
Human Activity Recognition 



Personal Sensing Applications 

 Body Sensor Networks 

 Athletic Performance 

 Health Care 

 Activity Recognition 

Pulse Oximeter 

Heart Rate Monitor 

Mobile Phone Aggregator 
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A Practical Solution to Activity Recognition 

 Portable 

 Entirely user controlled 

 Computationally lightweight 

 Accurate 
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On-Body Sensors 

+Sensing Accuracy 

+Energy Efficiency 

Phone 

+User Interface 

+Computational Power 

+Additional Sensors 

 



Application requirement  
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 Activity recognition 

 

 Data comes from different sensors  

 

 Classify typical daily activities, postures, and environment 

 

 Classification Categories: 

Environment Indoors, Outdoors 

Posture Cycling, Lying Down, Sitting, Standing, Walking 

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading, 

Walking, Watching TV, Working 



Challenges to Practical Activity Recognition 
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 User-friendly 

 Hardware configuration 

 Portable sensors , easy to wear 

 Software configuration 

 Intuitive interface, adding, removing, config. sensors 

 Accurate classification 

 Classify difficult activities in the presence of dynamics 

 Noisy env., orientation of sensors  

 Efficient classification 

 Computation and energy efficiency 

 Less reliance on ground truth 

 Labeling sensor data is invasive 



PBN: Practical Body Networking 
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Tools 

 TinyOS-based motes + Android phone 

Goals 

 Lightweight activity recognition appropriate for motes and phones 

 Retraining detection to reduce invasiveness 

 Identify redundant sensors to reduce training costs 

 Classify difficult activities with nearly 90% accuracy 



PBN system  
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 Crossbow IRIS on body sensor motes 

 TelosB base station  

 Connected with HTC smartphone  

TinyOS sensing support 

 Implement sensing application in TiniOS for motes 

 Runtime configuration of active sensors, sampling rate, 
local aggregation  

 Communication scheme =>base station=>phone 

Android kernel support for USB  

 Prepare for external USB 

 Driver installation   
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Hardware support 

 Ext. battery power for the motes 

TinyOS support on Android  

 Enable TinyOS and Android communication  

 

Android App 

 User friendly front end 

 Easy configuration  

 Runtime deployment 

 Labelling 

 User control for both phone and motes 

 Receives feedback if retraining is needed 

 

 

 



Android App 
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 Sensor configuration  

Easy config for phone and motes 

Add/remove sensors 

Adjust sampling rate, local aggregation interval  

Save on XML  

 

 Runtime control 

User is able to start/stop data sampling and activity recog. 

Retraining => enter current activity  

 



Software: Android Application 
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Sensor Configuration Runtime Control and Feedback Ground Truth Logging 



Data Collection Setup 
 2 subjects, 2 weeks 

 Android Phone 
 3-axis accelerometer, WiFi/GPS Localization 

 5 IRIS Sensor Motes 
 2-axis accelerometer, light, temperature, acoustic, RSSI 

Node ID Location 

0 BS/Phone 

1 L. Wrist 

2 R. Wrist 

3 L. Ankle 

4 R. Ankle 

5 Head 
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Signal strength  



Sensor 

Selection 

PBN Architecture 
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Sensor Node 

Phone 

Base Station Node 

Local Agg. 
Sensor Sensor Sensor 

Sample 

Controller 

Sample 

Controller 

Sensor Sensor Sensor 

Local Agg. 

GUI 
TinyOS 

Comm. Stack 

Sensor 

Selection 

Ground Truth 

Management 

Activity 

Classification 

Retraining 

Detection 

Activity Decision, Request Ground Truth Agg. Data 

Agg. 

Data 

Labeled Data 

Agg. Data Start/Stop 

Input Sensors Activity Prob, Agg. Data 

Training Data 

USB 

802.15.4 
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 Phone and mote sensors sample data  

Aggregate => single packet  

 

 Fed to classification system  

AdaBoost => classifier , each activity training  

Two minutes period 

Updated using retraining 

Sensor selection 

 

 

PBN Architecture 



AdaBoost Activity Recognition 
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 Ensemble Learning: AdaBoost.M2 (Freund, JCSS ‘97)\\\\\\\\\\ 

 Lightweight and accurate 

 Maximizes training accuracy for all activities 

 Many classifiers (HMM) are more demanding 

 

 Iteratively train an ensemble of weak classifiers 

 Training observations are weighted by misclassifications 

 At each iteration: 

 Train Naïve Bayes classifiers for each sensor 

 Choose the classifier with the least weighted error 

 Update weighted observations 

 

 The ensemble makes decisions based on the weighted decisions of each 

weak classifier 

 



AdaBoost 
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Ensemble classifier 

Weak classifier  

Combined to make a single classifier  

 

Initialize the weight vector D 
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Final outcome of AdaBoost 
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ai 

Given a observation o, weak classifier ht returns a vector [0,1] 

 

ai 

ht 

hk 

Activity ai 

ht 

hm 

hk 

ai 
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Retraining Detection 
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 Body Sensor Network Dynamics affects accuracy during runtime: 

 Changing physical location 

 User biomechanics 

 Variable sensor orientation 

 Background noise 

 Achieve high accuracy with limited initial training data 

 Can also used if existing data is not accurate  

 

 How to detect that retraining is needed without asking for ground truth? 

 Constantly nagging the user for ground truth is annoying 

 Perform with limited initial training data 

 Maintain high accuracy 



Retraining Detection 
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 Measure the discriminative power of each sensor: K-L divergence 
 Quantify the difference between sensor reading distributions 

 

 

 

 

 

 

 

 

 

 

 

 Retraining detection with K-L divergence: 
 Compare training data to runtime data for each sensor 

Sensors 



Kullback–Leibler divergence 
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K-L divergence measures the expected amount of information required to 

transform samples from a distribution P into a second distribution 

Q. 



Retraining Detection 
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 Training 

 Compute “one vs. rest” K-L divergence for each sensor and activity 

1,LIGHT 

1,ACC 

2,MIC 

… 

Walking Driving Working 

Training Data Ground Truth: 

Sensors 

DKL(Twalking,Tother) = √ 

Walking  

Training Data Distribution 

√ 

{Driving, Working}  

Training Data Distribution 

Walking Data Partition: 

vs. 

For each sensor: 



Retraining Detection 
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 Runtime 

 At each interval, sensors compare runtime data to training data for 

current classified activity 

1,LIGHT 

1,ACC 

2,MIC 

… 

Sensors Current AdaBoost Classified Activity: Walking 

DKL(Rwalking,Twalking) = √ 

Walking  

Runtime Data Distribution 

vs. √ 

Walking  

Training Data Distribution 

For each sensor: 



Retraining Detection 
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 Runtime 

 At each interval, sensors compare runtime data to training data for 

current classified activity 

 Each individual sensor determines retraining is needed when: 

 

DKL(Rwalking,Twalking)       >      DKL(Twalking,Tother)  

√ 

Walking  

Runtime Data Distribution 

vs. 
√ 

Walking  

Training Data Distribution 

√ 

Walking  

Training Data Distribution 

√ 

{Driving, Working}  

Training Data Distribution 

vs. 

Intra-activity divergence Inter-activity divergence 



Retraining Detection 
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 Runtime 

 At each interval, sensors compare runtime data to training data for 
current classified activity 

 Each individual sensor determines retraining is needed 

 The ensemble retrains when a weighted majority of sensors 
demand retraining 

 

 



Ground Truth Management 
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 Retraining: How much new labeled data to collect? 
 Capture changes in body dynamics 

 Too much labeling is intrusive 

 

 Decide to retrain 
 Prompt user to log ground truth for a window of N 

 Use logs the current activity  

 Balance number of observations per activity 
 AdaBoost relies on creating weight distribution D for training observations 

 Based on classification difficulty  

 Loose balance hurts classification accuracy 

 Restrictive balance prevents adding new data 

 Balance multiplier 
 Each activity has no more than δ times the average 

 Balance enforcement: random replacement 
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Importance of  

Further increase does not ensure balance  



Sensor Selection 
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 AdaBoost training can be computationally demanding 

 Train a weak classifier for each sensor at each iteration 

 > 100 iterations to achieve maximum accuracy 

 

 Can we give only the most helpful sensors to AdaBoost? 
 Identify both helpful and redundant sensors 

 Train fewer weak classifiers per AdaBoost iteration 

 Bonus: use even fewer sensors 

 

 Key idea: different weak classifier must have diverse 
prediction results  

 Less correlation  

 Exclude the redundant sensors   



Sensor Selection 
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Raw Data Correlation 

Sensors 

Use correlation information  

between different sensors 

 

Accs, are correlated 

Light, temp are correlated  

 

Remove them from AdaBoost training  



Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

 

2,TEMP 

Selected 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

AdaBoost All Sensors 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 
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 Sensor selection consists of two components  

 Threshold adjustment  

 Threshold is computed to discriminate the sensors  

 Performed during training 

 Selection  

 Select the set of sensors for retraining  



Threshold 
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 Initialize the threshold during initial training  

 Find the correlation between sensors 

 Outlier identifies the threshold  



2,TEMP 

Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

AdaBoost 

Selected 

All Sensors 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

correlation(2,TEMP; 1,LIGHT) 



2,TEMP 

Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

AdaBoost 

Selected 

All Sensors 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

correlation(2,TEMP; 1,LIGHT) 

correlation(3,MIC; 3,TEMP) 



2,TEMP 

Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

AdaBoost 

Selected 

Set threshold α based on average correlation: 

All Sensors 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

correlation(2,TEMP; 1,LIGHT) 

correlation(3,MIC; 3,TEMP) 

… 

α = μcorr + σcorr 



Selection  
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 During retraining 

 Choose the set of sensors S* using the threshold α 

No two sensors have r>α 



1,ACC 

1,LIGHT 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

correlation(1,ACC; 1,LIGHT) ≤ α 



2,TEMP 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

1,ACC 

1,LIGHT 

correlation(2,TEMP; 1,ACC) > α 

acc(2,TEMP) > acc(1,ACC) 



2,TEMP 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

1,ACC 

1,LIGHT 

3,TEMP 

correlation(1,ACC; 3,TEMP) ≤ α 



3,MIC 

2,MIC 

2,TEMP 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

1,ACC 

1,LIGHT 

3,TEMP 



Evaluation Setup 
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 Classify typical daily activities, postures, and environment 

 2 subjects over 2 weeks 

 Classification Categories: 

Environment Indoors, Outdoors 

Posture Cycling, Lying Down, Sitting, Standing, Walking 

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading, 

Walking, Watching TV, Working 



Classification Performance 
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Initial training 100 observations/activity 



Classification Performance 
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Classification Performance 
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User 1 has accuracy 98%, 85%, 90% 

User 2 has accuracy 81%, 82%, 76% 



Sensor Weight per activity  
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16 sensors unused 



Retraining Performance 
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30 new data 



Sensor Selection Performance 
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