Human Activity Recognition

Personal Sensing Applications

A Practical Solution to Activity Recognition

- Portable
- Entirely user controlled
- Computationally lightweight
- Accurate

On-Body Sensors +Sensing Accuracy +Energy Efficiency

Phone +User Interface +Computational Power +Additional Sensors

Application requirement

- Activity recognition
- Data comes from different sensors
- Classify typical daily activities, postures, and environment
- Classification Categories:

Environment	Indoors, Outdoors		
Posture	Cycling, Lying Down, Sitting, Standing, Walking		
Activity	Cleaning, Cycling, Driving, Eating, Meeting, Reading, Walking, Watching TV, Working		

Challenges to Practical Activity Recognition

User-friendly

- Hardware configuration
 - Portable sensors , easy to wear
- Software configuration
 - Intuitive interface, adding, removing, config. sensors

Accurate classification

- Classify difficult activities in the presence of dynamics
 - Noisy env., orientation of sensors
- Efficient classification
 - Computation and energy efficiency
- Less reliance on ground truth
 - Labeling sensor data is invasive

PBN: Practical Body Networking

Tools

TinyOS-based motes + Android phone

Goals

- Lightweight activity recognition appropriate for motes and phones
- Retraining detection to reduce invasiveness
- Identify redundant sensors to reduce training costs
- Classify difficult activities with nearly 90% accuracy

PBN system

- Crossbow IRIS on body sensor motes
- TelosB base station
 - Connected with HTC smartphone

TinyOS sensing support

- Implement sensing application in TiniOS for motes
- Runtime configuration of active sensors, sampling rate, local aggregation
- Communication scheme =>base station=>phone

Android kernel support for USB

- Prepare for external USB
- Driver installation

Hardware support

Ext. battery power for the motes

TinyOS support on Android

Enable TinyOS and Android communication

Android App

- User friendly front end
- Easy configuration
- Runtime deployment
- Labelling
- User control for both phone and motes
- Receives feedback if retraining is needed

Android App

Sensor configuration

Easy config for phone and motes

Add/remove sensors

Adjust sampling rate, local aggregation interval Save on XML

Runtime control

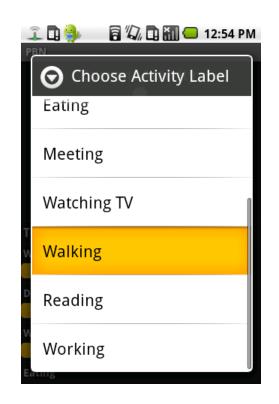
User is able to start/stop data sampling and activity recog. Retraining => enter current activity

Software: Android Application

🗈 🎲 🕞 🖾 🖬 🎦 3:41 PM Bottlenose Phone				
Ground Truth Event				
Node ID: 0 SAMPLE Seq.: 53 Retx/Dup: N/A - N/A RSSI: N/A				
Node ID: 1 SAMPLE Seq.: 40 Retx/Dup: 0 - 0 RSSI: -19				
Node ID: 2 SAMPLE Seq.: 40 Retx/Dup: 0 - 0 RSSI: -31				
Node ID: 3 SAMPLE Seq.: 39 Retx/Dup: 0 - 0 RSSI: -35				
Node ID: 4 SAMPLE Seq.: 39 Retx/Dup: 1 - 0 RSSI: -24				

Sensor Configuration





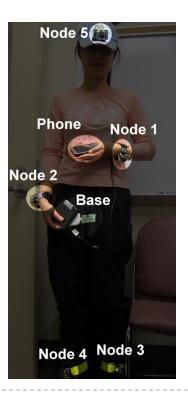
Runtime Control and Feedback

Ground Truth Logging

Data Collection Setup

- 2 subjects, 2 weeks
- Android Phone
 - 3-axis accelerometer, WiFi/GPS Localization
- 5 IRIS Sensor Motes
 - > 2-axis accelerometer, light, temperature, acoustic, RSSI

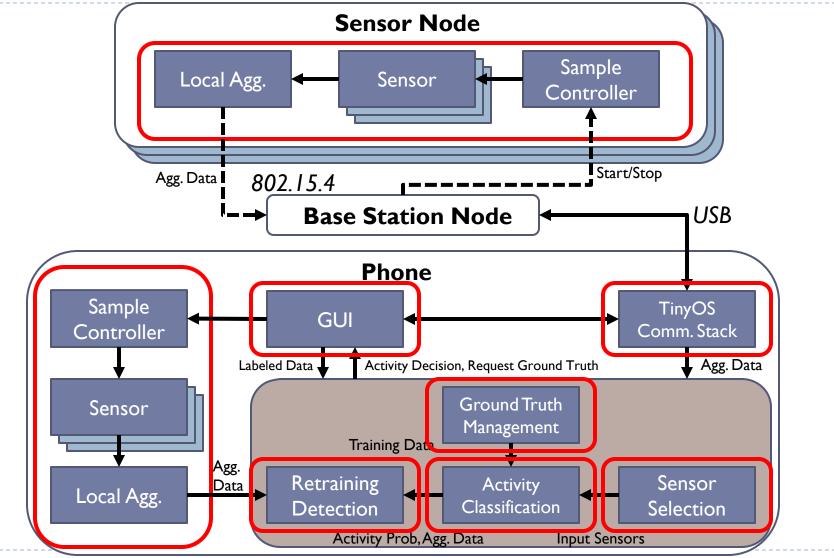
Node ID	Location
0	BS/Phone
I	L.Wrist
2	R.Wrist
3	L.Ankle
4	R.Ankle
5	Head



Node	ID	Location	Sensors
Phone	0	R. Waist	3-Axis Acc., GPS/WiFi (velocity)
IRIS	1	L. Wrist	2-Axis Acc., Mic., Light, Temp.
IRIS	2	R. Wrist	2-Axis Acc., Mic., Light, Temp.
IRIS	3	L. Ankle	2-Axis Acc., Mic., Light, Temp.
IRIS	4	R. Ankle	2-Axis Acc., Mic., Light, Temp
IRIS	5	Head	2-Axis Acc., Mic., Light, Temp.

Signal strength

PBN Architecture



PBN Architecture

Phone and mote sensors sample data
 Aggregate => single packet

Fed to classification system

AdaBoost => classifier , each activity training

Two minutes period

Updated using retraining

AdaBoost Activity Recognition

- - Lightweight and accurate
 - Maximizes training accuracy for all activities
 - Many classifiers (HMM) are more demanding
- Iteratively train an ensemble of weak classifiers
 - Training observations are weighted by misclassifications
 - At each iteration:
 - Train Naïve Bayes classifiers for each sensor
 - Choose the classifier with the least weighted error
 - Update weighted observations
- The ensemble makes decisions based on the weighted decisions of each weak classifier

AdaBoost

Ensemble classifier Weak classifier Combined to make a single classifier

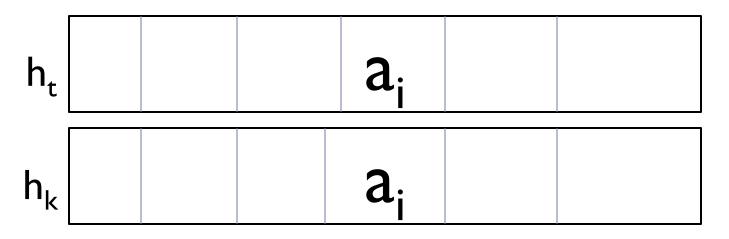
Using Algorithm 1, we describe AdaBoost training. We define a set of activities $A = \{a_1, \ldots, a_a\}$, sensors $S = \{s_1, \ldots, s_m\}$, and observation vectors O_j for each sensor $s_j \in S$, where each sensor has *n* training observations. The training output is an ensemble of weak classifiers $H = \{h_1, \ldots, h_T\}$, where $h_t \in H$ represents the weak classifier

Initialize the weight vector D

Algorithm 1 AdaBoost Training

- **Input:** Max iterations *T*, training obs. vector O_j for each sensor $s_j \in S$, obs. ground truth labels
- **Output:** Set of weak classifiers *H*
 - 1: Initialize observation weights D_1 to 1/n for all obs.
 - 2: **for** t = 1 to T **do**
 - 3: **for** sensor $s_j \in S$ **do**
 - 4: Train weak classifier $h_{t,j}$ using obs. O_j , weights D_t
 - 5: Get weighted error $\varepsilon_{t,j}$ for $h_{t,j}$ using labels [8]
 - 6: end for
 - 7: Add the $h_{t,j}$ with least error ε_t to H by choosing $h_{t,j}$ with least error ε_t
 - 8: Set D_{t+1} using D_t , misclassifications made by h_t [8]
 - 9: end for

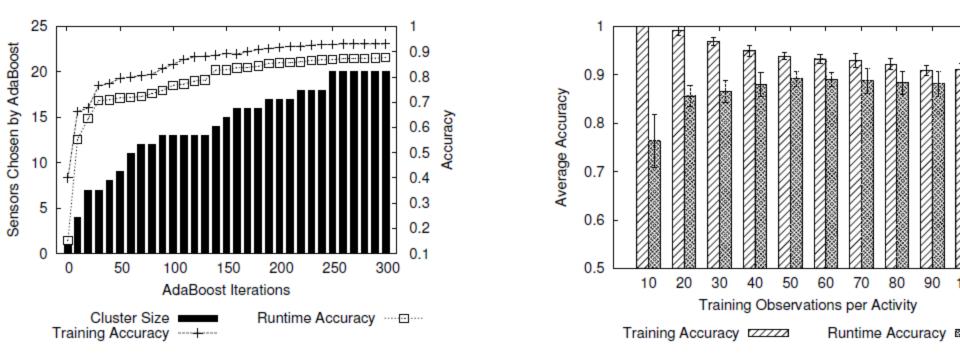
Final outcome of AdaBoost



Given a observation o, weak classifier h_t returns a vector [0,1]

Activity **a**_i

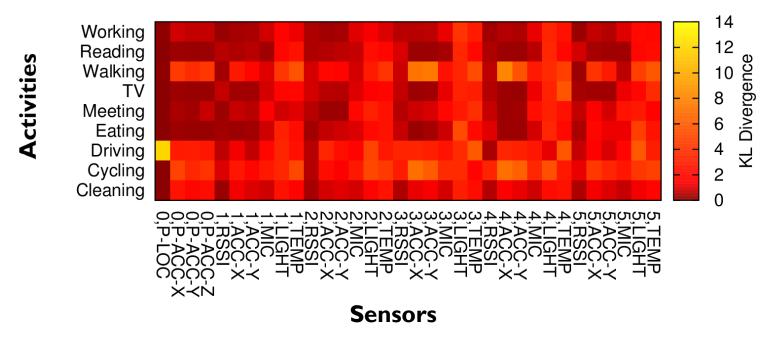
$$\begin{array}{|c|c|c|c|c|} \hline & \mathbf{h}_{t} & \sum_{\mathbf{h}_{m}} & \sum_{\mathbf{h}_{k}} & \mathbf{h}(o) = \operatorname{argmax}_{a_{i} \in A} \sum_{t=1}^{T} \left(\log \frac{1-\varepsilon_{t}}{\varepsilon_{t}} \right) h_{t}(o,a_{i}) \\ \hline & \mathbf{h}_{k} & \mathbf{w}(o,a_{i}) = \sum_{t=1}^{T} \left(\log \frac{1-\varepsilon_{t}}{\varepsilon_{t}} \right) h_{t}(o,a_{i}) \end{array}$$



Body Sensor Network Dynamics affects accuracy during runtime:

- Changing physical location
- User biomechanics
- Variable sensor orientation
- Background noise
- Achieve high accuracy with limited initial training data
 - Can also used if existing data is not accurate
- How to detect that retraining is needed without asking for ground truth?
 - Constantly nagging the user for ground truth is annoying
 - Perform with limited initial training data
 - Maintain high accuracy

- Measure the discriminative power of each sensor: K-L divergence
 - Quantify the difference between sensor reading distributions



- Retraining detection with K-L divergence:
 - Compare training data to runtime data for each sensor

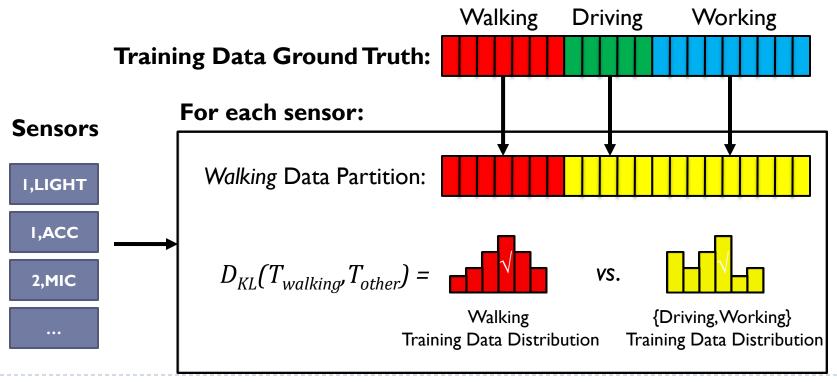
Kullback–Leibler divergence

K-L divergence measures the expected amount of information required to transform samples from a distribution P into a second distribution Q.

$$D_{\mathrm{KL}}(P||Q) = \sum_{i} P(i) \ln \frac{P(i)}{Q(i)}.$$

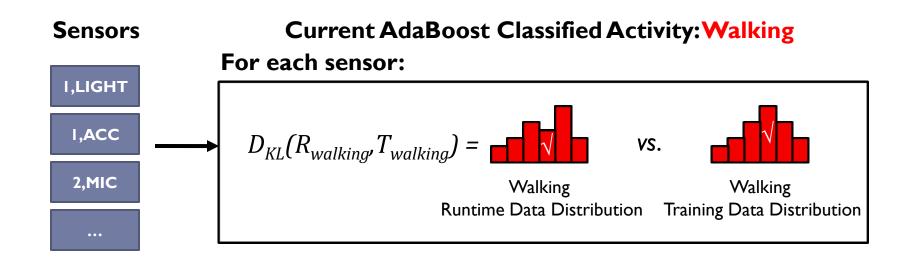
Training

• Compute "one vs. rest" K-L divergence for each sensor and activity



Runtime

 At each interval, sensors compare runtime data to training data for current classified activity

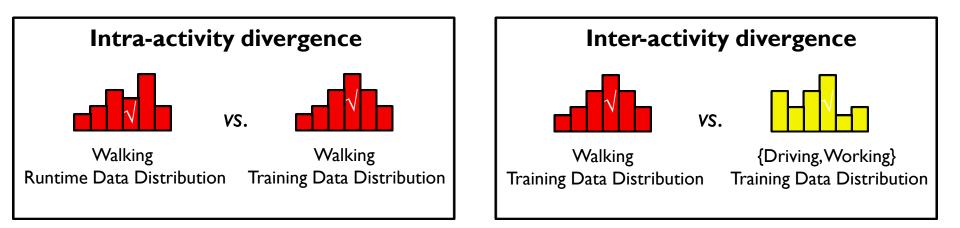


Runtime

- At each interval, sensors compare runtime data to training data for current classified activity
- Each individual sensor determines retraining is needed when:

$$D_{KL}(R_{walking}, T_{walking}) >$$

$$D_{KL}(T_{walking}, T_{other})$$

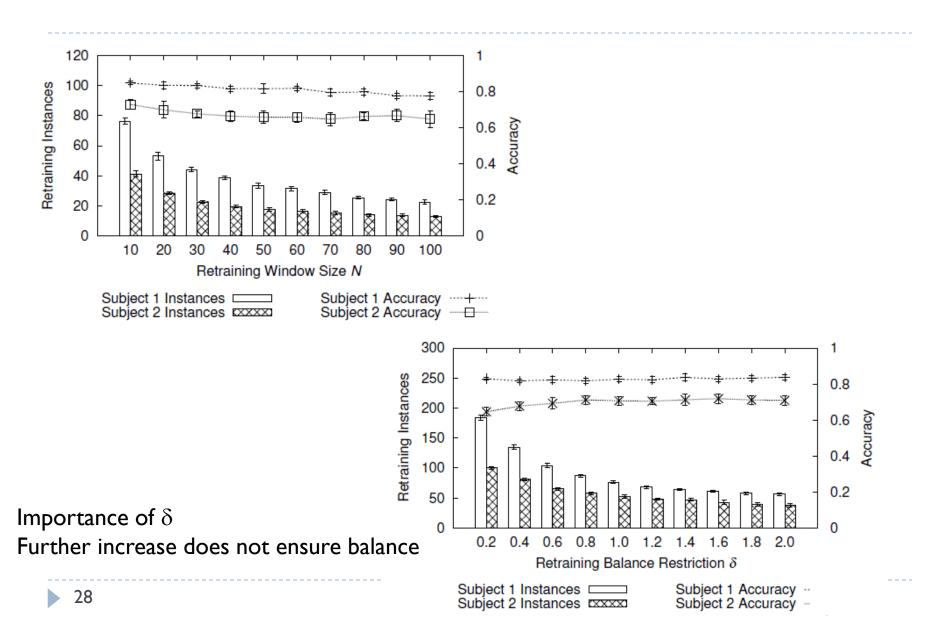


- Runtime
 - At each interval, sensors compare runtime data to training data for current classified activity
 - Each individual sensor determines retraining is needed
 - The ensemble retrains when a weighted majority of sensors demand retraining

Ground Truth Management

- Retraining: How much new labeled data to collect?
 - Capture changes in body dynamics
 - Too much labeling is intrusive
- Decide to retrain
 - Prompt user to log ground truth for a window of N
 - Use logs the current activity
- Balance number of observations per activity
 - AdaBoost relies on creating weight distribution D for training observations
 - Based on classification difficulty
 - Loose balance hurts classification accuracy
 - Restrictive balance prevents adding new data
 - Balance multiplier
 - \blacktriangleright Each activity has no more than δ times the average
 - Balance enforcement: random replacement

 $\frac{|O_i| - \frac{1}{|A|} \sum_{\forall a_k \in A} |O_k|}{\frac{1}{|A|} \sum_{\forall a_k \in A} |O_k|} \le \delta$



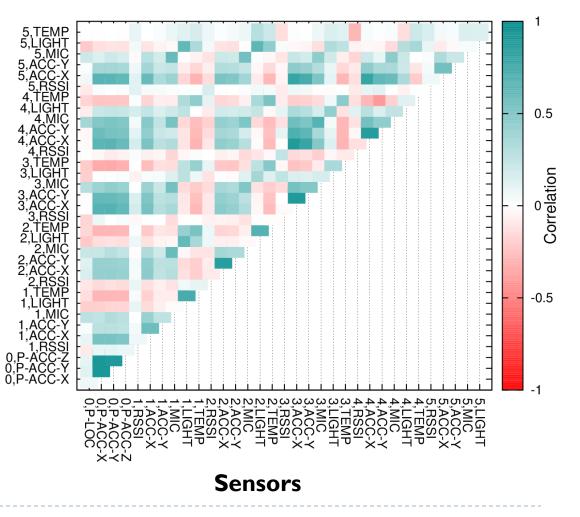
- AdaBoost training can be computationally demanding
 - Train a weak classifier for each sensor at each iteration
 - > 100 iterations to achieve maximum accuracy
- Can we give only the most helpful sensors to AdaBoost?
 - Identify both helpful and redundant sensors
 - Train fewer weak classifiers per AdaBoost iteration
 - Bonus: use even fewer sensors
- Key idea: different weak classifier must have diverse prediction results
 - Less correlation
 - Exclude the redundant sensors

Use correlation information between different sensors

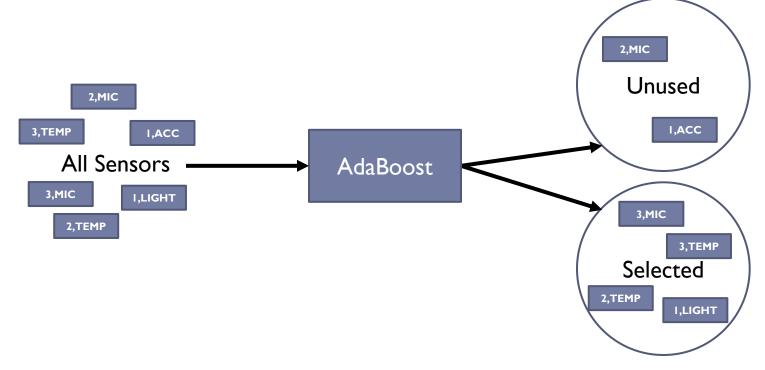
Accs, are correlated Light, temp are correlated

Remove them from AdaBoost training

Raw Data Correlation



- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors



Sensor selection consists of two components

- Threshold adjustment
 - Threshold is computed to discriminate the sensors
 - Performed during training
- Selection
 - Select the set of sensors for retraining

Threshold

- Initialize the threshold during initial training
- Find the correlation between sensors
- Outlier identifies the threshold

Algorithm 2 Raw Correlation Threshold for Sensor Selection

Input: Set of sensors *S* selected by AdaBoost, training observations for all sensors *O*, multiplier *n*

Output: Sensor selection threshold α

- 1: $R = \emptyset // set of correlation coefficients$
- 2: for all combinations of sensors s_i and s_j in S do
- 3: Compute correlation coefficient $r = [r_{O_i,O_j}]$

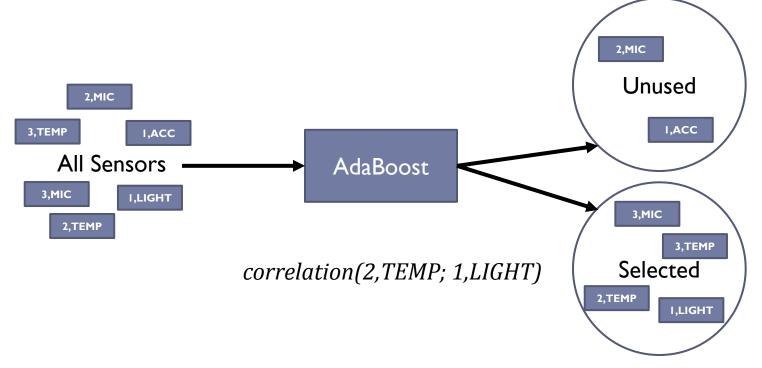
$$4: \quad R = R \cup \{r\}$$

5: end for

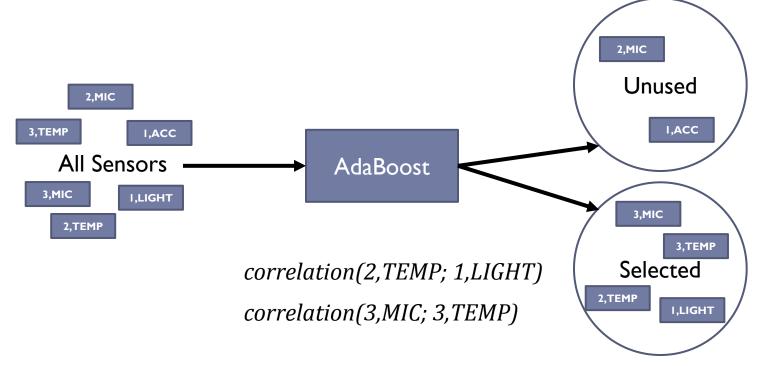
6: // compute threshold as avg + (n * std. dev.) of R

7: $\alpha = \mu_R + n\sigma_R$

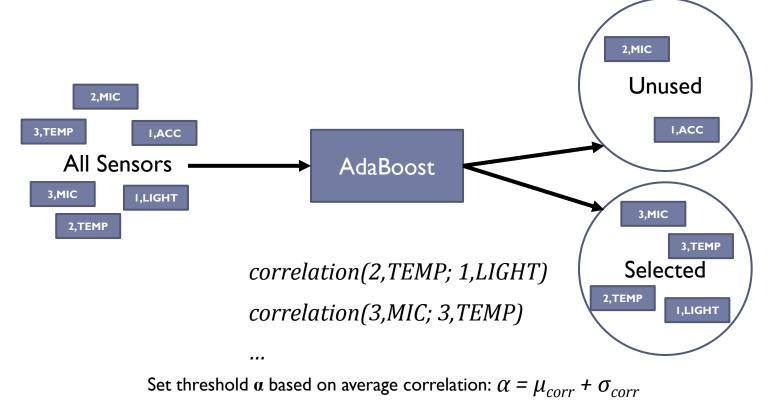
- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors



- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors



- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors



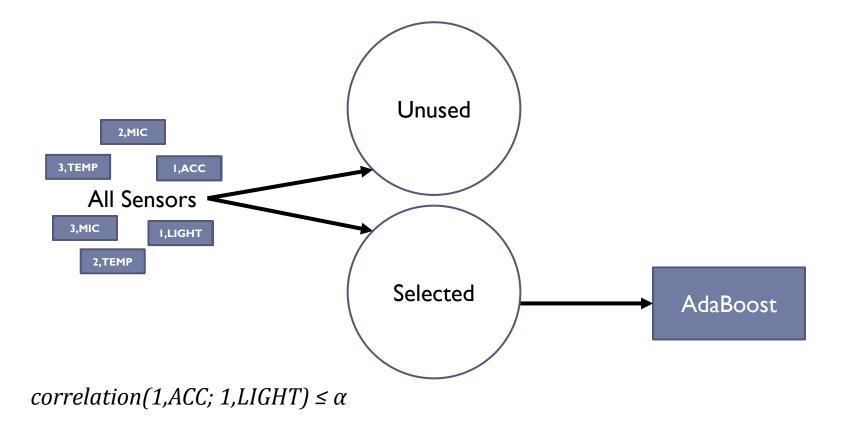
Selection

During retraining

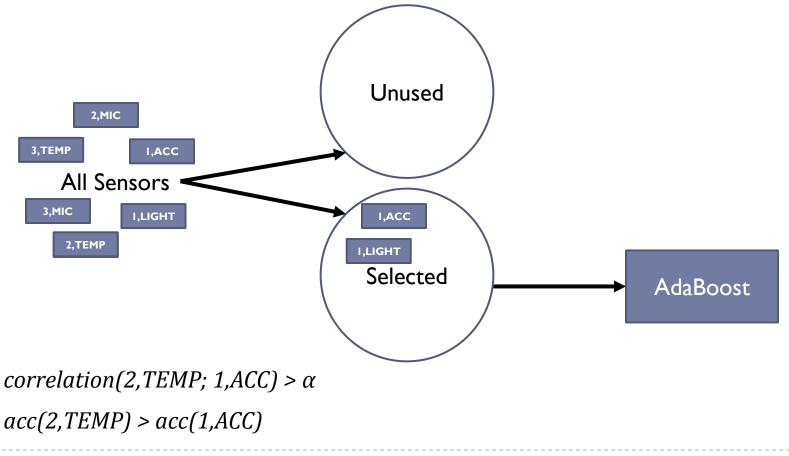
\blacktriangleright Choose the set of sensors S* using the threshold α

	Algorithm 3 Sensor Selection Using Raw Correlation
No two sensors have r>α	 Input: Set of all sensors S, training observations for all sensors O, threshold α Output: Selected sensors S* to give as input to AdaBoost S* = Ø E = Ø // set of sensors we exclude for all combinations of sensors s_i and s_j in S do Compute correlation coefficient r = r_{Oi},o_j if r < α then if s_i ∉ E then S* = S* ∪ {s_i}
37	7: if $s_j \notin E$ then $S^* = S^* \cup \{s_j\}$ 8: else if $r \ge \alpha$ and $\operatorname{acc}(s_i) > \operatorname{acc}(s_j)$ then 9: <i>// use accuracy to decide which to add to S</i> * 10: if $s_i \notin E$ then $S^* = S^* \cup \{s_i\}$ 11: $E = E \cup \{s_j\}; S^* = S^* \setminus \{s_j\}$ 12: else 13: if $s_j \notin E$ then $S^* = S^* \cup \{s_j\}$ 14: $E = E \cup \{s_i\}; S^* = S^* \setminus \{s_i\}$ 15: end if 16: end for

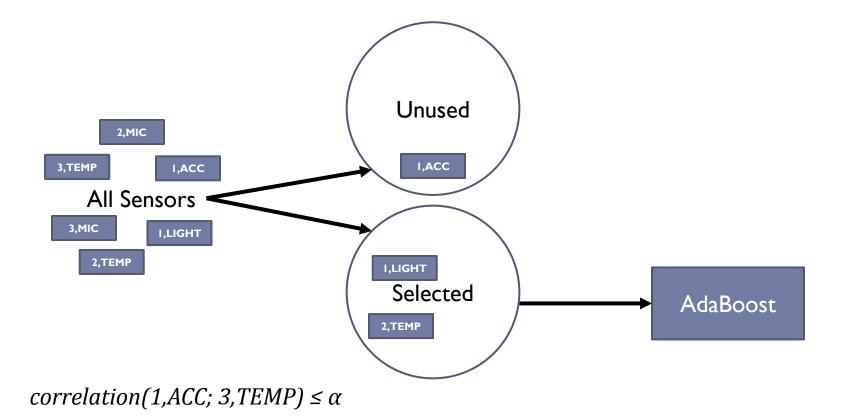
• Choose sensors for input to AdaBoost based on the correlation threshold



• Choose sensors for input to AdaBoost based on the correlation threshold



• Choose sensors for input to AdaBoost based on the correlation threshold



Choose sensors for input to AdaBoost based on the correlation threshold

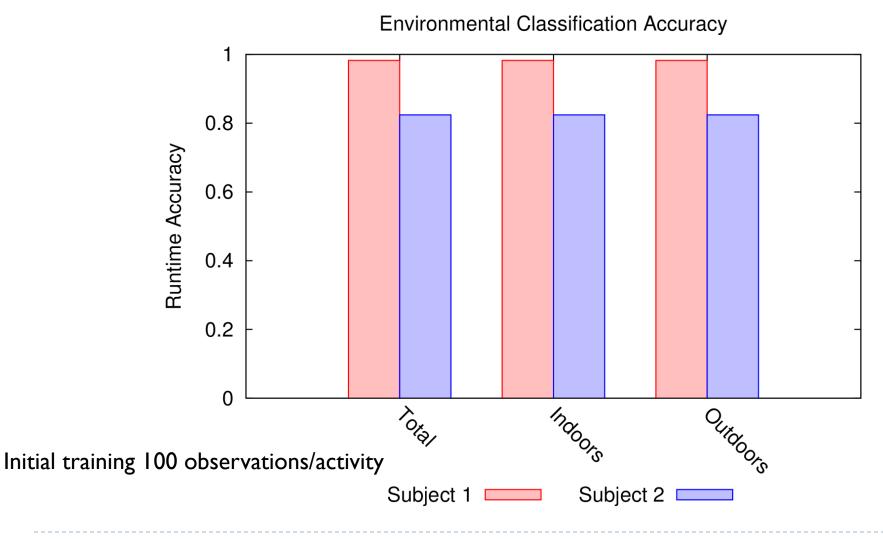


Evaluation Setup

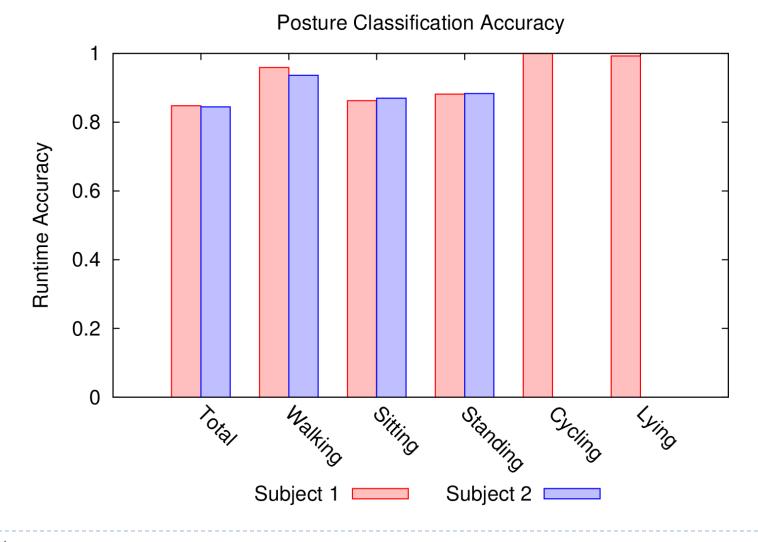
- Classify typical daily activities, postures, and environment
- > 2 subjects over 2 weeks
- Classification Categories:

Environment	Indoors, Outdoors
Posture	Cycling, Lying Down, Sitting, Standing, Walking
Activity	Cleaning, Cycling, Driving, Eating, Meeting, Reading, Walking, Watching TV, Working

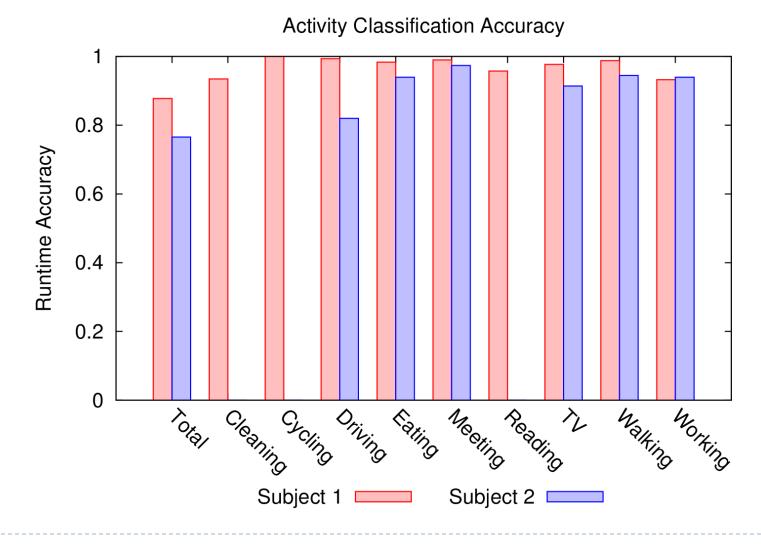
Classification Performance



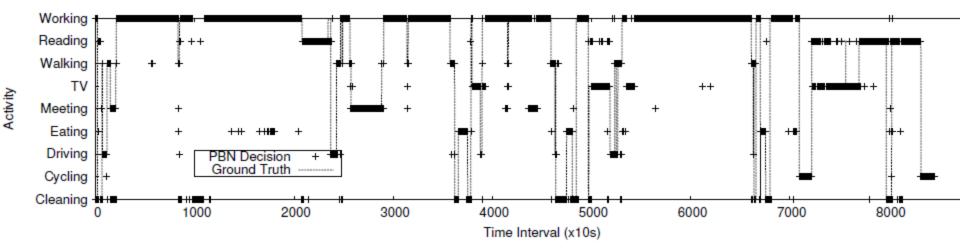
Classification Performance



Classification Performance

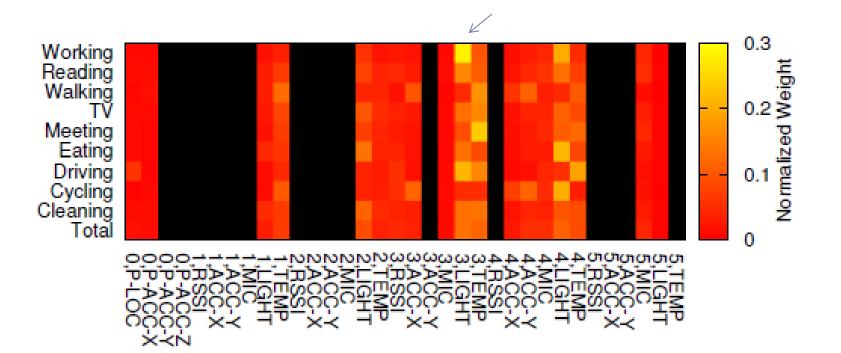


User I has accuracy 98%, 85%, 90% User 2 has accuracy 81%, 82%, 76%

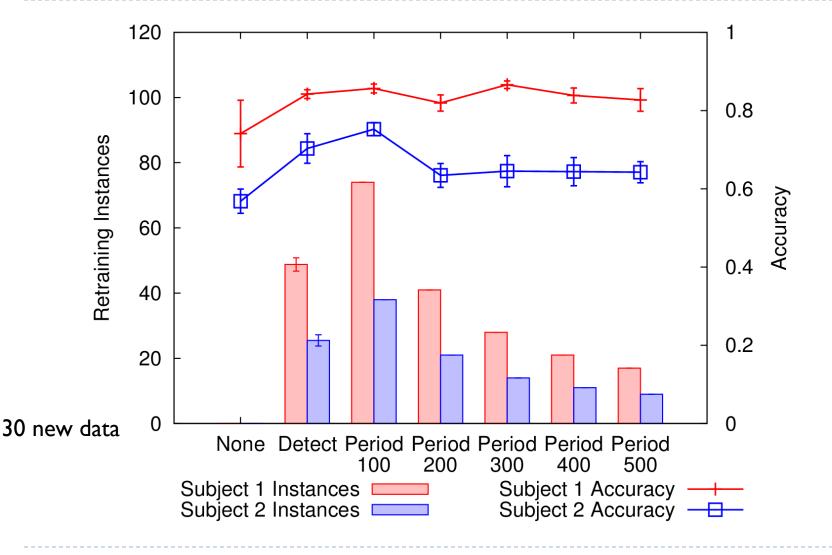


Sensor Weight per activity

16 sensors unused



Retraining Performance



Sensor Selection Performance

