
Android – Mobile OS

Android Architecture

- What is android? Linux 2.6 based operating system for mobile
devices.

- Open source and released under Apache Licence (Carriers
can modify it before distributing).

- Google acquired android in 2005.
- Android 1.0 released 2008.
- In 2012 Android 4.2 released
- Improvements include support for new devices:

- Cameras
- Multi core CPU
- Barometer
- etc

Android

How do these differ from the needs of a desktop system?

▪ Long battery life.

▪ Fast boot up.

▪ Fast response.

▪ Applications (Programming environment)

▪ Security

▪ Consider how the above are met by the system design.

Design principles – What is required of a

mobile OS?

▪ Battery

▪ Touch screen

▪ Portable (Mobile CPU)

▪ More limited memory

▪ Fewer devices

Mobile hardware differences

Different Components Of A

Smartphone

Screen

Battery

System-on-a-chip

or SoC

Image Source: https://fossbytes.com/whats-inside-smartphone-depth-look-parts-powering-everyday-gadget/

System-on-a-chip or SoC

Image Source: https://www.slideshare.net/ruliandi/system-on-chip-soc-44502780

Sensors

Image Source:https://www.mdpi.com/1424-8220/19/9/2164

Android Architecture

Source: http://developer.android.com/about/versions/index.html

http://developer.android.com/about/versions/index.html

▪ Topmost layer of the architecture

▪ System/build-in apps, user apps

▪ Applications are installed in this layer

▪ All the standard applications, games, messages,

contacts etc. constitute this layer

▪ Responsible for direct interaction with users

▪ Developed in Java

Application

Android Architecture

Source: http://developer.android.com/about/versions/index.html

http://developer.android.com/about/versions/index.html

▪ This layer provides developers with the APIs needed to

develop applications

▪ All of it these is exposed through Android interfaces.

▪ These interfaces warp up all the various libraries and

make them useful for the Developer.

Bunch of classes and methods (Java framework)

Application Framework (API)

▪ Activity Manager: It manages the activity lifecycle and

the activity stack.

▪ Telephony Manager: It provides access to telephony

services as related subscriber information, such as phone

numbers. For example: One would require telephony

manager to get information like sim serial number,

network connection, IMEI etc.

Application Framework

▪ Location Manager: It finds the device’s geographic location.

Say Google Map apps uses this service

▪ Notification Manager: Android allows to put notification into the title

bar of your application. The user can expand the notification bar and

by selecting the notification the user can trigger another activity.

▪ Class to notify the user of events that happen. Alerting the user by

flashing the backlight, playing a sound, or vibrating, LED blink etc.

▪ Package Manager: Class for retrieving various kinds of information

related to the application packages that are currently installed on the

device + permissions

Application Framework

▪ Window Manager: a system service, which is responsible for

managing the list of windows, which windows are visible, and how

they are laid out on screen.

▪ View System: It builds the user interface by handling the views and

layouts.

▪ Resource Manager: Provides a tool for non code resources that

app uses --- visualize the drawables, pictures, colors, and layouts

across your app project in a consolidated view.

Application Framework

Android Architecture (System runtime

layer)

Source: http://developer.android.com/about/versions/index.html

▪ Native libraries consist of various C/C++ core libraries with numerous of open
source tools.

▪ C/C++ libraries can be used by different Android system components and
▪ Provides service to developers via application framework

http://developer.android.com/about/versions/index.html

Libraries

▪ Libc : Standard C library from BSD
▪ Surface Manager: It is responsible for composing different

drawing surfaces onto the screen.

▪ OpenGL/ES & SGL: This cross-language, cross-platform
application program interface (API) is used to produce 3D and 2D
computer graphics, respectively for embedded devices

▪ Media frameworks: These libraries allow you to play and record
audio and video.

▪ FreeType: It is a free, high-quality and portable font engine.

Libraries

▪ Secure Socket Layer (SSL): These libraries are there for Internet
security.

▪ SQLite: It uses as the core of most of the data storage.

▪ WebKit: This open source web browser engine provides all the
functionality to display web content and to simplify page loading.

▪ Mainly consists of 3 parts:

▪ JAVA Libraries

▪ Android Libraries

▪ DVM Libraries

▪ Standard JAVA libraries is a must alongside specific

libraries for Android to control and access media,

databases etc.

Core Libraries

Android Architecture

Source: http://developer.android.com/about/versions/index.html

http://developer.android.com/about/versions/index.html

▪ DVM Libraries are specifically used to interact with the

Dalvik Virtual Machine

Core Libraries

▪ Before Android 4.4 Google used Dalvik Runtime

▪ Recently, it uses Android Runtime (ART)

▪ Dalvik is based on JIT (just in time) compilation (source->.dex->m/c code).

▪ Dalvik ensured smaller memory footprint and uses less physical space on the device.

▪ ART, on the other hand, compiles the intermediate language, Dalvik bytecode.

▪ ART->Pre compilation

Android Runtime

▪ ART, on the other hand, compiles the intermediate

language, Dalvik bytecode.

▪ The output of ART is a system-dependent binary

▪ With no need for JIT compilation executes much faster

▪ Also ensures less CPU usage resulting in less battery

drainage.

Android Runtime

▪ ART has disadvantages like:

▪ Larger memory footprint

▪ Longer installation process for the apps

Android Runtime

Android Architecture

Source: http://developer.android.com/about/versions/index.html

http://developer.android.com/about/versions/index.html

Linux Kernel

Features

▪ Memory Management: It efficiently handles the memory management thereby providing
the freedom to develop our apps.

▪ It is the process of controlling and coordinating device memory by assigning suitable
memory blocks to various running programs.

▪ Process Management: It manages the process well, allocates resources to processes
whenever they need them.

▪ It refers to the device available resources and how it can be perfectly allocated to the
running processes to optimize overall system performance.

▪ Network Stack: It effectively handles the network communication.

▪ Driver Model:The main purpose of device drivers is to provide abstraction by acting as a
translator between a hardware device and the operating system, helping in running
atached hardware (display, WI-FI and audio).

▪ Security: The Linux kernel handles the security between the application and the system.

Application Lifecycle

Application Lifecycle

▪ Methods of Activity class

▪ Defines how the activity will behave

▪ 7 Methods are:

▪ onCreate()

▪ onStart()

▪ onResume()

▪ onPause()

▪ onStop()

▪ onRestart()

▪ onDestroy()

Uses the

existing app

data

• Foreground process--High

priority user process Browsers,

Whatsapp etc

• Service process (music, sensor

sample)

User process

Both user and service

process

Caches

App data

• Explicit killing

• Remove app data

• onStop

implemented

• Does not

Remove app

data

(minimize)

Background

process

Partially visible

onPause()

• When another activity comes in partially in

front (e.g., dialog, transparent activity,

phone call).

• Activity is still visible, but not in focus (can’t

receive input).

• Save UI state, pause animations, stop

camera/mic, commit unsaved data.

onStop()
When activity is completely

hidden (another activity fully

covers it, or user navigates

away).

Activity is not visible, but still in

memory.

Release heavy resources (e.g.,

sensors, receivers), save

persistent data.

onDestroy()

When activity is finishing (user presses back, app explicitly calls finish()),

OR system is destroying it to reclaim memory.

Activity is being removed from memory.

Final cleanup: release resources completely, close DB connections.

Application life cycle

Method Purpose

onCreate()
Is called when the activity is first created. In

many cases this serves as the entry point.

onStart()
Is called when the activity is becoming visible to

the user

onResume() Is called once the user starts interacting with the

app

onPause() Is called when the app is not in user interaction

onStop() Is called when the app is removed from visibility

onRestart() Is specifically called to start the app once

stopped

onDestroy() Once to be destroyed by the system or is

finishing the lifecycle

Image Source: https://www.javatpoint.com/android-life-cycle-of-activity

AppCompatActivity

https://www.javatpoint.com/android-life-cycle-of-activity

▪ Differences between mobile app cycle and desktop app
cycle?
▪ Key principles:

▪ Android does not usually kill an app, they keep running even after you
switch, but saves state

▪ Task killers?

▪ Android kills apps when memory usage too high.
▪ But saves it’s state for quick restart.

▪ Uses Linux’s time sliced scheduling policy based on priority

▪ Sandboxing and virtual machine

Process Management

Sandbox in Android

A sandbox is an isolated environment where apps

run.

In Android:

Each app runs in its own sandboxed process.

Each app has a unique Linux user ID (UID).

Apps can’t directly access another app’s files or

memory.

Only way to interact: through explicit permissions

or IPC mechanisms (e.g., Intents, Content

Providers).

Sandboxing increases security by preventing apps

from interfering with each other or the system.

Process Priorities

▪ Split into background and

foreground.

▪ Foreground Processes: The

process currently being

interacted with

▪ Has a critical priority

▪ Usually limited in count at

any given time

Process Priorities

▪ Visible Processes: App not in foreground, yet

affecting the visibility

▪ An app visible in background of a dialog in

foreground

▪ This happens when an Activity is only partially

obscured (by a non-full-screen or transparent

Activity).

▪ There are generally very few visible

processes,

▪ they’ll be killed only under extreme

circumstances to allow active processes to

continue.

Still foreground process

Process Priorities

▪ Service Processes: Is not tied to any app that is

visible

▪ Example can be a music being played

when you are using some other app, file

download

▪ Never killed by Android process until

absolutely necessary

Background process with special

status

Process Priorities

▪ Background Processes: Neither visible nor affecting the

user experience

▪ Low priority

▪ Many are running at any given time

▪ Usually the paused/stopped apps

▪ Do not consume CPU or any other non-memory

resource

▪ There will generally be a large number of background

processes that Android will kill using a last-seen-

first-killed pattern in order to obtain resources for

foreground processes.

Process Priorities (Background Processes)
When activity is completely

hidden (another activity fully

covers it, or user navigates

away).

Activity is not visible, but still in

memory.

Release heavy resources (e.g.,

sensors, receivers), save

persistent data.

Process Priorities

▪ Empty Processes: With no valid app data

▪ Least priority

▪ To improve overall system performance, Android

will often retain an application in memory after it

has reached the end of its lifetime.

▪ Android maintains this cache to improve the start-

up time of applications when they’re relaunched.

▪ These processes are routinely killed, as required.

▪ Let’s say you turn on your phone and open a music app.

▪ While you use it, the music app will be a foreground process.

▪ When you start playing games and leave the music app, the music will continue
playing as a service process.

Example 1

▪ Let’s look at Angry Birds as another example.
▪ Angry Birds would be a foreground process while you were playing it.
▪ When you switch Angry Birds and enter the Gmail app to view your email,

Angry Birds becomes a background process (because it doesn’t have to do
anything), while Gmail becomes the foreground process.

▪ When you switch back to Angry Birds, it will become your foreground process
and the game will resume quickly.

▪ Angry Birds wasn’t using resources in the background — aside from some
RAM — but it resumes quickly because it remained cached and ready to
resume.

▪ --------------------
▪ When you swype out Angry bird and enter gmail->
Angry bird-> empty process

Example 2

▪ Android does a good job of automatically managing these processes,
which is why you don’t need a task killer on Android.

▪ When Android needs more system resources, it will start killing the
least important processes first. Android will start to kill empty and
background processes to free up memory if you’re running low.

▪ If you need more memory — for example, if you’re playing a
particularly demanding game on a device without much RAM,
Android will then start to kill service processes,

▪ your streaming music and file downloads may stop.

Manages Processes

https://www.howtogeek.com/127388/htg-explains-why-you-shouldnt-use-a-task-killer-on-android/

▪ Android apps can also start in response to events.

▪ For example, a developer could program their app to automatically
run at startup and run a service in the background.

▪ Apps can start in response to a variety of other events, such as when
you take a picture, when your data connection changes, and so on

Android Apps Can Start in Response to Events

▪ Android uses its own virtual machine to manage

application memory.

▪ Dalvik VM allows multiple instances of VM to be running

efficiently in parallel.

▪ Dalvik VM uses .dex files for running

Memory management

▪ Primary Memory: RAM (usually ranging from 2GB to 8GB)

▪ Internal RAM (inside CPU)

▪ External RAM

▪ Flash Memory (Internal Storage): (Usually ranging from 16

to 128GB)

▪ Technologically advanced versions of EEPROMs

▪ Faster than traditional microSD cards (used as external storage)

Memory Hierarchy

Flash Hard Disk Drives

Random Access ~0.1ms 5-10ms

File fragment impact No Greatly impacted

Total power ½ to 1/3 of HDD Up to 15+ watts

Reliability Reliable Less reliable due to

mechanical parts

Write longevity Limited number of writes. Less of a problem

Capacity <=512GB Up to 4TB

Price $1.5 - 2.0 per GB $0.10 - 0.20 per GB

Disk I/O

▪ Boot ROM: When we press the

power button, the Boot ROM

(EEPROM) code starts executing

from a predefined location

which is hardwired in ROM.

▪ It loads the Bootloader into RAM

and starts executing.

Andriod Boot-Sequence

▪ Bootloader: The bootloader is

a small program which runs

before Android does.

▪ This is NOT part of the Android

operating system.

▪ The bootloader is the place

where manufacturer puts their

locks and restrictions.

Boot-Sequence

▪ Bootloader: Bootloader has

two stages:

▪ First stage it detects ext RAM

and loads OS

▪ In the second stage, the

bootloader setups the

network, memory, etc, which

requires to run kernel

Boot-Sequence

Boot-Sequence

▪ Kernel: As the kernel launches,

is starts to setup cache,

protected memory, scheduling

and loads drivers

▪ Mount root file system

▪ init: Init is the very first process

▪ Mounts the basic linux

directories like /sys , /dev or

/proc

Boot-Sequence

Boot-Sequence

▪ init.rc provides a set of

generic initialization

instructions required for

booting

▪ Zygote and Dalvik VM: The

Zygote enables code

sharing across the Dalvik

VM.

Boot-Sequence

▪ Zygote enables Android to

launch apps in Memory

efficient way.

▪ Zygote pre-loads and

initializes all the core library

classes required by the

Android Runtime

Boot-Sequence

▪ System Services and Managers:

Zygote then initializes several

system services like battery

service, mount service etc.

▪ Zygote initializes several

managers as well like Telephony

Manager, Activity Manager.

Boot-Sequence

