it can be argued that rapid gastric emptying is a frequent diabetic complication

[120]. To improve the postprandial glycemic control in these patients, a slowing gastric emp-

tying rationale may be considered. The fraction of intestinal absorption (f), which actually

appears in plasma, is higher for the diabetic group. In patients with T2DM, an increase of

the Sodium/GLucose coTransporter 1 (SGLT1) protein and its mRNA in the enterocytes of

the small intestine were found, which is involved in increased glucose absorption through

the apical membrane [121]. The insulin-independent glucose uptake rate (p1), which also

represents glucose effectiveness, is higher in the control group than in the type 2 diabetic

group. This may be attributed to insulin resistance among the type 2 diabetic group. The

basal level of glucose (Gb) is higher in the diabetes group, which indicates pre-diabetes or

diabetes, which is expected. As this parameter is less sensitive, the variation among subgroups

is larger but less significant. Smaller changes in basal level of glucose do not change the

model behaviour. The decay rate for insulin (p4) is significantly higher in the diabetic group.
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The excess insulin produced is rapidly attenuated due to acute induction of mitochondrial

superoxide production [122]. The rate of β-cells release of insulin (γ) after the oral glucose

intake is lower in the diabetic group. This may be due to a decrease in insulin sensitivity and

secretion caused by a delay in glucose peak time [123].

The analysis of data using the model for obese and non-obese diabetic groups indicates

that the parametric range is different for the two groups. From Table 6.3, it can be observed

that the obese diabetic group differs from non-obese diabetic groups based on parameters

kmin, kabs, f, p1 and Gb. The five estimated parameters are significant for obese and non-obese

T2DM groups. The minimum level of gastric emptying (kmin) is higher for obese, i.e., from

that point, the emptying rate increases to kmax, not reducing any further. Obese subjects have

a more rapid emptying rate for solids than non-obese subjects [124]. The absorption rate in

the intestine (kabs) is higher for obese diabetics. The body surface area for obese subjects is

larger and therefore, the absorption rate increases. The insulin-independent rate of glucose

uptake (p1) is higher for non-obese diabetics. This observation is associated with adiposity

with declining glucose tolerance. During increased insulin resistance, this mechanism helps

preserve glucose uptake [125]. The fraction of intestinal absorption (f ) is higher for the obese

group. This has the same explanation for why kabs is higher for the obese diabetic group. The

basal level of glucose (Gb) is higher for the obese type 2 diabetic group. These significant

changes in parameter values for obese and non-obese indicate a higher risk of diabetes as it

causes both insulin resistance and β-cell dysfunction.

The differences in obese and non-obese diabetes groups have to be discussed further as it

is being considered a novel category of diabetes. The degree of change and the direction of

parameter values to increase or decrease diabetes risk is studied. The risk of T2DM increases

for an obese group with an increase in the value of parameter kmin as compared to the non-

obese group. The insulin-independent rate of glucose uptake (p1) is 2.6 times lower in the

obese diabetic group, indicating a higher risk in obese diabetes. The absorption rate in the

intestine (kabs) in the obese group is five times higher than in the non-obese group, indicating

higher glucose levels in the non-obese diabetes group. This is also supported by a higher

fraction of intestinal absorption (f). The higher basal glucose level (Gb) in the obese diabetic

group indicates more insulin resistance. From the comparison, it can also be concluded that

the obese group is more insulin-resistant than the non-obese group.

6.7 Conclusion

In this study, we adapted a published model to determine the significant changes in parameter

values for healthy and T2DM groups and further among obese and non-obese T2DM groups.

This is the first attempt to use the oral minimal model to co-relate the parameters for different
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diabetic groups using OGTT data. The parameter values which are sensitive among groups

are co-related to the known biological findings. The obese diabetic group are more insulin

resistant, whereas the non-obese diabetic group are less insulin resistant. As non-obese T2DM

is becoming more recognised, a model to identify the differences in insulin secretion and

glucose absorption among these phenotypes is important. Using this model estimation, more

relevant studies can be conducted, which pave the way to precision therapy in T2DM.



CHAPTER 7
Augmenting the insulin-glucose

regulatory model with obesity

indicators leptin and BMI

Chapter outline

• The role of obesity indicators in insulin-glucose regulatory system

• Augmented oral minimal model including leptin and BMI

• Parameter estimation and sensitivity analysis of the augmented model

• Revision of indices derived from OGTT

• Results and validation of the augmented model

Leptin is a fat-derived hormone involved in satiety and body weight regulation. It also

plays a critical regulatory role in the insulin-glucose regulatory system by modulating glucose

metabolism and energy homeostasis. However, existing insulin-glucose models often fail to

consider the impact of body weight indicators such as body mass index (BMI) and plasma

leptin. To address this limitation, we propose augmenting the ordinary differential equations

(ODEs) of the Oral Minimal Model (OMM) with an additional equation incorporating leptin as

well as supplementary terms and parameters.

By estimating the model parameters, the model behaviour is aligned with the observed

data of glucose, insulin and leptin for individuals with type 2 diabetes mellitus (T2DM). Based

on model behaviour, revised indices formulated from Oral Glucose Tolerance Test (OGTT)

data by including BMI and fasting leptin values correlate better with existing OGTT indices.

85
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Additionally, parameter sensitivity analysis is performed to investigate the influence of the

model parameters on the observed variables. Validation of the augmented model with clinical

data (without leptin ) demonstrates a superior fit to glucose and insulin data compared to the

base model. This model emphasises the intricate associations between leptin, glucose and

insulin concentrations with a potential for developing targeted interventions and therapies

for T2DM. Notably, this work introduces the first ODE-based model incorporating leptin and

BMI in the insulin-glucose pathway.

7.1 Association between obesity indicators and insulin-glucose

dynamics in T2DM

T2DM occurs when the body becomes resistant to the effects of insulin and the pancreas fails

to produce enough insulin to compensate for this resistance [126]. Excess body fat (obesity),

particularly abdominal or visceral fat, is associated with insulin resistance (IR), a condition

in which the cells of the body become less responsive to insulin. This reduced sensitivity to

insulin leads to elevated blood glucose levels resulting in the characteristic symptoms and

complications of T2DM [126]. Obesity-induced IR is followed by β-cell dysfunction leading to

T2DM, however, the contribution of obesity and β-cell dysfunction in T2DM development

vary significantly among the non-obese and obese population [98, 116].

Obesity is a major risk factor for the development of T2DM [127]. Leptin, a hormone

secreted by fat cells, plays a crucial role in regulating body weight and energy balance. Leptin

acts on the hypothalamus to suppress appetite and increase energy expenditure [128]. Addi-

tionally, leptin has various secondary functions in peripheral tissues, wherein it influences

insulin level and glucose metabolism in the body. In the relationship analysis between leptin

and body mass, serum leptin concentration is found to have a direct positive association with

BMI [129].

There are several theoretical works [130, 131] that emphasise the role of leptin in IR and its

importance in T2DM. However, to the best of our knowledge, there is a lack of mathematical

models that adequately capture this behaviour. To overcome this limitation, a mathematical

model including the role of leptin and BMI in the IG pathway is developed by augmenting

the OMM proposed by Dallaman et al. [34, 38]. Our model aims to incorporate the regulatory

influence of leptin on insulin-glucose dynamics, thereby improving the existing model fitting

of glucose and insulin data and accurately capturing the leptin data. Consistent with the OMM

approach, the current model uses clinical data derived from OGTT for parameter estimation

and analysis.

OGTT is a frequently used diagnostic test in which the subject’s fasting blood glucose levels

are measured, followed by the ingestion of a specific amount of glucose dissolved in water



7.2. Modelling mechanism 87

and subsequently, blood is collected at regular intervals to measure glucose and insulin levels

at varying intervals [111]. The dataset used for modelling consists of data of individuals who

have undergone a 2-hour OGTT. In addition to insulin and glucose, leptin concentrations

are also taken at various time points for this study. OGTT indices (derived from OGTT data)

are quantitative measures that provide information about the subject’s insulin sensitivity,

β-cell function and overall glucose regulation in response to a glucose load. The current work

attempts to suggest modifications and enhancements to selected OGTT indices.

One of the crucial aspects of modelling is to understand how parameter values change

with model output. The parameter variations affect the output of a model when dealing with

critical data specific to biochemical processes. The interpretation of parameter values in

these pathways is important to understand the relationship to their physiological properties.

Sensitivity analysis on the augmented model is also conducted to explore the behaviour of

model parameters, providing inference on the model’s outcomes. Additionally, validation of

the model is performed using a different dataset, as detailed in the subsequent sections. The

present study introduces a novel approach to modelling the interaction between leptin and

the insulin-glucose regulatory system, which has not been previously explored in detail.

7.2 Modelling mechanism

By integrating BMI and the adipokine leptin into the existing OMM, their associations with

insulin and glucose concentrations can be modelled. Leptin is associated with insulin re-

sistance and is positively correlated with BMI [132]. Leptin decreases insulin secretion to

a certain extent [133] and also exhibits a negative correlation with fasting plasma glucose

and postprandial glucose after two hours. Leptin also decreases hepatic glucose production,

increases insulin sensitivity and decreases glucagon levels. This inhibitory action of leptin is

modelled using enzyme kinetics in this work. Insulin, in turn, also plays a role in stimulating

leptin production and secretion in the adipose tissue [130]. Impaired glucose metabolism

and prolonged insulin resistance are also associated with a deficiency in leptin concentration

[131].

The idea of parameter estimation is to find unknown parameters in a computational

model which may describe the given biophysical process or phenomenon. These unknown

parameters are estimated using experimental data which are collected from well-defined

and standard conditions by minimising the error between the model simulations results and

experimentally known data [134]. This way the behaviour of the model is captured effectively.

The challenge is that no single optimal estimation technique exists for all models. Many

different estimation methods have been developed so far to determine the best strategy for

a given problem. The commonly used parameter estimation methods include maximum
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likelihood estimation [39] and Nelder-Mead optimisation [40]. Nelder-Mead method is a

numerical method in non-linear optimisation problems to find the minima of objective

functions. Least square estimation is used in regression models and maximum likelihood

estimation is used in statistical models [135]. In addition, evolutionary methods [136], namely

genetic algorithms and particle swarm optimisation, are other efficient parameter estimation

methods used in non-linear dynamic models.

OGTT indices The commonly used indices to access β-cell function and insulin resistance

are briefly explained. HOMA-B (Homeostatic Model Assessment of β-Cell Function) is a

mathematical model used to estimate β-cell function based on fasting glucose and fasting

insulin levels, particularly in the context of insulin resistance and T2DM. The formula for

calculating HOMA-B is
(

I0 − 20
G0 − 3.5

)
, where I0 is fasting insulin (in µU/mL) and G0 is fasting

glucose (in mmol/L) values. HOMA2 is an improvement over the original HOMA model, as it

considers glucose dynamics across population and different physiological states. Several soft-

ware tools that accurately calculate HOMA2 values use advanced algorithms, as in the HOMA

calculator [137] provided by the diabetes trials unit at the University of Oxford. HOMA-IR

(Homeostatic Model Assessment of Insulin Resistance) is a widely used method for estimating

insulin resistance, which is a key component of various metabolic disorders, including T2DM.

The formula for calculating HOMA-IR is
(

I0 · G0
22.5

)
, where I0 is in µU/mL and G0 is in mmol/L.

The insulin sensitivity index (ISI) is derived from the concept that insulin sensitivity can

be assessed by evaluating the ability of insulin to regulate glucose levels. The formula for

calculating ISI is
(

∆I0−30

∆G0−30

)
, where ∆ is the difference in fasting and 30 min values of insulin

(I) and glucose (G). Higher ISI values indicate greater insulin sensitivity, meaning that the cells

in the body are more responsive to insulin and effectively utilise glucose. The oral disposition

index, DIo [138] calculated as
(

∆I0−30

∆G0−30

)
·
(
1
I0

)
, where I0 is in pmol/L and G0 is in mmol/L, is

commonly used as a measure of β-cell function. The base model used in this work is described

in Section 6.2, Chapter 6. Our aim is to develop an underlying well-established model that

includes the role of BMI and leptin by estimating the set of parameters that are significant.

7.3 Augmented model including leptin and BMI

Leptin level plays a major role in glucose homeostasis and is positively correlated with adi-

posity. In the presence of high blood glucose levels, leptin enhances tissue glucose uptake,

independent of insulin and reduces hepatic glucose production [130]. Leptin has glucose-

lowering effects via an insulin-independent mechanism which normalises hepatic glucose

production and increases glucose uptake in peripheral tissues, including adipose tissue, mus-

cle and heart [139]. Insulin promotes adipogenesis (formation of fat cells from pre-adipocytes)
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and increases body fat mass [140]. It also stimulates the production and release of leptin,

which acts centrally to decrease food intake and boost energy expenditure. Leptin, in turn,

inhibits insulin secretion through both central and direct effects on β-cells. As plasma leptin

level is directly linked to body fat mass, higher adiposity raises plasma leptin, thereby reducing

insulin production and promoting a further increase in fat mass [141] (Figure 7.1). In this way,

both leptin and insulin regulate each other, sharing the control of food intake and metabolism

[130].

Figure 7.1: Leptin model: The augmentations to the model are visually highlighted using the
colour green. Leptin has glucose-lowering effects independent of insulin. Insulin increases
the production of leptin by adipose tissue (fat cells). Leptin feeds back to reduce insulin
secretion.

BMI is a measure of body fat based on the weight and height of an adult. Adipose tissue

produces leptin in quantities proportional to its mass and thereby regulates body weight.

Leptin level also increases with BMI [142]. We have modelled the role of leptin and BMI in the

IG regulatory system by augmenting the OMM as follows

• leptin-induced glucose absorption in peripheral tissues independent of insulin [128,

143],

• leptin-induced inhibition of insulin secretion [130],
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• leptin production from adipose tissue modelled through BMI. This production can be

dependent and independent of insulin [129, 130].

For accommodating leptin concentration, one additional differential equation (DE, Eqn

7.5) is added and additional terms (T1 − T6) in the DEs for glucose and insulin concentrations

(Eqns 7.1, 7.3) are added. Also, an expression (Eqn 7.4) for capturing the effect of BMI is

introduced. The augmented model equations are given as follows

dG

dt
= k1 ·Gb −

k1 +X + gl · L︸ ︷︷ ︸
T1

 ·G+
Ra(t)

V
, (7.1)

dX

dt
= k3 · (I − Ib)− k2 ·X, (7.2)

dI

dt
=

γ

(1 + k6 · L)︸ ︷︷ ︸
T2

· (G−GT )
+ − k4 · I, (7.3)

kBMI =
1

1 + e−
BMI
bm︸ ︷︷ ︸

T3

, (7.4)

dL

dt
= kBMI ·

 kb︸︷︷︸
T4

+
ki · I
kl + I︸ ︷︷ ︸

T5

− k5 · L︸ ︷︷ ︸
T6

, (7.5)

where L is the leptin concentration in the blood, BMI is the body mass index of the subject,

gl denotes the ability of leptin to lower blood glucose levels, k6 denotes the inhibitory action

of leptin on insulin, bm is a scaling factor that regulates the effect of BMI, kb is the BMI

contribution factor to leptin production, ki denotes leptin production based on insulin, kl

denotes the ability of insulin to stimulate leptin production and k5 is the leptin degradation

rate.

The ability of leptin to independently lower blood glucose levels is modelled as T1 in Eqn

7.1. The effect is coupled with glucose as there exists a co-regulation between leptin and

glucose via insulin. As leptin inhibits insulin production [133], this behaviour is modelled

assuming reversible competitive inhibition [144] as T2 in Eqn 7.3. The role of BMI in leptin

production is modelled empirically as a logistic function (Eqn 7.4) to incorporate the behaviour

of leptin for the common BMI range of (18, 40); the parameters are determined through

regression using Dataset 1. An additional equation for leptin concentration (Eqn 7.5) is added

by introducing the effect of BMI and insulin in leptin production and a decay term to model

the degradation of leptin over time. kBMI is a function of BMI that regulates the effect of BMI

in leptin concentration with a scaling parameter bm. As leptin is mainly produced from body

fat, this effect is introduced by the term kBMI · kb; as BMI increases, the effect of this term in

leptin production also increases. The positive correlation of insulin in leptin concentration
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Code BMI FINS INS15 INS120 FGLU GLU15 GLU120 FLEP LEP15 LEP120
DM-06 28.5 0.68 2.22 9.48 289.57 313.60 485.08 36.03 27.54 57.01
DM-08 25.2 0.17 9.24 16.32 177.87 197.92 404.95 10.53 4.66 4.99
DM-28 26.4 1.93 2.98 58.35 145.17 182.76 420.99 30.24 11.75 13.33
DM-34 23.8 0.64 0.46 6.38 167.80 192.50 400.69 8.40 9.82 2.65

(a) Sample from Dataset-I

Code FGLU GLU15 GLU30 GLU90 GLU120 FINS INS15 INS30 INS60 INS120
S1 202.5 237 279 384 385.02 90 200 220 300 300
S2 195.48 263 314 419 419.04 18 13 21 42 38
S3 120.96 154 232 364 383.94 7 21 30 69 70
S4 148.50 194 249 376 334.08 40 33 90 190 140
S5 256.50 299 320 455 466.02 6.5 13 24 31 38

(b) Sample from Dataset-II

Table 7.1: Sample rows from Dataset I and Dataset II of leptin model. Glucose units are in
mg/dL, insulin units are in µU/mL and leptin units are in ng/mL

is modelled following Michaelis–Menten (MM) kinetics (represented as T5). The term T6

models leptin degradation. The newly introduced model parameters and some of the existing

parameters are estimated using available data. This model (Eqns 7.1-7.5) is referred to as

leptin model in this chapter.

7.4 Parameter estimation

The parameters of the augmented model are estimated using the dataset described below.

Seven new parameters - gl, kl, kb, bm, k5, k6 and ki are introduced in the augmented model.

Model fitting is done to minimise the error between the observed data and simulated be-

haviour of the model.

Dataset used for parameter estimation Two sets of data are used in the study. Dataset-I

consists of 40 rows of data related to subjects with T2DM, collected from a community-based

primary health clinic located in the district of North 24 Parganas of West Bengal, India, who

underwent OGTT. After pre-processing (removal of rows with missing values) the dataset

consisted of data from 38 subjects. The subjects were asked to ingest 75g of glucose dissolved

in 100mL of water after fasting for 8-12 hours. The sample rows from Dataset-I are shown in

Table 7.1(a). The dataset consists of the following columns: BMI, measurements of insulin,

glucose and leptin at various time points. FGLU indicates fasting glucose level. GLU⟨t⟩, INS⟨t⟩

and LEP⟨t⟩ indicate glucose, insulin and leptin levels after time ⟨t⟩ of orally ingesting glucose

beyond fasting glucose measurement (at t = 0), respectively. For example, GLU30 indicates

glucose level after 30 min and LEP45 indicates leptin level after 45 min. The measurements

are taken at times: 0, 15, 30, 45, 60, 75, 90 and 120 minutes. All participants gave informed

consent and the study was approved by Institutional Human Ethics Committee of CSIR-IICB.
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Symbol Description Value CV Source Unit

gl the ability of leptin to lower blood
glucose levels

3.66 2.85 Estimated Lmin−1

µmol

kl ability of insulin to stimulate leptin
production

4.99e-05 1.92 Estimated min−1

k5 leptin degradation rate 0.03 Calculated min−1

k6 the inhibitory action of leptin on
insulin

749.74 2.80 Estimated L/µmol

kb BMI contribution factor to leptin
production

9.41e-05 0.89 Estimated min−1

ki leptin production based on insulin 5.15e-05 4.15 Calculated min−1

bm scaling factor that regulate effect
of BMI

21 Calculated constant

k1 glucose effectiveness; the ability to
promote glucose disposal and in-
hibit glucose production

0.027 0.73 Estimated min−1

k2 the insulin-dependent increase in
glucose uptake ability in tissue
per unit of insulin concentration
above Ib

0.110 2.89 Estimated min−1

k3 scaling factor for the amplitude of
insulin action

7.634 1.33 Estimated min−2

(µmol/L)−1

k4 decay rate for insulin in plasma 3.349 0.86 Estimated min−1

γ the rate of the pancreatic β-cells’
release of insulin after the glucose
injection and with glucose concen-
tration above D

0.017e-6 Estimated
from base
model

µmol/L

GT the threshold value of glucose
above which the pancreatic β-cells
release insulin

4974.59 0.55 Estimated µmol/L

Gb basal level of glucose 3000 0.26 Estimated
from base
model

µmol/L

Ib basal level of insulin 2.221e-11 Estimated
from base
model

µmol/L

Table 7.2: Estimated parameters using the leptin model

Dataset-II consists of OGTT data of 129 individuals diagnosed with T2DM, collected from

local pathology labs by a collaborator from a research institute. The subjects were asked

to ingest 25g of glucose dissolved in 100 mL of water after fasting for 8-12 hours. Sample

data from Dataset-II are given in Table 7.1(b). The column names are similar to Dataset-I

with only changes in time points. The measurements in Dataset-II are taken at times: 0, 15,

30, 60, 90 and 120 minutes. These data were obtained from local pathology laboratories in

anonymised form, ensuring the protection of patient confidentiality. The Dataset-I is used for

the estimation of parameters in the leptin model and Dataset-II is used in the validation of
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the model.

The condition which is characterised by abnormally high levels of insulin in the blood-

stream (hyperinsulinemia) strongly influences leptin levels [129]. This is not accommodated

in the present model as the available data used in the study only included subjects who were

not affected by hyperinsulinemia.

Estimation techniques Parameter estimation is performed by solving an optimisation prob-

lem to minimise the squared error between outputs obtained from solving ODE and the

observed data. The methods are implemented and coded in Python framework using the

SciPy packages odeint() [119] and lmfit() [145]. Parameter estimation runs were performed

for each individual subject and average parameter values were calculated from the estimated

results. Different estimation techniques were tried out and Nelder-Mead optimisation [40]

gave a better fit of observed data. The error function used in estimation is defined as follows:

E(θ) =
m∑
i=1

(ŷi − yi(θ))
2 (7.6)

where ŷi are observed data values and yi are simulated values for a given parameter θ at m

time points.

When performing parameter estimation or fitting for the system of ODEs, it is common to

impose bounds on the parameters to ensure that the estimated values are within a reasonable

and physiologically meaningful range. Setting parameter bounds helps to constrain the

optimisation process and prevents unrealistic or unbounded parameter estimates. This model

considers parameter ranges reported in the relevant literature and physiological constraints

while setting parameter bounds.

7.5 Revision of indices derived from OGTT

The concept of introducing a revised version of HOMA-B, HOMA2 and HOMA-IR, which

incorporates BMI and fasting leptin, is a valuable approach to account for the influence of

obesity on β-cell function and insulin resistance. The resulting indices can provide a more

comprehensive assessment of insulin secretion and sensitivity. HOMA-B focuses only on

fasting glucose and insulin values, while DIo also considers post-prandial values. The revised

indices for HOMA-B, HOMA2 and HOMA-IR are represented as functions of BMI and leptin,
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(a) Parameter kl

(b) Parameter kb

(c) Parameter gl

(d) Parameter k6

(e) Parameter ki

Figure 7.2: Sensitivity analysis of parameters with ± 30% variation wrt glucose, insulin and
leptin

as shown in the equations

HOMA-B (BMI) = HOMA-B + 37 · BMI,

HOMA2 (BMI) = HOMA2 + 24 · BMI,

HOMA-IR (BMI) = kBMI · HOMA-IR,

HOMA-IR (L0) = log(L0) · HOMA-IR,

HOMA-IR (BMI,L0) = kBMI · log(L0) · HOMA-IR,
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where L0 is fasting leptin in ng/mL. In order to establish a closer association with ISI, BMI

is incorporated into HOMA-B and HOMA2 calculations by applying a scaling factor and the

resulting values are analysed to determine their correlation with ISI. Through a systematic

Figure 7.3: Variation of scaling factor used in revised HOMA-B and HOMA2 wrt correlation
with ISI

evaluation of scaling factor values, the optimal scaling factor, which exhibits the highest

correlation with the ISI, is identified (as shown in Figure 7.3). This iterative approach ensures

that the scaling factor chosen is the minimum value that maximizes the required correlation.

The HOMA-IR index is enhanced by incorporating kBMI and L0 as separate variables, as well

as by considering their combined effect. The correlation between the augmented HOMA-IR

index and DIo is also measured in each case to assess their relationship. By incorporating BMI

and fasting leptin values into these indices, clinicians and researchers can gain insights into

the combined effects of insulin secretion, insulin resistance and obesity on T2DM.

7.6 Results and validation

This section presents the parameter estimation results of the leptin model, along with analysis

and validation of the model. The estimated parameters provide insights into the dynamics of

glucose, insulin and leptin concentrations in IG pathway and validation with data ensures the

reliability of leptin model.

Results of parameter sensitivity analysis The newly introduced parameters are sensitive to

the observables, highlighting the positive aspects of the current model. Sensitivity analysis is
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(a) Subject DM-06 (b) Subject DM-41

Figure 7.4: Simulation sample showing glucose, insulin and leptin concentrations for two
subjects

done on five parameters kl, kb, gl, k6 and ki in leptin model, considering a ± 30% variation with

respect to glucose, insulin and leptin and the results are shown in Figure 7.2. The parameter gl

is highly sensitive to glucose and insulin whereas less sensitive to leptin which implies the

ability of leptin to lower blood glucose levels impacts model behaviour significantly. This

variation in gl analysis helps in incorporating adequate ranges for gl. Insulin concentration is

affected by k6 and is moderately sensitive to the inhibitory action of leptin on insulin. kb is

highly sensitive to insulin, glucose and leptin, emphasising the role of BMI in the leptin model.

kl and ki are related to the insulin action in the production of leptin and are less sensitive to

insulin giving only a small boost in insulin concentration.

Results of parameter estimation The model is estimated for parameter values and the

resulting simulation closely matches with the observed data. The parameter description,

values, coefficient of variation (CV) and units are described in Table 7.2. Seven new parameters

- gl, kl, kb, bm, k5, k6 and ki, along with existing base model parameters are estimated using the

Nelder-Mead optimisation method using lmfit() [145] in Python. The parameters of the Ra

model for glucose absorption, kmax, kmin, kabs and f are taken from literature [38]. Few of the

parameters are estimated from the base model and few other parameters are calculated based

on known relationships or processes. As BMI is usually in the range 18-32, the parameter bm

in kBMI (Eqn 7.4) is fixed at 21 as the short range of the logistic function gives the effect of BMI

adequately. This is the calculated average value of estimated bm across all the subjects. The

parameter k5, which is the rate constant for leptin degradation, is found to have a half-life of
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Indices ISI
HOMA-B 0.299
HOMA2 0.306
HOMA-B (BMI) 0.467
HOMA2 (BMI) 0.469

(a)

Indices DIo

HOMA-IR 0.707
HOMA-IR (L0) 0.718
HOMA-IR (BMI) 0.733
HOMA-IR (L0,BMI) 0.735

(b)

Table 7.3: Correlation of indices: (a) Correlation of ISI to HOMA-B and HOMA2 and their
revisions (b) Correlation of DIo to HOMA-IR and revised HOMA-IR

26 min [146] and the value is fixed at 0.03. The simulation results of two sample subjects are

shown in Figure 7.4. The leptin model captures the observed time point measurements of

leptin along with insulin and glucose. The model effectively captures the relationship between

insulin and leptin, wherein an increase in insulin level leads to a decrease in leptin level. This

agreement between the model predictions and observed behaviour highlights the ability of

the model to represent the regulation between insulin and leptin adequately. CV is calculated

to express the relative variability in the parameters. For instance, a CV value of kb exhibits less

variability and more precision, whereas kl indicates a higher CV, which is attributed to the

range of BMI in subjects (Table 7.2).

Validation of the augmented model To evaluate whether the developed leptin model is

capable of capturing the dynamics of the insulin-glucose system, model validation is per-

formed. The newly introduced parameter values are estimated from the augmented model

and simulations are run for all the subjects. The BMI value is made a parameter for this

simulation and the estimated average is 24.6. Other parameter values are taken from literature

as given in Table 7.2. The simulations performed with the leptin model demonstrated a better

fit to the observed data points when compared to the base model. Sample simulation results

of the base model and leptin model using Dataset-II are shown in Figure 7.5. The simulated

behaviour of leptin reveals a pattern that closely resembles the results previously observed for

Dataset-I. To assess the statistical significance of the differences, a Chi-square goodness of

fit test (α = 0.05) is performed on the simulated and observed data. The analysis revealed a

statistically significant result of p-values with 74% good fits using the leptin model compared

to 62% good fits using the base model. The leptin model is also validated using Dataset-I

without considering leptin values and the fittings are found to be better. A sample simulation

results of the base model and leptin model using Dataset-I are shown in Figure 7.6.

Results of revised OGTT indices The correlation values between indices are shown in Table

7.3. The inclusion of BMI in HOMA-B and HOMA2 exhibits a better correlation with ISI with

coefficients of 0.467 and 0.469, respectively, suggesting a closer association with ISI. When
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(a) Subject DM-04 (b) Subject DM-09

(c) Subject DM-16 (d) Subject DM-28

Figure 7.5: Simulation sample showing glucose and insulin (for 75g glucose) for base model
and leptin model using Dataset I

examining the correlation between HOMA-IR and DI, the inclusion of BMI and leptin as

separate variables, as well as their combined effect, resulted in slightly higher correlation

values compared to the existing correlation between these factors. This suggests that BMI and

leptin contribute to the relationship between HOMA-IR and DI and their combined impact

further strengthens their association. These revised indices may be used clinically for better

assessment of β-cell function and insulin resistance.

7.7 Discussion on augmented model

The objective of this work is to augment the existing mathematical model of IG regulatory

system to accommodate the role of leptin and BMI. Parameters for the leptin model are

estimated using the observed data of glucose, insulin and leptin for individuals with T2DM.

The simulated results and the observed data have a statistically significant Chi-square fit of

74%. As leptin is involved in glucoregulatory actions, predicting its behaviour through the
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(a) Subject S1 (b) Subject S2

(c) Subject S3 (d) Subject S4

Figure 7.6: Simulation sample showing glucose and insulin (for 25g glucose) for base model
and leptin model using Dataset II

leptin model can help develop targeted interventions and therapies for managing and treating

T2DM, considering obesity-related issues. By influencing insulin secretion and sensitivity,

leptin affects glucose metabolism and overall glycemic control in individuals with T2DM.

Leptin is reported to have potent anti-diabetic actions independently of its effects on body

weight and food intake [147]. These anti-diabetic effects of leptin can be explored and used

in leptin therapy for the treatment of T2DM [147]. Further, long-term leptin-replacement

therapy can significantly improve glycemic control and insulin sensitivity in patients with

severe IR [148]. The new model can predict leptin behaviour in association with insulin and

glucose concentrations using clinically significant parameters. A personalised treatment

approach by integrating leptin behaviour may lead to more effective and targeted treatments

for metabolic conditions.

The revised OGTT indices (HOMA-B (BMI), HOMA2 (BMI), HOMA-IR (BMI), HOMA-IR

(L0), HOMA-IR (BMI, L0)) proposed can aid in better insulin dosage estimation. The effect of
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the estimated dosage may be better predicted using the leptin model. T2DM therapy largely

depends on the degree of IR and insulin secretory dysfunction, the contribution of which

is associated with obesity. Hence, the inclusion of obesity parameters in assessing IR and

β-cell dysfunction is vital in the decision-making process of anti-diabetic therapy. The simple

and usable indices proposed in this work will help decide a precision anti-diabetic therapy

for non-obese T2DM patients and may open the door to other possibilities to build more

accurate obesity-associated indices for personalised medicine. The claims in the work are

based on the available data of 38 subjects with information on leptin concentration during

OGTT. It would be desirable to perform the study on larger data to increase the confidence

of the results. A potential future work may be to enhance the presented leptin model by

incorporating other adipokines (such as adipsin and adiponectin) that also play a role in the

insulin-glucose regulatory system.

7.8 Conclusion

In this study, the OMM is augmented by incorporating the influence of BMI and leptin levels

in the insulin-glucose regulatory system. The model is developed based on several theoretical

studies on the association of leptin with insulin and glucose concentrations. The model

parameters are estimated and analysed using the OGTT data collected in a clinical setting.

The new model offers valuable insights into the workings of the insulin-glucose system, taking

into account the obesity of the subject and uncovering related risk factors involved in T2DM.

This seems to be the first attempt to model the role of obesity indicators, leptin and BMI

in glucose regulation. The revised OGTT indices, with the inclusion of obesity parameters,

hold the potential to aid in determining precise anti-diabetic therapies for T2DM. Simulation

results from the augmented model with the identified parameters have a good match with

the observed data of insulin, glucose and leptin. The results presented in this work are based

on limited available data. It would be desirable to reinforce those by extending the study to a

larger dataset.
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CHAPTER 8
Conclusions

Chapter outline

• Conclusions of present work

• Future work

This thesis presents computational techniques developed towards modelling, simula-

tion and analysis primarily in the areas of a) physiologically based pharmacokinetic (PBPK)

modelling and drug distribution in in vitro systems b) lumped parameter modelling of the

cardiovascular system (CVS) c) clustering workflow to identify subtypes in type 2 diabetes

mellitus (T2DM) d) insulin-glucose regulatory system e) parameter distinctions for obese and

non-obese T2DM and f ) the role of obesity indicators in the insulin-glucose regulatory system.

The research presented in this thesis is the culmination of a comprehensive literature review

and the development of various approaches on the aforementioned topics.

8.1 Conclusions of present work

The work on the five topics reported in this thesis, along with the methods, results and findings

developed, are now summarised.

Summary of mathematical modelling of drug distribution in in vitro systems Drug de-

velopment faces challenges in accurately predicting human responses, requiring effective

preclinical testing strategies. The work on developing the digital liver-on-chip simulator (Dig-

iLoCs) represents a significant stride towards a more accurate and efficient drug development

process. DigiLoCs improve human clearance predictions through an integrated approach

that translates in vitro findings to clinically relevant situations. We modelled drug depletion

103
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kinetics using assay compound depletion data derived from liver cell-based organ-on-chip

(OoC) to study drug depletion in the human liver by digital twinning.

Current methods oversimplify biological processes, lumping them into one clearance

process and relying on minimal information. Our approach integrates three key components:

biological, hardware, and physicochemical information. It distinguishes between active

and passive processes by explicitly describing drug uptake, distribution and metabolism.

Digital twinning links hardware architecture with advanced biological mapping, accurately

capturing drug kinetics in intracellular space. Analysis of thirty-two compounds showed

that our approach closely described on-chip kinetics, resolving systematic under-prediction

issues compared to conventional methods. Notably, this improvement was achieved without

additional biological experiments.

Using propranolol as a proof-of-concept, we demonstrated the superior predictive power

of our approach in predicting human pharmacokinetics (PK). This workflow is easily adaptable

to other compounds, making it a significant advancement in liver clearance prediction. By

using ODE-constrained optimisation and incorporating detailed information on compound-

specific characteristics and hardware-specific data, DigiLoCs enables precise predictions of

clinical clearance. This work demonstrates the effectiveness of DigiLoCs in predicting in vitro

liver clearance and successfully translating these findings to human PK. The DigiLoCs platform

has far-reaching implications for pharmaceutical research, serving as a decision-support tool

for estimating first-in-human doses, evaluating human PK and reducing reliance on animal

experimentation. Moreover, the versatility of our approach enables its application across

various physiological contexts, extending beyond liver metabolism to other organs, such as

gut metabolism, blood-brain barrier models and placental barrier models. By integrating

DigiLoCs into drug development workflows, the process can be streamlined to promote more

sustainable and expedited clinical trials.

Summary of lumped parameter modelling of the cardiovascular system (CVS) In this

work, the digital twinning approach is applied to model the human circulatory system using

the hydraulic-electrical analogy. A comprehensive ODE model for the whole-body CVS is

developed. The pressure and flow simulations of the comprehensive model help analyse

the blood flow pattern in vessels at various places of interest. The modelling approach is

initiated with the existing base model comprising heart chambers, systemic circulation and

pulmonary circulation. The base model may be augmented with more compartments to

attain a more refined model capable of detailed simulation of blood flow and pressures. In

this work, augmentation with compartments for lungs, aorta, upper body, kidney, liver and

lower body has been done to achieve the comprehensive model for a healthy individual. Most

parameter values in the comprehensive model are obtained from the literature while others
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are tuned manually to achieve physiologically reasonable behaviour of flows and pressures

at various places of interest, as observed through model simulation. Notably, the addition of

relevant compartments enables the simulation of pressure and flow in internal organs where

observation is challenging.

Our comprehensive model simulations were validated with respect to the base model com-

partments and for additional compartments, with data available in the literature, ensuring

consistency with established physiological values. We quantified the percentage of cardiac

output distributed to each compartment and compared these values to known physiological

ranges. To evaluate model convergence, we computed the RMSE across different numbers of

cardiac cycles and showed that for a sufficiently large number of cycles (e.g., 1000+), both the

flow difference and RMSE approached zero, indicating numerical stability and conservation.

The results of the sensitivity analysis indicate that less sensitive parameters can be assigned

nominal values. The more sensitive parameters can be determined optimally through param-

eter estimation. The broad and adaptable nature of our model allows for easy replication and

modification, making it possible to simulate various disease states by selectively removing

or adjusting specific compartments or variables. This flexibility is essential for capturing the

interactions between multiple organs in disease states, such as those seen in sepsis, a multi

organ dysfunction syndrome.

Summary of clustering-based methods to identify subtypes of T2DM This study investi-

gates the heterogeneity of uncontrolled T2DM patients and identifies potential subtypes to

aid in personalised treatment. We identified three distinct clusters by analysing electronic

health records of 339 uncontrolled T2DM patients using Uniform Manifold Approximation

and Projection (UMAP) and Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN). These clusters differed significantly in disease duration, presence of co-morbidities,

and β-cell function, without significant difference in insulin resistance. Notably, the clusters

responded differently to treatment, with the second cluster showing the best glycemic control

with dual anti-diabetic therapy, while the third cluster had the worst glycemic control despite

receiving intensive therapy.

Our findings highlight the need for stratifying uncontrolled T2DM patients according to

their patho-clinical characteristics to optimise treatment outcomes. Clusters 2 and 3 repre-

sent the obesity-associated and Asian-Indian diabetic variants, respectively. Many Cluster

1 patients may transition to Cluster 3 following substantial β-cell damage. Patients in Clus-

ter 2 should be prioritised to manage associated diseases, while those in Cluster 1 and 3

require tighter glycemic control. Current diabetes treatment, which focuses on the classi-

cal obesity-associated T2DM, needs to be reevaluated in light of the Asian-Indian variant

and its specific therapeutic needs. By recognising the heterogeneity within the population,
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healthcare providers can move towards precision therapy, optimising treatment outcomes

and improving patient care. This study lays the groundwork for further investigation into

the clinical characteristics of uncontrolled T2DM subtypes. Additional research is needed to

explore the causes of these differences and to develop personalised treatment strategies that

account for the distinct pathophysiological profiles of each subtype. Ultimately, this precision

medicine approach can potentially transform the management of T2DM.

Summary of parameter estimation of Oral Minimal Model in obese and non-obese T2DM

This study successfully applied the Oral Minimal Model (OMM) to estimate parameters

for obese and non-obese subjects with T2DM using Oral Glucose Tolerance Test (OGTT)

data. The findings provide novel insights into the differences in insulin-glucose dynamics

between obese and non-obese T2DM groups. The key findings of this study reveal that the

obese diabetic group exhibited greater insulin resistance compared to the non-obese diabetic

group. Statistical analysis of the estimated parameters revealed distinct distributions of

model parameters between control and T2DM groups, as well as among obese and non-obese

T2DM subjects. The implications of this study are multifaceted. Firstly, it demonstrates the

potential of the OMM in understanding the pathophysiology of type 2 diabetes, particularly

separating obese and non-obese T2DM. Secondly, the difference in identified parameters

provides valuable information for personalised treatment strategies. Lastly, this preliminary

application of the OMM with obesity as a distinguishing factor lays the groundwork for

future research in diabetes management and treatment. Future research directions include

further investigation to validate these findings in diverse populations. Additionally, integrating

the OMM with other diagnostic tools may enhance T2DM diagnosis and treatment. This

study contributes to the growing body of research on diabetes management, highlighting the

importance of considering obesity in developing personalised treatment plans.

Summary of mathematical modelling of leptin in insulin-glucose regulatory system In

this work, the OMM is augmented by incorporating the influence of body mass index (BMI)

and leptin levels on the insulin-glucose regulatory system, providing a more comprehensive

understanding of T2DM. Building on theoretical studies that established the association

between leptin, insulin and glucose concentrations, our model offers insights into the interac-

tions between these factors, particularly in obese individuals. The revised model, developed

using ODEs, demonstrates a superior fit to clinical data on insulin, glucose and leptin levels

(when available). Including obesity parameters in the OGTT indices holds promise for de-

termining precise anti-diabetic therapies for T2DM. Notably, this study represents the first

attempt to model the role of obesity indicators, leptin and BMI together, in glucose regulation

by augmenting the OMM. The findings of this study underscore the importance of consid-
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ering body weight indicators in developing effective treatments for T2DM. While the results

are encouraging, they are based on limited available data. Future research should prioritise

expanding the study to larger datasets to reinforce these findings. Nonetheless, this innovative

approach lays the groundwork for targeted interventions and therapies, offering new avenues

for improving the management and treatment of T2DM. The inclusion of obesity parameters

in OGTT indices holds promise for determining precise anti-diabetic therapies. This study rep-

resents the first attempt to model the role of obesity indicators in insulin-glucose regulation,

augmenting the ODEs of OMM.

8.2 Future work plan

The digital twin approach can be extended to other OoC devices. Measuring intracellular

concentrations can help validate the three-compartment model. The physical-chemical

properties of drugs can also be estimated with more observations from OoC experiments.

The lumped parameter model of the cardiovascular system can be enhanced by integrating

additional physiological subsystems such as CNS fluid flow, coronary circulation, and refined

representations of the upper and lower body vasculature. Pharmacokinetics can be introduced

to study drug response in the circulatory system. These extensions enable the development

of a whole-body model of fluid transport that can simulate complex conditions like sepsis.

Potential future applications of the comprehensive model include exploring the impact of

comorbidities on cardiovascular function, optimising treatment protocols for specific pa-

tient populations, and investigating the mechanisms underlying cardiovascular disease. The

developed leptin model can be validated using additional data, including observations of

leptin levels. These models can also be extended by incorporating other adipokines, and

their effect on the model can be studied and validated. The identified uncontrolled T2DM

subtypes can be investigated further using larger cohorts to enable more informed decisions

for personalised treatment strategies.
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APPENDIX A
Supplementary information for

Chapter 3

The primary objective of this study is to develop an innovative digital twin framework that

integrates microphysiological systems (MPS) and organ-on-chip (OoC) data into advanced

computational models of biology to enhance the accuracy of predicting clinical clearances.

The resulting tool, DigiLoCs, is a digital liver-on-chip simulator capable of effectively captur-

ing the complexities of on-chip biology. It incorporates information on various biological

processes such as clearance, permeability, and partitioning, along with hardware-specific

details from the studied in vitro systems and compound-specific data.

DigiLoCs enable the differentiation between active biological processes like metabolism

and passive ones such as permeability and partitioning, which contrasts with existing ap-

proaches where passive processes are often lumped together into a single clearance process.

The tool’s performance was evaluated using drug depletion kinetics data of 32 compounds

from literature covering commercially available liver-on-chips and 3D spheroids. Results

indicate that DigiLoCs significantly outperform current prediction approaches. Furthermore,

a proof-of-concept study involving propranolol demonstrated the tool’s potential in pre-

dicting human pharmacokinetics (PK) more accurately compared to state-of-the-art and

literature-based approaches.

A.1 Simulation of drug depletion data

The digital twin-based model simulation of on-chip kinetics of all the drugs involved in the

study are shown in Figures A.1, A.2, A.3 and A.4. The drug-specific information is shown in

Table A.1 and the analysis of estimated parameters is shown in Table A.2. The correlation plots

131
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for different in vitro systems along with average fold error (AFE) are shown in Figures A.5, A.6

and A.7.

(a) Phenacetin (b) Prednisolone

(c) Propranolol

Figure A.1: Digital twin-based model simulation of on-chip kinetics after fitting parameters
for three compounds from Tsamandourous et al. [11]; IC = intracellular, Ist = interstitium.

A.2 Human PBPK modelling of propranolol

The open systems pharmacology suite (OSPS) (PK-Sim and MoBi) provides functionality for

the full range of PBPK applications from physicochemistry-based prediction models for all

relevant preclinical and clinical species to elaborated simulations for drug-drug interactions

and special populations. The suite comprises functionalities for parameter identification,

model qualification, and automated reporting as well as interfaces to R (The R Project for Sta-



A.2. Human PBPK modelling of propranolol 133

Names
Lipoph-

ilicity

Molecular
weight
[g/mol]

pKa Species
Unbound
fraction
plasma

Unbound
fraction

blood

Blood-to-
plasma

ratio (Rbp)

Unbound
fraction
media

Diclofenac 4.36 318.14 4.00 Acid 0.01 0.018 0.55 0.045
Lorazepam 3.10 321.16 10.61 Neutral 0.11 0.11 1.00 0.80
Midazolam 4.32 325.77 - Neutral 0.03 0.06 0.55 0.10
Naloxone 1.30 327.38 10.07 Neutral 0.56 0.46 1.22 0.87
Oxazepam 2.45 286.72 10.61 Neutral 0.05 0.04 1.10 0.60
Posaconazole 4.57 700.79 - Neutral 0.02 0.02 1.00 0.37
Quinidine 3.17 324.42 13.89 Base 0.13 0.15 0.87 0.63
Tolbutamide 1.78 270.35 4.33 Acid 0.02 0.03 0.75 0.45
Zidovudine -0.20 267.25 9.96 Neutral 0.74 0.75 0.99 0.98
Propranolol 2.58 259.35 14.9 Base - 0.14 - 0.95
Prednisolone 1.56 360.45 12.59 Neutral - 0.10 - 0.87
Phenacetin 2.04 179.22 - Neutral - 0.6 - 1.00
Imipramine 2.30 280.40 9.20 Base 0.03 0.13 0.23 0.59
Clozapine 3.627 326.80 3.70 Base - 0.07 - 0.35
Paracetamol 0.29 151.16 9.50 Neutral - 0.04 - 0.93
Irbesartan 1.30 428.50 7.40 Zwitter - 0.72 - 0.52
Ketoprofen -0.15 254.80 4.45 Acid - 0.01 - 0.87
Disopyramide 3.10 339.50 10.42 Base - 0.16 - 0.83
(S)-Warfarin 2.74 308.30 5.00 Neutral - 0.01 - 0.95
Carvedilol 3.10 406.50 8.10 Base - 0.03 - 0.43
Imipramine 2.30 280.40 9.20 Base 0.03 0.13 0.23 0.92
Disopyramide 3.10 339.50 10.42 Base - 0.16 - 0.98
(S)-Warfarin 2.74 308.30 5.00 Neutral - 0.01 - 0.95
Carvedilol 3.10 406.50 8.10 Base - 0.03 - 0.43
Midazolam 4.32 325.77 - Neutral 0.03 0.10 0.55 0.49
Dextromethorphan 3.50 271.00 9.85 Base 0.46 0.38 1.20 0.79
Diclofenac 4.36 318.14 4.00 Acid 0.01 0.01 0.55 0.04
Propranolol 2.58 259.35 14.9 Base - 0.14 - 0.98
Raloxifene 4.60 473.00 9.00 Base 0.02 0.02 0.78 0.09
Tolbutamide 1.78 270.35 4.33 Acid 0.02 0.05 0.75 0.60
Verapamil 4.00 454.00 9.68 Base 0.19 0.28 0.67 0.35
Zidovudine -0.20 267.25 9.96 Neutral 0.74 0.75 0.99 0.88

Table A.1: Drug-specific information of 32 compounds involved in the study

tistical Computing, www.R-project.org) and PK-Sim release 11.3 (http://www.open-systems-

pharmacology.org/). The methodological framework and the systematic presentation of

findings adhere to the criteria stipulated by the EMA, FDA and OECD in their guidelines for

PBPK M&S reporting [149, 150, 151].

In a comprehensive PBPK model (illustrated in Figure A.8), there is a detailed depiction of

key organs involved in the drug’s absorption, distribution, metabolism and excretion [152].

These organs typically include the heart, lungs, brain, stomach, spleen, pancreas, intestines,

liver, kidneys, gonads, thymus, adipose tissue, muscles, bones and skin. The model considers

each organ’s physiological/pharmacological role, volume [19], composition, surface area and

protein expression levels. These tissues are interconnected through arterial and venous blood

compartments, each characterised by unique attributes such as blood flow rate, lymph flow

rate, volume, vascular, interstitial and intracellular fractions, tissue-partition coefficients and

permeability.

Thus, PBPK models provide an intricate structural representation of physiological mech-
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Names
CLobs
ml/min

kg

CLconv
ml/min

kg

CLpred
ml/min

kg

CLpred

CLobs

CLconv
CLobs

On-chip
clearance
[ml/min]

Surface
area
[cm2]

Study

Diclofenac 6.83 3.62 6.78 0.99 0.53 2.55E-03 2.90E-03 Docci
Lorazepam 1.43 0.69 1.36 0.95 0.48 5.48E-04 1.26E-05 Docci
Midazolam 11.28 12.67 11.08 0.98 1.12 2.20E-03 8.90E-04 Docci
Naloxone 16.89 16.30 19.45 1.15 0.96 1.11E-02 9.50E-04 Docci
Oxazepam 1.30 1.41 1.30 0.99 1.08 1.05E-03 7.16E-05 Docci
Posaconazole 2.24 0.42 0.81 0.36 0.19 5.67E-04 1.34E-05 Docci
Quinidine 6.33 3.79 5.68 0.90 0.60 1.65E-03 3.60E-05 Docci
Tolbutamide 0.21 0.10 0.36 1.73 0.47 1.02E-04 1.30E-04 Docci
Zidovudine 14.58 3.27 14.18 0.97 0.22 9.90E-04 6.80E-06 Docci
Propranolol 10.80 1.55 13.06 1.21 0.14 2.75E-03 5.34E-05 Tsamandouras
Prednisolone 2.02 0.25 2.83 1.40 0.12 3.58E-04 2.60E-02 Tsamandouras
Phenacetin 19.50 9.33 13.08 0.67 0.48 1.48E-03 2.37E-02 Tsamandouras
Imipramine 13.81 2.12 17.83 1.29 0.15 3.10E-04 2.70E-01 Hultman
Clozapine 8.41 1.33 8.47 1.01 0.16 2.90E-04 2.20E-01 Hultman
Paracetamol 0.40 0.23 0.52 1.31 0.57 7.50E-06 7.20E-02 Hultman
Irbesartan 19.28 2.86 18.44 0.96 0.15 3.89E-04 1.00E-01 Hultman
Ketoprofen 1.28 0.01 2.58 2.01 0.01 4.11E-04 9.00E-01 Hultman
Disopyramide 0.90 0.49 0.75 0.83 0.55 1.00E-05 1.40E-04 Hultman
(S)-Warfarin 0.06 0.002 0.06 0.94 0.03 4.80E-05 2.47E-01 Hultman
Carvedilol 8.70 4.05 10.95 1.26 0.47 1.51E-04 1.04E-02 Bonn
Imipramine 13.81 4.35 14.49 1.05 0.32 1.00E-06 2.90E-02 Kanebratt
Disopyramide 0.90 1.53 0.81 0.90 1.70 7.90E-06 1.00E-01 Kanebratt
(S)-Warfarin 0.06 0.09 0.03 0.56 1.47 1.00E-06 5.30E-03 Kanebratt
Carvedilol 8.70 4.05 6.82 0.78 0.47 1.00E-06 2.00E-02 Kanebratt
Midazolam 5.30 2.87 4.61 0.87 0.54 4.80E-04 1.59E-05 Rajan
Dextromethorphan 18.40 2.68 18.77 1.02 0.15 4.24E-05 2.12E-03 Rajan
Diclofenac 3.50 3.02 3.38 0.96 0.86 8.00E-05 2.50E-03 Rajan
Propranolol 10.80 5.00 8.06 0.75 0.46 1.90E-04 3.80E-03 Rajan
Raloxifene 9.33 13.8 13.29 1.42 1.48 1.50E-05 2.29E-03 Rajan
Tolbutamide 0.21 0.24 0.23 1.08 1.14 1.10E-04 2.88E-03 Rajan
Verapamil 17.60 7.85 13.69 0.78 0.45 8.50E-05 1.60E-03 Rajan
Zidovudine 14.58 4.20 15.18 1.04 0.29 2.20E-04 7.80E-03 Rajan

Table A.2: Overview of observed, conventional, on-chip and predicted clearance values of the
investigated 32 drugs across different in vitro systems. CL is clearance, obs is observation,
conv is conventional, pred is prediction

anisms, with most parameters derived from existing knowledge bases or from rigorously

validated equations. This allows for a clear differentiation between pre-established organism

parameters and drug-specific parameters. Despite the complexity of PBPK models, often

involving hundreds of ordinary differential equations, the number of independent parameters

for a new drug is typically limited (generally less than five per drug). This is made possible

by the extensive use of existing physiological data. Similar to distribution models, these

drug-specific parameters are typically consistent across various species or administration

methods.

Drug characteristics like lipophilicity, solubility and molecular weight are independent

of the organism’s physiology. Conversely, drug-biological properties, such as unbound drug

fraction in plasma or the tissue-plasma partition coefficient, are unique to the drug but

also influenced by the drug’s interaction with the biological system. By integrating these
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drug characteristics with the organism’s anatomical and physiological traits, it becomes

feasible to estimate parameters for passive processes that govern drug distribution in the

body, such as membrane permeation. Additionally, data on the administration protocol and

formulation attributes are crucial for configuring a PBPK simulation. The model can also

incorporate temporal factors like gallbladder emptying or meal consumption, allowing for the

assessment of their effects on drug PK. Properties for propranolol, including absorption after

oral administration, clearance and human plasma PK, were taken from literature [153, 69, 154].
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(a) Diclofenac (b) Lorazepam

(c) Midazolam (d) Naloxone

(e) Oxazepam (f) Posaconazole
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(g) Quinidine (h) Tolbutamide

(i) Zidovudine

Figure A.2: Digital twin-based model simulation of on-chip kinetics after fitting parameters
for nine compounds from Docci et al. [10]; IC = intracellular, Ist = interstitium.
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(a) Dextromethorphan (b) Diclofenac

(c) Midazolam (d) Propranolol

(e) Raloxifene (f) Tolbutamide
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(g) Verapamil (h) Zidovudine

Figure A.3: Digital twin-based model simulation of on-chip kinetics after fitting parameters
for eight compounds from Rajan et al. [59]; IC = intracellular, Ist = interstitium.
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(a) (S)-warfarin [16] (b) (S)-warfarin [14]

(c) Carvedilol [16] (d) Carvedilol [14]

(e) Clozapine [16] (f) Disopyramide [16]
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(g) Disopyramide [14] (h) Imipramine [16]

(i) Imipramine [14] (j) Irbesartan [16]

(k) Ketoprofen [16] (l) Paracetamol [16]

Figure A.4: Digital twin-based model simulation of on-chip kinetics after fitting parameters
for 3D spheroids (Kanebratt et al. [14], Bonn et al. [16]); IC = intracellular, Ist = interstitium.
Numbers indicate individual biological replicates.
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Figure A.5: Correlation between observed and predicted in vivo intrinsic clearance (CLint)
using the three-compartment model for four drugs from Kanebratt et.al [14] and Carvedilol
from Bonn et al. [16] (AFE = 0.879). The solid line shows the line of unity.
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Figure A.6: Correlation between observed and predicted in vivo intrinsic clearance (CLint)
using the three-compartment model for seven drugs from Hultman et.al [16] (AFE= 1.143).
The solid line shows the line of unity.
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Figure A.7: Correlation between observed and predicted in vivo intrinsic clearance (CLint)
using three-compartment ODE liver chip for eight drugs from Rajan et. al [59] (AFE=0.972).
The solid line shows the line of unity.
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Figure A.8: Representation of the generic structure of a whole-body PBPK model
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B.1 Compartments and ODEs

Pulmonary circulation

CPul
Ar

dPPul
Ar

dt
=QPV(t)−QPul

Ar (t),

LPul
Ar

dQPul
Ar

dt
=−RPul

Ar ·QPul
Ar (t) + PPul

Ar (t)−PLung(t),

CLung
dPLung

dt
=QPul

Ar (t)−QLPul
Ar (t)−QRPul

Ar (t),

CLL
dPLL

dt
=QLPul

Ar (t)−QLL(t),

LLPul
Ar

dQLPul
Ar

dt
=−RLPul

Ar ·QLPul
Ar (t) + PLung(t)−PLL(t),

LLL
dQLL

dt
=−RLL ·QLL(t) + PLL(t)−PPul

Ven(t),

CRL
dPRL

dt
=QRPul

Ar (t)−QRL(t),

LRPul
Ar

dQRL

dt
=−RRPul

Ar ·QRPul
Ar (t) + PLung(t)−PRL(t),

LRL
dQRL

dt
=−RRL ·QRL(t) + PRL(t)−PPul

Ven(t),

CPul
Ven

dPPul
Ven

dt
=QRL(t) +QLL(t)−QPul

Ven(t),

LPul
Ven

dQPul
Ven

dt
=−RPul

Ven ·QPul
Ven(t) + PPul

Ven(t)− PLA(t).

147
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Ascending aorta and aortic arch

CAscA
dPAscA

dt
=QAV(t)−QAscA(t),

LAscA
dQAscA

dt
=−RAscA ·QAscA(t) + PAscA − PAArc(t),

CAArc
dPAArc

dt
=QAscA(t)−QSub(t)−QCCar(t)−QDscA(t).

Upper body- subclavian, cerebral, facial, upper limbs and superior vena cava

LSub
dQSub

dt
=−RSub ·QSub(t) + PAArc(t)− PULimb(t),

CCCar
dPCCar

dt
=QCCar(t)−QICar(t)−QECar(t),

LCCar
dQCCar

dt
=−RCCar ·QCCar(t) + PAArc(t)− PCCar,

LICar
dQICar

dt
=−RICar ·QICar(t) + PCCar(t)− PCer,

CCer
dPCer

dt
=QICar(t)−QCer(t),

LCer
dQCer

dt
=−RCer ·QCer(t)−RCerT ·QCer(t) + PCer(t)− PSVC,

[1.5ex]LECar
dQECar

dt
=−RECar ·QECar(t) + PCCar(t)− PFac,

CFac
dPFac

dt
=QECar(t)−QFac(t),

LFac
dQFac

dt
=−RFac ·QFac(t)−RFacT ·QFac(t) + PFac(t)− PSVC,

[1.5ex]CULimb
dPULimb

dt
=QSub(t)−QULimb(t),

LULimb
dQULimb

dt
=−RULimb ·QULimb(t) + PULimb(t)− PSVC(t),

CSVC
dPSVC

dt
=QULimb(t) +QCer(t)−QSVC(t),

LSVC
dQSVC

dt
=−RSVC ·QSVC(t) + PSVC(t)− PRA(t).

Descending aorta, abdominal aorta, renal circulation, lower limbs and inferior

vena cava

CDscA
dPDscA

dt
=QDscA(t)−QRen

Ar (t)−QAbdA(t),

LDscA
dQDscA

dt
=−RDscA ·QDscA(t) + PAArc(t)− PDscA(t),

CAbdA
dPAbdA

dt
=QAbdA(t)−QCel(t)−QMes(t)−QIliac(t),

LAbdA
dQAbdA

dt
=−RAbdA ·QAbdA(t) + PDscA(t)− PAbdA(t),
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LRen
Ar

dQRen
Ar

dt
=−RRen

Ar ·QRen
Ar (t) + PDscA(t)− PRen(t),

CRen
Ar

dPRen
Ar

dt
=QAbdA1(t)−QRen

Ar (t),

LRen
Ar

dQRen
Ar

dt
=−RRen

Ar ·QRen
Ar (t) + PRen(t)− PIVC(t),

CLLimb
dPLLimb

dt
=QIliac(t)−QLLimb(t),

LIliac
dQIliac

dt
=−RIliac ·QIliac(t) + PAbdA(t)− PLLimb(t),

LLLimb
dQLLimb

dt
=−RLLimb ·QLLimb(t) + PLLimb(t)− PIVC(t),

CIVC
dPIVC

dt
=QLLimb(t) +QHep(t) +QRen(t) +QPor

Ven(t)−QIVC(t),

LIVC
dQIVC

dt
=−RIVC ·QIVC(t) + PIVC(t)− PRA(t).

Celiac, spleen, mesenteric, hepatic and portal vein

LCel
dQCel

dt
=−RCel ·QCel(t) + PAbdA(t)− PCel,

CSpl
dPSpl

dt
=QSpl

Ar (t)−QSpl(t),

LSpl
Ar

dQSpl
Ar

dt
=−RSpl

Ar ·QSpl
Ar (t) + PCel(t)− PSpl(t),

LSpl
dQSpl

dt
=−RSpl ·QSpl(t) + PSpl(t)− PPor

Ven ,

CMes
dPMes

dt
=QMes

Ar (t)−QMes(t),

LMes
Ar

dQMes
Ar

dt
=−RMes

Ar ·QMes
Ar (t) + PAbdA(t)− PMes

Ar ,

LMes
dQMes

dt
=−RMes ·QMes(t) + PMes(t)− PPor

Ven ,

CHep
dPHep

dt
=QHep

Ar (t) +QPor
Ven(t)−QHep,

LHep
Ar

dQHep
Ar

dt
=−RHep

Ar ·QHep
Ar (t) + PCel − PHep(t),

LHep
dQHep

dt
=−RHep ·QHep(t) + PHep − PIVC(t),

CPor
Ven

dPPor
Ven

dt
=QSpl(t) +QMes(t)−QPor

Ven(t),

LPor
Ven

dQPor
Ven

dt
=−RPor

Ven ·QPor
Ven(t) + PPor

Ven − PIVC(t).

B.2 Supplementary figures and tables
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Figure B1: Simulated pressure and flow rate for pulmonary circulation (left and right lung,
pulmonary arteries and veins).

Figure B2: Simulated pressure and flow rate for major arteries.

Figure B3: Simulated pressure and flow rate for upper body organs.

Figure B4: Simulated pressure and flow rate for abdominal organs.
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Figure B5: Simulated pressure and flow rate for abdominal organs.

Figure B6: Simulated pressure and flow rate in major veins.

Variable Initial value Variable Initial value Variable Initial value
VLA 80 PCCar 40 PCer 60
VLV 110 QCCar 0.5 QCer 0.5
VRA 80 QICar 0.5 PSpl 30
VRV 110 QECar 0.5 QSpl1 0.5
PPul

Ar 20 PCel 50 QSpl2 0.5
PPul

Ven 15 QCel 0.5 PHep 30
QPul

Ar 5.0 PRen 15 QHep1 0.5
QPul

Ven 5.0 QRen 0.5 QHep2 0.5
PLung 5 QRen

Ar 0.5 PMes 30
PLL 15 PDscA 80 QMes1 0.5
QLL1 0.1 QDscA 1.0 QMes2 0.5
QLL2 0.1 PAbdA 70 Psys 10
PRL 15 QAbdA 1.0 QPsys 0.5
QRL1 0.1 PULimb 40 PLLimb 30
QRL2 0.1 QIliac 0.5 QLLimb 0.5
PAscA 120 QULimb 0.5 PPor

Ven 10
QAscA 5.0 PFac 40 QPor

Ven 0.5
PAArc 100 QFac 0.5

Table B.1: Initial values of variables. P, Q and V represent blood pressure (mmHg/s), flow
(mL/s) and volume (mL).
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Figure B7: Pressure, volume and flow rates during a heartbeat in heart chambers

Figure B8: Total Sobol indices for all model parameters and output variables for base model.
Darker shades indicate higher sensitivity.
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Variables Description Simulated
range

Min reference
range

Max reference
range

Status

VLA Left atrium 41–90 Men: 31
Women: 28 [155]

Men: 112
Women: 100 [155,
156]

Acceptable

VLV Left ventricle 41–114 Men: 62
Women: 46 [155]

Men: 155
Women: 106
[155]

Acceptable

VRA Right atrium 52–97 Men: 24
Women: 24 [155]

Men: 105
Women: 81 [155]

Satisfactory

VRV Right ventricle 46–118 Men: 74
Women: 58 [155]

Men: 202
Women: 150
[155]

Acceptable

PLA Left atrium 10–17 2 [157] 12 [157, 158] Satisfactory
PLV Left ventricle 9–134 3 [158] 120 [158] Acceptable
PRA Right atrium 4–7 0 [158] 7 [158, 159] Acceptable
PRV Right ventricle 3–26 0 [158] 30 [158, 1] Acceptable
PPul
Ven Pulmonary

veins
15–16 5 [160] 12 [160, 161] Satisfactory

PPul
Ar Pulmonary

artery
17–22 8 [1] 25 [1, 161] Satisfactory

PAscA Ascending aorta 67–129 80 [162] 120 [162] Acceptable
PAArc Aortic arch 66–123 80 [162] 120 [162] Acceptable
PCCar Common

carotid
65–123 70 [162] 120 [162] Acceptable

PCer Cerebral artery 64-124 60 (MAP) [163] 80 (MAP) [163] Acceptable
PFac Facial circula-

tion
62-104 – – Unavailable

PULimb Upper limb 67–89 80 [164] 120 [164] Satisfactory
PDscA Descending

aorta
66–121 80 [162] 120 [162] Acceptable

PAbdA Abdominal
aorta

65–116 80 [162] 120 [162] Acceptable

PRen Renal arterial 64–118 80 [165, 162] 100 [165, 162] Acceptable
PCel Celiac artery 65–114 80 [162] 120 [162] Acceptable
PMes Mesenteric

artery
62–72 – – Unavailable

PSpl Splanchnic
artery

56–69 – – Unavailable

PHep Hepatic artery 58 - 94 – – Unavailable
PLLimb Lower limb 67-90 80 [166] 120 [166] Satisfactory
PPor
Ven Portal vein 26–26 5 [167] 15 [167] Satisfactory

PIVC Inferior vena
cava

15 - 15 2 [168] 14 [168] Satisfactory

PSVC Superior vena
cava

12 - 12 2 [164] 13 [164] Satisfactory

Table B.2: Hemodynamics for whole-body cardiovascular model. Simulated and reference
ranges for volumes (mL) and pressures (mmHg) in all model compartments.
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Variables Description
Simulated

mean (mL/s)
Mean flow

reference (mL/s)
Status

QPul
Ven Pulmonary veins 91.0 80–100 [169, 170] Acceptable

QPul
Ar Pulmonary artery 91.0 80–100 [169, 170] Acceptable

QAV Aortic valve 91.0 80–100 [169, 170] Acceptable
QPV Pulmonary valve 91.0 80–100 [169, 170] Acceptable
QTV Tricuspid valve 91.0 80–100 [169, 170] Acceptable
QMV Mitral valve 91.0 80–100 [169, 170] Acceptable
QRen Renal circulation 18.0 16–22 [170, 162] Acceptable
QAscA Ascending aorta 91.0 80–100 [169, 170] Acceptable
QCCar Common carotid 28.0 16–26 [171, 170] Satisfactory
QICar Internal carotid 18.0 12–16 [171] Satisfactory
QECar External carotid 11.0 4–8 [171] Satisfactory
QCer Cerebral circulation 18.0 12–15 [171, 170] Satisfactory
QFac Facial circulation 11.0 2–4 [171] Satisfactory
QULimb Upper limb 8.0 6–10 [172, 170] Satisfactory
QIVC Inferior vena cava 55.0 40–60 [169, 170] Acceptable
QSVC Superior vena cava 36.0 15–25 [169, 170] Satisfactory
QDscA Descending aorta 55.0 50–70 [169] Acceptable
QAbdA Abdominal aorta 36.0 30–50 [169, 170] Acceptable
QCel Celiac artery 13.0 7–12 [170] Satisfactory
QMes Mesenteric circulation 13.0 10–15 [170] Acceptable
QSpl Spleen, pancreas, gastric 5.0 3–5 [162] Acceptable
QPor

Ven Portal vein 18.0 18–25 [170, 173] Acceptable
QHep Hepatic circulation 8.0 6.7–11.7 [170] Acceptable
QLLimb Lower limb 10.0 8–10 [174, 170] Acceptable

Table B.3: Hemodynamics for whole-body cardiovascular model: Simulated and reference
mean flows in all compartments. The range of flow in the carotid arteries, the upper limb, and
the lower limb is multiplied by two.
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Figure B9: Range of variables with the reference (Table B.2,B.3) for both base and comprehen-
sive model. The base model overshoots the reference range for most parameters, including
QPV, QAV and QMV.
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