
Human Activity Recognition

Personal Sensing Applications

 Body Sensor Networks

 Athletic Performance

 Health Care

 Activity Recognition

Pulse Oximeter

Heart Rate Monitor

Mobile Phone Aggregator

2

A Practical Solution to Activity Recognition

 Portable

 Entirely user controlled

 Computationally lightweight

 Accurate

3

On-Body Sensors

+Sensing Accuracy

+Energy Efficiency

Phone

+User Interface

+Computational Power

+Additional Sensors

Application requirement

4

 Activity recognition

 Data comes from different sensors

 Classify typical daily activities, postures, and environment

 Classification Categories:

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walking

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading,

Walking, Watching TV, Working

Challenges to Practical Activity Recognition

5

 User-friendly

 Hardware configuration

 Portable sensors , easy to wear

 Software configuration

 Intuitive interface, adding, removing, config. sensors

 Accurate classification

 Classify difficult activities in the presence of dynamics

 Noisy env., orientation of sensors

 Efficient classification

 Computation and energy efficiency

 Less reliance on ground truth

 Labeling sensor data is invasive

PBN: Practical Body Networking

6

Tools

 TinyOS-based motes + Android phone

Goals

 Lightweight activity recognition appropriate for motes and phones

 Retraining detection to reduce invasiveness

 Identify redundant sensors to reduce training costs

 Classify difficult activities with nearly 90% accuracy

PBN system

7

 Crossbow IRIS on body sensor motes

 TelosB base station

 Connected with HTC smartphone

TinyOS sensing support

 Implement sensing application in TiniOS for motes

 Runtime configuration of active sensors, sampling rate,
local aggregation

 Communication scheme =>base station=>phone

Android kernel support for USB

 Prepare for external USB

 Driver installation

8

Hardware support

 Ext. battery power for the motes

TinyOS support on Android

 Enable TinyOS and Android communication

Android App

 User friendly front end

 Easy configuration

 Runtime deployment

 Labelling

 User control for both phone and motes

 Receives feedback if retraining is needed

Android App

9

 Sensor configuration

Easy config for phone and motes

Add/remove sensors

Adjust sampling rate, local aggregation interval

Save on XML

 Runtime control

User is able to start/stop data sampling and activity recog.

Retraining => enter current activity

Software: Android Application

10

Sensor Configuration Runtime Control and Feedback Ground Truth Logging

Data Collection Setup
 2 subjects, 2 weeks

 Android Phone
 3-axis accelerometer, WiFi/GPS Localization

 5 IRIS Sensor Motes
 2-axis accelerometer, light, temperature, acoustic, RSSI

Node ID Location

0 BS/Phone

1 L. Wrist

2 R. Wrist

3 L. Ankle

4 R. Ankle

5 Head

11

12

Signal strength

Sensor

Selection

PBN Architecture

13

Sensor Node

Phone

Base Station Node

Local Agg.
Sensor Sensor Sensor

Sample

Controller

Sample

Controller

Sensor Sensor Sensor

Local Agg.

GUI
TinyOS

Comm. Stack

Sensor

Selection

Ground Truth

Management

Activity

Classification

Retraining

Detection

Activity Decision, Request Ground Truth Agg. Data

Agg.

Data

Labeled Data

Agg. Data Start/Stop

Input Sensors Activity Prob, Agg. Data

Training Data

USB

802.15.4

14

 Phone and mote sensors sample data

Aggregate => single packet

 Fed to classification system

AdaBoost => classifier , each activity training

Two minutes period

Updated using retraining

Sensor selection

PBN Architecture

AdaBoost Activity Recognition

15

 Ensemble Learning: AdaBoost.M2 (Freund, JCSS ‘97)\\\\\\\\\\

 Lightweight and accurate

 Maximizes training accuracy for all activities

 Many classifiers (HMM) are more demanding

 Iteratively train an ensemble of weak classifiers

 Training observations are weighted by misclassifications

 At each iteration:

 Train Naïve Bayes classifiers for each sensor

 Choose the classifier with the least weighted error

 Update weighted observations

 The ensemble makes decisions based on the weighted decisions of each

weak classifier

AdaBoost

16

Ensemble classifier

Weak classifier

Combined to make a single classifier

Initialize the weight vector D

17

Final outcome of AdaBoost

18

ai

Given a observation o, weak classifier ht returns a vector [0,1]

ai

ht

hk

Activity ai

ht

hm

hk

ai

19

Retraining Detection

20

 Body Sensor Network Dynamics affects accuracy during runtime:

 Changing physical location

 User biomechanics

 Variable sensor orientation

 Background noise

 Achieve high accuracy with limited initial training data

 Can also used if existing data is not accurate

 How to detect that retraining is needed without asking for ground truth?

 Constantly nagging the user for ground truth is annoying

 Perform with limited initial training data

 Maintain high accuracy

Retraining Detection

21

 Measure the discriminative power of each sensor: K-L divergence
 Quantify the difference between sensor reading distributions

 Retraining detection with K-L divergence:
 Compare training data to runtime data for each sensor

Sensors

Kullback–Leibler divergence

22

K-L divergence measures the expected amount of information required to

transform samples from a distribution P into a second distribution

Q.

Retraining Detection

23

 Training

 Compute “one vs. rest” K-L divergence for each sensor and activity

1,LIGHT

1,ACC

2,MIC

…

Walking Driving Working

Training Data Ground Truth:

Sensors

DKL(Twalking,Tother) = √

Walking

Training Data Distribution

√

{Driving, Working}

Training Data Distribution

Walking Data Partition:

vs.

For each sensor:

Retraining Detection

24

 Runtime

 At each interval, sensors compare runtime data to training data for

current classified activity

1,LIGHT

1,ACC

2,MIC

…

Sensors Current AdaBoost Classified Activity: Walking

DKL(Rwalking,Twalking) = √

Walking

Runtime Data Distribution

vs. √

Walking

Training Data Distribution

For each sensor:

Retraining Detection

25

 Runtime

 At each interval, sensors compare runtime data to training data for

current classified activity

 Each individual sensor determines retraining is needed when:

DKL(Rwalking,Twalking) > DKL(Twalking,Tother)

√

Walking

Runtime Data Distribution

vs.
√

Walking

Training Data Distribution

√

Walking

Training Data Distribution

√

{Driving, Working}

Training Data Distribution

vs.

Intra-activity divergence Inter-activity divergence

Retraining Detection

26

 Runtime

 At each interval, sensors compare runtime data to training data for
current classified activity

 Each individual sensor determines retraining is needed

 The ensemble retrains when a weighted majority of sensors
demand retraining

Ground Truth Management

27

 Retraining: How much new labeled data to collect?
 Capture changes in body dynamics

 Too much labeling is intrusive

 Decide to retrain
 Prompt user to log ground truth for a window of N

 Use logs the current activity

 Balance number of observations per activity
 AdaBoost relies on creating weight distribution D for training observations

 Based on classification difficulty

 Loose balance hurts classification accuracy

 Restrictive balance prevents adding new data

 Balance multiplier
 Each activity has no more than δ times the average

 Balance enforcement: random replacement

28

Importance of

Further increase does not ensure balance

Sensor Selection

29

 AdaBoost training can be computationally demanding

 Train a weak classifier for each sensor at each iteration

 > 100 iterations to achieve maximum accuracy

 Can we give only the most helpful sensors to AdaBoost?
 Identify both helpful and redundant sensors

 Train fewer weak classifiers per AdaBoost iteration

 Bonus: use even fewer sensors

 Key idea: different weak classifier must have diverse
prediction results

 Less correlation

 Exclude the redundant sensors

Sensor Selection

30

Raw Data Correlation

Sensors

Use correlation information

between different sensors

Accs, are correlated

Light, temp are correlated

Remove them from AdaBoost training

Sensor Selection

31

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

2,TEMP

Selected

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

AdaBoost All Sensors

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

32

 Sensor selection consists of two components

 Threshold adjustment

 Threshold is computed to discriminate the sensors

 Performed during training

 Selection

 Select the set of sensors for retraining

Threshold

33

 Initialize the threshold during initial training

 Find the correlation between sensors

 Outlier identifies the threshold

2,TEMP

Sensor Selection

34

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

AdaBoost

Selected

All Sensors

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

correlation(2,TEMP; 1,LIGHT)

2,TEMP

Sensor Selection

35

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

AdaBoost

Selected

All Sensors

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

correlation(2,TEMP; 1,LIGHT)

correlation(3,MIC; 3,TEMP)

2,TEMP

Sensor Selection

36

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

AdaBoost

Selected

Set threshold α based on average correlation:

All Sensors

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

correlation(2,TEMP; 1,LIGHT)

correlation(3,MIC; 3,TEMP)

…

α = μcorr + σcorr

Selection

37

 During retraining

 Choose the set of sensors S* using the threshold α

No two sensors have r>α

1,ACC

1,LIGHT

Sensor Selection

38

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

correlation(1,ACC; 1,LIGHT) ≤ α

2,TEMP

Sensor Selection

39

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

1,ACC

1,LIGHT

correlation(2,TEMP; 1,ACC) > α

acc(2,TEMP) > acc(1,ACC)

2,TEMP

Sensor Selection

40

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

1,ACC

1,LIGHT

3,TEMP

correlation(1,ACC; 3,TEMP) ≤ α

3,MIC

2,MIC

2,TEMP

Sensor Selection

41

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

1,ACC

1,LIGHT

3,TEMP

Evaluation Setup

42

 Classify typical daily activities, postures, and environment

 2 subjects over 2 weeks

 Classification Categories:

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walking

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading,

Walking, Watching TV, Working

Classification Performance

43

Initial training 100 observations/activity

Classification Performance

44

Classification Performance

45

46

User 1 has accuracy 98%, 85%, 90%

User 2 has accuracy 81%, 82%, 76%

Sensor Weight per activity

47

16 sensors unused

Retraining Performance

48

30 new data

Sensor Selection Performance

49

