
PBN: Towards Practical Activity Recognition Using
Smartphone-Based Body Sensor Networks∗

Matthew Keally
Dept. of Computer Science
College of William and Mary

Williamsburg, VA 23187, USA

makeal@cs.wm.edu

Gang Zhou
Dept. of Computer Science
College of William and Mary

Williamsburg, VA 23187, USA

gzhou@cs.wm.edu

Guoliang Xing
Dept. of Computer Science and

Engineering
Michigan State University

East Lansing, MI 48824, USA

glxing@msu.edu

Jianxin Wu
School of Computer Engineering
Nanyang Technological University

Singapore 639798

jxwu@ntu.edu.sg

Andrew Pyles
Dept. of Computer Science
College of William and Mary

Williamsburg, VA 23187, USA

ajpyles@cs.wm.edu

Abstract
The vast array of small wireless sensors is a boon to body

sensor network applications, especially in the context aware-
ness and activity recognition arena. However, most activity
recognition deployments and applications are challenged to
provide personal control and practical functionality for ev-
eryday use. We argue that activity recognition for mobile
devices must meet several goals in order to provide a prac-
tical solution: user friendly hardware and software, accurate
and efficient classification, and reduced reliance on ground
truth. To meet these challenges, we present PBN: Practi-
cal Body Networking. Through the unification of TinyOS
motes and Android smartphones, we combine the sensing
power of on-body wireless sensors with the additional sens-
ing power, computational resources, and user-friendly inter-
face of an Android smartphone. We provide an accurate and
efficient classification approach through the use of ensemble
learning. We explore the properties of different sensors and
sensor data to further improve classification efficiency and
reduce reliance on user annotated ground truth. We evaluate
our PBN system with multiple subjects over a two week pe-
riod and demonstrate that the system is easy to use, accurate,
and appropriate for mobile devices.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

∗This work is supported in part by NSF grants ECCS-0901437,
CNS-0916994, and CNS-0954039.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
Copyright 2011 ACM 978-1-4503-0718-5/11/11 ...$10.00

tems]: Real-time and embedded systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Body Sensor Networks, Mobile Phones, Motes, Machine

Learning, Sensing, Activity Recognition

1 Introduction
The low cost and wide availability of wireless sensors

makes body sensor networks (BSNs) an increasingly attrac-
tive solution for a wide range of applications such as personal
health care monitoring [3], physical fitness assessment [1],
and context awareness [19] [4]. In all of these applications,
and especially in the context awareness and activity recogni-
tion domain, the need exists to provide personal control and
direct application feedback to the user. For example, a sens-
ing application for activity recognition allows user configu-
ration of the number and placement of sensor nodes as well
as runtime notification as to the current activity. Complete
control over a body sensor network allows a user to tailor the
application to his or her needs as well as exercise discretion
over the use and dissemination of activity inferences.

For context aware and activity recognition applications,
the sensing capability of multiple on-body sensor nodes is
difficult to capture through the use of smartphones alone
[17]. However, the portability, computational power, and
interface of a mobile phone can provide the user personal
control and feedback over the sensing application. We en-
vision a practical solution to activity recognition for mobile
devices which is entirely portable, under direct control of the
user, computationally lightweight, and accurate.

In this paper, we focus on four major challenges for pro-
viding practical activity recognition with mobile devices.
First, the hardware and software platform must be user-
friendly. The hardware must be portable and easily config-
urable, while the software must provide an intuitive control
interface with adequate system feedback. Second, classi-

fication must be performed accurately, handling both easy
and difficult to classify activities, environmental changes,
and noisy data. Accurate classification must also allow con-
text switching between activities without extensive parame-
ter tuning and different, complex classifiers for each activity.
Third, since mobile hardware is often constrained in terms
of computation power and energy, classification must be per-
formed efficiently and redundant sensing resources must be
timely turned off. Lastly, the system must have a reduced
reliance on ground truth, for regular collection and labeling
of sensor data can be invasive to the end user.

While there is significant existing work in the mobile
activity recognition domain, most approaches do not offer
practical solutions that address the above challenges. Some
approaches [9] [15] [28] provide multiple on-body sensor
nodes but do not provide a portable interface, such as a mo-
bile phone, for the end user to control sampling, configure
hardware, or receive real time feedback. Other approaches
[18] [19] rely on computationally expensive learning algo-
rithms and a back end server. Still more works [16] [17] rely
on specific sensing models for each sensor modality, mak-
ing sensor collaboration difficult. Lastly, other works [27]
[23] do not provide online training for adaptation to body
sensor network (BSN) dynamics. Compared to static sensor
networks, body sensor network dynamics include the chang-
ing geographical location of the user, user biomechanics and
variable sensor orientation, as well as background noise.

Towards addressing these challenges of activity recog-
nition, we propose PBN: Practical Body Networking. PBN
consolidates the flexibility and sensing capability of TinyOS-
based motes with the additional sensing power, computa-
tional resources, and user-friendly interface of an Android
smartphone. Our solution can also be extended beyond
TinyOS motes to combine Android with a wide variety of
USB devices and wireless sensors. Through the use of en-
semble learning, which automates parameter tuning for BSN
dynamics, PBN provides a capable, yet lightweight activity
recognition solution that does not require a backend server.

With PBN, we provide an online training solution which
detects when retraining is needed by analyzing the informa-
tion divergence between training and runtime data distribu-
tions and integrating this analysis with the ensemble classi-
fier. In this way, PBN determines when retraining is needed
without the need to request ground truth from the user. Fur-
thermore, we investigate the properties of sensors and sen-
sor data to identify sensors which are accurate and have di-
verse classification results. From this analysis, we are able
to prevent the ensemble classifier from needlessly consum-
ing computational overhead by using redundant sensors in
the online training process. Our main contributions are:

• We combine the sensing capability of on-body TinyOS-
based motes with the sensors, computational power,
portability, and user interface of an Android smartphone.

• An activity recognition approach appropriate for low-
power wireless motes and mobile phones that does not
rely on a backend server. Our approach handles BSN dy-
namics without sophisticated parameter tuning and also
accurately classifies difficult tasks.

• We provide retraining detection without requesting
ground truth from the user, reducing the invasiveness of
the system.

• We reduce online training costs by detecting redundant
sensors and excluding them from the ensemble classifier.

• With two weeks of data from two subjects, we demon-
strate that we can detect even the most difficult activities
with nearly 90% accuracy. We identify 40% of sensors
as redundant, excluding them from online training.

The rest of this paper is organized as follows: Section
2 presents related work, Section 3 provides an overview of
our PBN system design, and Section 4 describes the ensem-
ble classifier. We describe our retraining detection method
in Section 5, provide details on how to collect new training
data in Section 6, and present a sensor selection method in
Section 7. In Section 8, we evaluate our PBN platform and
present conclusions and future work in Section 9.

2 Related Work
Many methods perform classification with multiple on-

body sensor nodes but have no mobile, on-body aggregator
for sensor control and activity recognition feedback. Some
works [9] [15] [28] [22] use multiple on-body sensor motes
to detect user activities, body posture, or medical conditions,
but such motes are only used to collect and store data with
analysis performed offline. Such approaches limit user mo-
bility due to periodic communication with a fixed base sta-
tion and also lack real time analysis and feedback to the user.

Other approaches use mobile phones for sensing and
classification, but require the use of backend servers or of-
fline analysis to train or update classification models. The
authors of [18] provide model training with a short amount
of initial data, but model updating is performed using a back-
end server. In [19], model training and classification is split
between lightweight classifiers on a mobile phone and more
powerful classifiers on a server. The authors of [21] present
a sensor mote with an SD card attachment for interface with
a mobile phone but do not provide an application which uses
such a device. Mobile phone like hardware is used in [7] to
perform pothole detection, but data is analyzed offline.

Some works use a limited set of sensor modalities or use
a separate classifier for each sensing modality, making clas-
sification difficult for deployments with a large number of
heterogeneous sensors. Some works [2] [12] focus exten-
sively on energy aware sensing models specifically for lo-
calization or location tracking. In [16], while the authors
provide an adaptive classification approach, they only make
use of a mobile phone microphone to recognize user con-
text and activities, thus eliminating a wide range of user ac-
tivities that are not sound dependent. The authors of [17]
provide a component-based approach to mobile phone based
classification for different sensors and different applications,
but each sensor component requires a separate classifier im-
plementation. One approach uses both motes and mobile
phones to perform fitness measurement [6], but simple sens-
ing models are used that will not work for more general ac-
tivity recognition applications. Activity recognition and en-
ergy expenditure is calculated in [1] using an accelerometer-
specific sensing model for on-body wireless nodes.

Lastly, several activity recognition methods do not pro-
vide online training to account for environmental dynamics
or poor initial training data. The authors of [14] use Ada-
Boost to perform activity recognition but use custom hard-
ware with very high sampling rates. In [20], the authors also
use AdaBoost for activity recognition with mobile phones,
but focus mainly on ground truth labeling inconsistencies
and do not provide a practical system for long term use.
The authors of [27] focus on duty cycling mobile phone sen-
sors to save energy, but provide a rigid rule-based recogni-
tion model that must be defined before runtime. A speaker
and emotion recognition system using mobile phones is pre-
sented in [23] which implements adaptive sampling rates but
the classification models used are trained offline.

3 System Overview and Architecture
In this section, we first present the application require-

ments. We then present our PBN hardware and application,
which unifies TinyOS and Android. Next, we describe our
PBN architecture and finally describe our PBN experimental
setup which we refer to for the remainder of the paper.

3.1 Application Requirements
Our PBN system design is motivated by the requirements

of a practical body networking application for activity recog-
nition. Data from multiple on-body sensors is reported to a
mobile aggregator which makes classification decisions in
real time. The system must be able to accurately and effi-
ciently classify typical daily activities, postures, and envi-
ronmental contexts, which we present in Table 1. Despite
these categories being common for many individuals, previ-
ous work [14] has identified some of them, such as cleaning,
as especially difficult to classify.

Table 1: PBN Classification Categories.

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walk-
ing

Activity Cleaning, Cycling, Driving, Eating, Meeting,
Reading, Walking, Watching TV, Working

From the table, we break down our target classifications
into three categories: Environment, Posture, and Activity.
With the Environment and Posture categories, we can pro-
vide insight into the physical state of the user for personal
health and physical fitness monitoring applications. We also
wish to measure typical activities in which a user engages,
such as watching TV, driving, meeting with colleagues, and
cleaning. Here, we consider cycling and walking to be both
postures and activities. Such activity recognition is quite use-
ful for participatory sensing and social networking applica-
tions since it eliminates the need for a user to manually up-
date his or her activities online. The requirements to provide
such a practical activity recognition system are:

• User-friendly. Different on-body commercial off-the-
shelf (COTS) sensor nodes must seamlessly interact with
a mobile phone aggregator for simple user configuration
and operation. The hardware must be portable and easy

to wear, while the software must provide an intuitive in-
terface for adding, removing, and configuring different
sensors geared to detect the user’s intended activities.
Labeling training data should also be a simple and non-
invasive task, facilitated by the mobile phone.

• Accurate classification. The system must accurately
handle both easy and difficult to detect activities as well
as noisy data and environmental dynamics. The system
must also account for the changing geographic location
of the user as well as the variable orientation of the indi-
vidual on-body sensors.

• Efficient classification. A body sensor network for ac-
tivity recognition may often use low power hardware,
therefore, the classification algorithm should be com-
putationally efficient in addressing the BSN dynamics
of geographic location, user biomechanics, and environ-
mental noise. The system must also be energy efficient:
by quantifying the contribution of each sensor towards
accurately classifying activities, sensors with minimal
contribution can be powered down. Furthermore, the
system must avoid extensive parameter tuning as well as
avoid unique, complex sensing models for each activity.

• Less reliance on ground truth. Activity recognition
systems are often deployed with minimal labeled train-
ing data, thus the need exists to train a system in an on-
line manner, requesting ground truth labels only when
absolutely necessary. A reduced need for ground truth
reduces the burden on the user to label training data.

3.2 PBN Hardware and Application
To achieve accurate and efficient activity recognition for

mobile phones and on-body sensors, we provide an exten-
sive hardware and software support system, which we de-
scribe in this section. In Section 3.2.1, we describe the im-
plementation of USB host mode in the Android kernel to
allow communication between a base station mote and an
Android phone. In Section 3.2.2, we describe our Android
application for configuration and activity recognition.

3.2.1 Unification of Android and TinyOS

Our PBN system consists of Crossbow IRIS on-body sen-
sor motes and a TelosB base station connected to an Android
HTCG1 smartphone via USB. While previouswork has con-
nected TinyOS motes and mobile phones, such efforts either
use energy demanding Bluetooth [6], do not provide mobile
phone support for TinyOS packets [24], or use special hard-
ware [29]. Instead, we provide a seamless and efficient in-
tegration of TinyOS motes and Android smartphones. Our
solution can be easily extended beyond the research-based
TinyOS devices to work with a wide variety of commercial
and more ergonomic USB and wireless sensors. Our chal-
lenges with such integration lie in 4 aspects: TinyOS sensing
support, Android OS kernel support, Android hardware sup-
port, and TinyOS Java library support.

TinyOS Sensing Support. Illustrated in Figure 3, we
implement a sensing application in TinyOS 2.x for Cross-
bow IRIS motes with attached MTS310 sensorboards. The
sensor node application allows for runtime configuration of
active sensors, sampling rates, and local aggregation meth-

ods. We develop a communication scheme to pass control
and data packets through a TelosB base station connected to
an Android smartphone.

Android OS Kernel Support. To prepare the phone to
support external USB devices, a kernel EHCI or host con-
troller driver is required. However, the USB host controller
hardware documentation of the Google Developer phone is
not publicly available. We incorporate the suggestions from
[5] and modify the Freescale MPC5121 driver to work with
the Qualcomm MSM7201A chipset on the Android phone.
With these modifications, the host controller is able to rec-
ognize USB devices with a caveat: enabling the HOST con-
troller disables the USB client mode for PC SD card access.

Hardware Support. The EHCI controller of the phone
does not provide any power to external devices, such as the
sensor motes in our case. To solve this limitation, we build a
special USB cable that includes an external 5V battery pack
with a peak load of 0.5A. The positive and ground cables are
cut on the phone side such that only the USB device, not the
phone, receives power. This also has the added benefit of not
placing an extra load on the phone battery.

TinyOS Support on Android. Two challenges exist in
providingAndroid TinyOS communication support: systems
implementation and TinyOS software modifications. 1) Each
mote has an FTDI USB serial chip that can be used to com-
municate with the host. The Linux FTDI driver creates a se-
rial port device in the /dev directory. Android includes a min-
imal device manager that creates devices with insufficient
privileges. This device manager is modified so that correct
privileges are established. 2) TinyOS uses a binary serializa-
tion to communicate bidirectionally between the mote and
host with the help of a C++ JNI interface. We modify the
TinyOS JNI interface and associated Java libraries to com-
pile and function on the Android platform. With such modi-
fications, Android applications can send and receive TinyOS
packets using the same Java interfaces available on a PC.

3.2.2 Android App

Figure 1: PBN activity sta-
tus view.

Figure 2: Ground truth log-
ging.

To provide a user-friendly front end for PBN, we imple-
ment an Android app to allow for easy configuration, run-

time deployment, ground truth labeling, and data storage
and upload for offline analysis. The GUI component allows
for user control of both phone and remote wireless sensors.
The GUI also receives feedback as to the current activity and
whether or not classifier retraining is needed, and also pro-
vides ground truth labels to the classifier.

Sensor Configuration. Our PBN Android app provides
an interface to allow for easy configuration of both phone
sensors as well as remote TinyOS sensors. Using our soft-
ware interface, a user can easily add or remove TinyOS
nodes as well as phone and TinyOS-based sensors. The user
is also able to adjust sampling rates as well as local data
aggregation intervals to reduce the number of radio trans-
missions. A user’s sensor and sampling configuration can
be stored on the phone in an XML file so that configuration
must only be performed once. Users of different phones can
also exchange saved sensor configurations.

Runtime Control and Feedback. With a created sensor
configuration, a PBN user is able to quickly start and stop
data sampling and activity recognition. As depicted in Fig-
ure 1, the current activity is displayed during runtime along
with a configurable histogram of the most recent activities.
When our classifier determines that accuracy is dropping and
retraining with more labeled ground truth is needed, the PBN
app prompts the user to input the current activity, illustrated
in Figure 2. During retraining, an indicator and button on
the current activity screen appears, allowing the user to log
any changes in the ground truth. Labeled training data can
be stored locally for later retraining or uploaded to a server
for sharing and offline analysis.

3.3 PBN Architecture

Figure 3: PBN System Architecture.

Illustrated in Figure 3, our Practical Body Networking
(PBN) system resides solely on TinyOS-based motes and on
an Android smartphonewith no reliance on a backend server.
Multiple TinyOS-based motes, each containing one or more
sensors of different modalities, are attached on-body. Each
mote communicates wirelessly (dotted lines) with a TinyOS
mote base station, which is connected via USB (solid lines)
to an Android smartphone.

Phone and mote sensors (white dotted areas) sample data
at a user configured rate and aggregate data from each sen-
sor over a larger aggregation interval. Aggregated data for
each sensor is returned at each aggregation interval. For each
TinyOSmote, aggregated data is returned wirelessly in a sin-
gle packet. We provide a reliable communication scheme
between the phone and motes and determine through our 2
week experiment that for most activities, packet loss rates are
below 10%, with 99% of packets received after one retrans-
mission, even when using the lowest transmission power.

Aggregated data from phone and mote sensors is fed into
the PBN classification system (gray dotted area in Figure 3)
at each aggregation interval to make a classification decision.
The classifier, AdaBoost, is initially trained with the user la-
beling a short two minute period of each pre-defined activ-
ity (Ground Truth Management) but training can be updated
online through Retraining Detection. During initial train-
ing and retraining, the Sensor Selection module reduces the
training overhead incurred by AdaBoost by choosing only
the most capable sensors for performing accurate classifica-
tion. We now describe the core of our PBN platform:

Activity Classification. We use AdaBoost [8], an en-
semble learning algorithm, as our activity recognition classi-
fier which resides entirely on a smartphone. AdaBoost com-
bines an ensemble of weak classifiers together to form a sin-
gle, more robust classifier. With this approach, we are able
to train weak classifiers for each sensor in our deployment
and combine them together to recognize activities. Ada-
Boost is able to maximize training accuracy by selecting
only the most capable sensors for use during runtime. We
improve upon AdaBoost by providing online training and
retraining detection as well as improve computational over-
head through sensor selection.

Retraining Detection. Since initial training data may not
be sufficient to account for body sensor network dynamics,
AdaBoost retraining is needed in order to ensure high ac-
curacy throughout the deployment lifetime. We investigate
the discriminative power of individual sensors and from our
analysis we are able to detect when retraining is needed dur-
ing runtime without the use of labeled ground truth. For each
sensor, we use Kullback-Leibler divergence [13] to deter-
mine when runtime data is sufficiently different from training
data and use a consensus-based approach to initiate retrain-
ing when enough sensors indicate that retraining is needed.

Ground Truth Management. When retraining is
needed, we investigate how much new data to collect and
label in order to ensure BSN dynamics are captured, yet min-
imize the intrusiveness of the user manually annotating his or
her current activities. We also determine how to maintain a
balance of training data for each activity to ensure AdaBoost
trains properly and provides maximum runtime accuracy.

Sensor Selection. During training, AdaBoost trains mul-
tiple weak classifiers for every sensor in the deployment,
even if many sensors are never chosen by AdaBoost when
training is complete. Through analysis of the theory behind
ensemble learning, we identify both helpful and redundant
sensors through the use of the Pearson correlation coefficient
[25]. Based on our analysis, we provide a method to give
AdaBoost only the sensors that provide a significant contri-

bution towards maximizing accuracy, thus reducing online
training overhead.

3.4 Experimental Setup

Figure 4: Subject 1. Figure 5: Subject 2.

For the remainder of the paper, we will refer to our activ-
ity recognition experiment, in which we collected two weeks
of sensor data using two subjects, depicted in Figures 4 and
5. Each subject wore five Crossbow IRIS motes wirelessly
linked to a TelosB base station and Android HTC G1 smart-
phone. The mote and sensor configuration for our experi-
ment is summarized in Table 2. On the phone, which we
attach to the waist, we make use of the 3-axis accelerome-
ter as well as velocity from WiFi and GPS, with GPS active
only when PBN detects the user is outdoors. On the mote,
we use an MTS310 sensorboard with the following sensors:
2-axis accelerometer, microphone, light, and temperature. In
addition to the sensors on the mote, the base station also col-
lects RSSI information from each received packet, which has
been previously demonstrated [22] to provide insight into
body posture. During initial and online training, all sensors
are active, while only sensors selected during training remain
active during the remaining sampling periods.

Table 2: PBN Deployment Configuration.

Node ID Location Sensors

Phone 0 R. Waist 3-Axis Acc., GPS/WiFi (velocity)

IRIS 1 L. Wrist 2-Axis Acc., Mic., Light, Temp.

IRIS 2 R. Wrist 2-Axis Acc., Mic., Light, Temp.

IRIS 3 L. Ankle 2-Axis Acc., Mic., Light, Temp.

IRIS 4 R. Ankle 2-Axis Acc., Mic., Light, Temp..

IRIS 5 Head 2-Axis Acc., Mic., Light, Temp.

For the microphones and accelerometers, raw ADC val-
ues are sampled at 20ms intervals to ensure quick body
movements can be captured, with light and temperature ADC
readings sampled at 1s intervals, and GPS/WiFi sampled ev-
ery 10s. To reduce communication overhead, data for each
sensor is aggregated locally on each node at 10s intervals,

which is well within the time granularity of the activities we
classify. To reduce the complexity of local aggregation, data
from each accelerometer axis is treated as a separate sensor.
During local aggregation, light and temperature sensor read-
ings are averaged since these sensor readings remain rela-
tively stable for each activity. Except for GPS/WiFi, all other
sensors compute the difference between the highest and low-
est readings for each aggregation interval, for the change in
readings indicate body movement or sound.

During the two week period, both subjects recorded all
activity ground truth in order to evaluate the accuracy of
training data (training accuracy) and runtime accuracy. We
recorded ground truth for 3 classification categories, illus-
trated in Table 1: Environment, Posture, and Activity.

4 AdaBoost Activity Recognition
The core of our activity recognition approach uses en-

semble learning, specifically AdaBoost.M2 [8], which we
expand and improve upon in subsequent sections. In this sec-
tion, we explain how we adapt AdaBoost to run on a phone
for use with a body sensor network. AdaBoost is lightweight
enough for mobile phones, yet previous work [14] [20],
while relying on offline processing with no feedback or user
control, has demonstrated AdaBoost to be accurate for clas-
sification applications. Furthermore, without user parameter
tuning, our implementation of AdaBoost is able to choose
the right sensors needed to maximize training accuracy for
all activities. Other classifiers commonly used for activ-
ity recognition use a combination of complex, specialized
classifiers per sensor modality [17] [19] or per activity [16]
which require extensive parameter tuning. Other techniques
use single classifiers which are computationally demanding
for mobile phones, such as GMMs [18] or HMMs [9].

Using AdaBoost, we incrementally build an ensemble of
computationally inexpensive weak classifiers, each of which
is trained from the labeled training observations of a single
sensor. Weak classifiers need only to make classification de-
cisions that are slightly correlatedwith the ground truth; their
capabilities are combined to form a single accurate classifier.
The completed ensemble may contain multiple weak classi-
fiers for the same sensor; some sensors may not have trained
classifiers in the ensemble at all. AdaBoost incrementally
creates such sensor-based weak classifiers by emphasizing
the training observations misclassified by previous classi-
fiers, thus ensuring that training accuracy is maximized.

Using Algorithm 1, we describe AdaBoost training. We
define a set of activities A = {a1, . . . ,aa}, sensors S =
{s1, . . . ,sm}, and observation vectors O j for each sensor
s j ∈ S, where each sensor has n training observations. The
training output is an ensemble of weak classifiers H =
{h1, . . . ,hT}, where ht ∈ H represents the weak classifier

chosen in the t th iteration. We initialize a set of equal weights
D1 for each training observation, where during the training
process, greater weights for an observation represent greater
classification difficulty.

During each iteration t, we train a weak classifier ht, j for
each sensor s j ∈ S using observations O j and weights Dt .
We then compute the weighted classifier error εt, j for each
trained sensor classifier, adding only the sensor classifier to

H which has the lowest weighted error. Before the next it-
eration, the observation weights Dt are updated based on the
current weights and the misclassifications made by the se-
lected classifier.

Algorithm 1 AdaBoost Training

Input: Max iterations T , training obs. vector O j for each
sensor s j ∈ S, obs. ground truth labels

Output: Set of weak classifiers H
1: Initialize observation weights D1 to 1/n for all obs.
2: for t = 1 to T do
3: for sensor s j ∈ S do
4: Train weak classifier ht, j using obs. O j, weights Dt

5: Get weighted error εt, j for ht, j using labels [8]
6: end for
7: Add the ht, j with least error εt to H by choosing ht, j

with least error εt
8: Set Dt+1 using Dt , misclassifications made by ht [8]
9: end for

Given an observation o, each weak classifier returns a
probability vector [0,1]a with each scalar representing the
probability that the current activity is ai. To train a weak
classifier ht, j for each sensor s j ∈ S, we use a naive Bayes
model where training observations O j are placed into one
of 10 discrete bins. The bin interval is based on the mini-
mum and maximum possible readings for each sensor. Each
binned training observation from O j is assigned its respec-
tive weight from Dt and ground truth label in the set of ac-
tivities A. A new observation is classified by placing it into a
bin, with the generated probability output vector correspond-
ing to the weights of training observations present for each
activity in the assigned bin. With a weak classifier chosen for
each iteration, Equation 1 defines the output of the AdaBoost
classifier for each new observation o during runtime:

h(o) = argmaxai∈A

T

∑
t=1

(

log
1− εt

εt

)

ht(o,ai) (1)

In Equation 1, the activity probability vector for each
weak classifier ht is weighted by the inverse of its error εt .
Thus, the weak classifiers with the lowest training error have
the most weight in making classification decisions. To put it
another way, AdaBoost chooses the sensors with weak clas-
sifiers that minimize weighted training error, achieving max-
imum training accuracy for all activities.

In Figure 6, we depict AdaBoost training and runtime
performance for T = 1 to 300 AdaBoost iterations using data
from Subject 1 and ground truth from the Activity classifica-
tion category. For this paper, we use 300 iterations to achieve
maximum accuracy. We also show in Figure 6 that AdaBoost
does not choose all of the 34 sensors in our experiment, for
even with 300 iterations it only chooses 18. During runtime,
any sensor not selected by AdaBoost will be disabled to save
energy and communication costs.

Lastly, in Figure 7, we demonstrate that AdaBoost can
perform very accurately with a sizable amount of training
data: maximum training and runtime accuracy is achieved
with roughly 50 observations per activity for Subject 1.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
S

e
n

s
o

rs
 C

h
o

s
e

n
 b

y
 A

d
a

B
o

o
s
t

A
c
c
u

ra
c
y

AdaBoost Iterations

Cluster Size
Training Accuracy

Runtime Accuracy

Figure 6: Training and runtime accuracy for 1-300 Ada-
Boost iterations.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

Training Observations per Activity

Training Accuracy Runtime Accuracy

Figure 7: Average accuracy and standard deviation for 10-
100 random training observations per activity.

Cleaning
Cycling
Driving
Eating

Meeting
TV

Walking
Reading
Working

0
,P

-L
O

C
0

,P
-A

C
C

-X
0

,P
-A

C
C

-Y
0

,P
-A

C
C

-Z
1

,R
S

S
I

1
,A

C
C

-X
1

,A
C

C
-Y

1
,M

IC
1

,L
IG

H
T

1
,T

E
M

P
2

,R
S

S
I

2
,A

C
C

-X
2

,A
C

C
-Y

2
,M

IC
2

,L
IG

H
T

2
,T

E
M

P
3

,R
S

S
I

3
,A

C
C

-X
3

,A
C

C
-Y

3
,M

IC
3

,L
IG

H
T

3
,T

E
M

P
4

,R
S

S
I

4
,A

C
C

-X
4

,A
C

C
-Y

4
,M

IC
4

,L
IG

H
T

4
,T

E
M

P
5

,R
S

S
I

5
,A

C
C

-X
5

,A
C

C
-Y

5
,M

IC
5

,L
IG

H
T

5
,T

E
M

P

 0

 2

 4

 6

 8

 10

 12

 14

K
L

 D
iv

e
rg

e
n

c
e

Figure 8: K-L divergence for each sensor and each activity.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

S
e

n
s
o

r
A

c
c
u

ra
c
y

Sensor K-L Divergence

Cycling
Cleaning

Driving
Eating

Meeting
Reading

TV
Walking
Working

Figure 9: Sensor K-L divergence and training accuracy.

However, through retraining in Section 5 we can train Ada-
Boost with a very small set of initial training data and update
AdaBoost during runtime.

5 Retraining Detection
In this section, we propose an online training approach

to achieve high accuracy with a limited initial training data
set. This approach can also be used to retrain when an exist-
ing data set is not accurate enough. First, we investigate how
to quantify the discriminative power of each sensor to de-
tect when runtime data is significantly different than training
data. Second, we use the insight we gain from the discrimi-
nation analysis to detect when AdaBoost retraining is needed
during runtime without retrieval of ground truth information.

5.1 Sensor Data Discrimination Analysis
We investigate how to quantify the discriminative power

of each sensor and predict if it is accurate, employing the use
of Kullback-Leibler divergence [13]. K-L divergence mea-
sures the expected amount of information required to trans-
form samples from a distribution P into a second distribution
Q. Using trace data from Subject 1, we demonstrate the use
of K-L divergence per activity to identify which sensors are
best able to distinguish between activities. We also show a
clear relationship between K-L divergence per activity and
training accuracy. We conclude that K-L divergence can
be used to detect when retraining is needed without regular
ground truth requests to compute classifier accuracy: sensors
need only to compare training data to current runtime data.

In Figure 8, we analyze the ability of each sensor to dis-
criminate between different activities; we calculate K-L di-
vergence as “one against the rest,” for one data distribution
is calculated for the target activity and another distribution is

calculated for all other activities. For all analyses using K-L
divergence, we discretize continuous-valued sensor data into
100 bins. The figure shows that some sensors, such as those
on the hands (nodes 1 and 2) have poor ability to distinguish
between any activity. Conversely, sensors on the feet (nodes
3 and 4) are especially good at detecting activities that in-
volve motion, such as walking and cycling. The GPS/WiFi
velocity (0-LOC) has the highest K-L divergence of all for
detecting driving, with a value of nearly 14.

In Figure 9, we compare K-L divergence per sensor and
activity to individual sensor training accuracy using Near-
est Centroid [11]. Nearest Centroid is a variant of k-means
clustering and unlike the AdaBoost weak classifiers, it is an
inexpensive classifier that does not require a weight for each
training observation. The figure shows a clear relationship
between K-L divergence and runtime accuracy, indicating
that for a given activity, sensors with high K-L divergence
are much more likely to have high accuracy compared with
sensors with low K-L divergence. As with Figure 8, activi-
ties involving motion, such as cycling, walking, and driving
are most easily distinguished and have the highest accuracy.
From Figures 8 and 9, we can conclude that K-L divergence
will allow sensors to tell activities apart and can even be used
to tell if training data and runtime data for the same activity
are sufficiently different that retraining is needed.

5.2 Consensus-based Detection
During runtime, retraining detection is performed in two

steps, using the insight gained in Section 5.1. First, at each
aggregation interval, each active sensor independently deter-
mines if retraining is needed. Second, for some aggrega-
tion interval, if enough sensors determine that retraining is

needed, PBN prompts the user to record ground truth for a
short period. During this period, all sensors are woken up
and sample data which is then labeled by the user. When
the retraining period completes, a new AdaBoost model is
trained using both the old and new training data.

Step 1. Individual Sensor Retraining Detection. In
Section 5.1, we demonstrate in that K-L divergence is a
powerful tool for determining sensor classification capabil-
ity. Here, we use the discriminative power of K-L divergence
to determine when retraining is needed for each sensor. For
a sensor to determine retraining is needed, two conditions
must hold: 1) The runtime data distribution for the current
activity must be significantly different from the training data
distribution, and 2) The runtime data distribution must have
at least as many observations as the training data distribution.

During training, each sensor chosen by AdaBoost com-
putes K-L divergence for each activity using its labeled sen-
sor training data. Training K-L divergence per activity is
used as a baseline to compare against during runtime to de-
termine when retraining is needed. For each activity ai ∈ A,
training sensor data distribution Ti for activity ai, and train-
ing sensor data distribution To for all activities a j ∈ A\{ai},
each sensor computes the K-L divergence between Ti and To,
DKL(Ti,To). Then, during runtime, for each new observa-
tion, AdaBoost classifies the observation as activity ai ∈ A,
and each active sensor adds its data to a runtime distribution
Ri for activity ai. An active sensor s j determines retraining is
needed when the runtime-training K-L divergence is greater
than the training K-L divergence for the current activity ai:
DKL(Ri,Ti)> DKL(Ti,To).

During runtime, to ensure a fair comparison between
training and runtime K-L divergence, each sensor does not
determine if retraining is needed until the runtime distribu-
tion Ri has as at least as many observations as the training
data distribution Ti. We determine through evaluation that
collecting fewer runtime observations per activity yields sim-
ilar accuracy but more retraining instances, which imparts
a greater burden on the user. Since Figure 7 demonstrates
that 100 observations per activity is more than sufficient to
achievemaximum runtime accuracy (this is also true for Sub-
ject 2), we limit training data to 100 observations per activity
to reduce delay before the training observations and runtime
observations are compared.

Step 2. Consensus Detection: Combining Individ-
ual Sensor Decisions. During each runtime interval, PBN
checks to see how many sensors indicate retraining is neces-
sary. If a weighted number of sensors surpasses a threshold,
new ground truth is collected and a new AdaBoost classi-
fier is trained. We describe how this consensus threshold for
retraining is obtained.

First, upon completion of AdaBoost training, we can de-
termine the AdaBoost weight of the sensor classifiers used to
make correct classification decisions. Through an extension
of Equation 1, in Equation 2, we can output the weight of the
correct weak classifiers given an observation o and correct
AdaBoost decision ai, w(o,ai):

w(o,ai) =
T

∑
t=1

(

log
1− εt

εt

)

ht(o,ai) (2)

Next, using training data, a trained AdaBoost classifier,
and Equation 2, we determine the average weight wavg for
all correct training classification decisions (o,ai). To do this,
we compute a weight w j for each active sensor s j, indicat-
ing how important its decisions are relative to other sensors.
Depicted in Equation 3, w j is computed as the sum of the
inverse error rates for each weak classifier belonging to sen-
sor s j (multiple classifiers for s j may be iteratively trained
and chosen by AdaBoost). Function f (j) maps sensor s j to
each AdaBoost iteration t where AdaBoost chooses the weak
classifier trained by s j.

w j = ∑
∀t∈ f (j)

log

(

1− εt

εt

)

(3)

At each runtime interval, we sum the weights w j for each
sensor s j that indicates retraining is necessary. If the sum of
the sensor weights is greater than wavg, PBN notifies the user
to collect ground truth and retrain a newAdaBoost classifier.

6 Ground Truth Management
We address two issues regarding labeling and addition of

new sensor data to the existing training dataset during re-
training. First, we address how much new data to add to the
training set. Second, we show how to maintain a balance be-
tween training data set sizes for each activity to ensure Ada-
Boost retrains properly and maintains high runtime accuracy.

When PBN decides retraining is required, it will prompt
the user to log ground truth for a window of N aggregation
intervals. Through evaluation, we find that recording ground
truth retroactively for the data that triggered the retraining
results in no change in accuracy since any such significant
change in sensor data is persistent. During the ground truth
logging period, a user only notes the current activity at the
start of the logging period and any activity changes through-
out the remainder of the logging period. In the evaluation,
we determine that with N = 30 (5 minutes), the retraining
ground truth collection window is short enough not to be
intrusive to the user but long enough to capture changes in
PBN dynamics. When the ground truth labeling period is
complete, the new labeled sensor data is added to the exist-
ing training set and a new AdaBoost model is trained.

Since the core of AdaBoost training relies on creating
a weight distribution for all training observations based on
classification difficulty, each activity must be given nearly
equal amounts of training data (within an order of magni-
tude) for AdaBoost to train properly [10]. Without a bal-
ance in training observations across all activities, AdaBoost
will focus on training activities with more training obser-
vations, creating poor runtime accuracy for activities with
fewer training observations. However, if we are too restric-
tive in enforcing such a balance, very few new training obser-
vations will be added to the training dataset during retrain-
ing, resulting in poor adaptation to the new data. In Equation
4, we ensure that each activity ai ∈ A has no more than δ

times the average number of training observations per activ-
ity, where O is the set of training observations.

|Oi|−
1
|A| ∑∀ak∈A |Ok|

1
|A| ∑∀ak∈A |Ok|

≤ δ (4)

0,P-ACC-X
0,P-ACC-Y
0,P-ACC-Z

1,RSSI
1,ACC-X
1,ACC-Y

1,MIC
1,LIGHT
1,TEMP
2,RSSI

2,ACC-X
2,ACC-Y

2,MIC
2,LIGHT
2,TEMP
3,RSSI

3,ACC-X
3,ACC-Y

3,MIC
3,LIGHT
3,TEMP
4,RSSI

4,ACC-X
4,ACC-Y

4,MIC
4,LIGHT
4,TEMP
5,RSSI

5,ACC-X
5,ACC-Y

5,MIC
5,LIGHT
5,TEMP

0
,P

-L
O

C
0
,P

-A
C

C
-X

0
,P

-A
C

C
-Y

0
,P

-A
C

C
-Z

1
,R

S
S

I
1
,A

C
C

-X
1
,A

C
C

-Y
1
,M

IC
1
,L

IG
H

T
1
,T

E
M

P
2
,R

S
S

I
2
,A

C
C

-X
2
,A

C
C

-Y
2
,M

IC
2
,L

IG
H

T
2
,T

E
M

P
3
,R

S
S

I
3
,A

C
C

-X
3
,A

C
C

-Y
3
,M

IC
3
,L

IG
H

T
3
,T

E
M

P
4
,R

S
S

I
4
,A

C
C

-X
4
,A

C
C

-Y
4
,M

IC
4
,L

IG
H

T
4
,T

E
M

P
5
,R

S
S

I
5
,A

C
C

-X
5
,A

C
C

-Y
5
,M

IC
5
,L

IG
H

T

-1

-0.5

 0

 0.5

 1

C
o
rr

e
la

ti
o
n

Figure 10: Raw data correlation for Subject 1.

The limit imposed in Equation 4 allows AdaBoost to
place equal emphasis on training weak classifiers for each
activity during retraining. If, during retraining, an activity
exceeds this limit, data is removed until the number of obser-
vations is under the limit. We remove observations at random
to reach the activity limit since we do not know how rep-
resentative each observation is of its labeled activity; some
observations may contain more noise than others.

7 Sensor Selection for Efficient Classification
While AdaBoost, through training, provides a measure

of sensor selection by weighting the most accurate sensors,
this approach can be computationally demanding: at each
AdaBoost training iteration, a weak classifier is trained and
evaluated for each sensor. In this section, we focus on identi-
fying redundant sensors and excluding them from AdaBoost
training to reduce the number of weak classifiers trained by
AdaBoost. To achieve this goal, we first investigate why
ensemble learning algorithms are successful: weak classi-
fiers must be relatively accurate and different weak classi-
fiers must have diverse prediction results [30]. Second, by
identifying sensors that satisfy these properties, we provide
a method to detect redundant sensors during runtime and ex-
clude them from input to AdaBoost during online retraining.
Our method adapts to BSN dynamics during runtime to en-
sure only helpful sensors are used by AdaBoost.

7.1 Identifying Sensing Redundancies
With ensemble learning and AdaBoost, each weak classi-

fier in the ensemble must be slightly correlated with the true
classification to achieve high runtime accuracy. Since we
use data from a single sensor to train each weak classifier,
it follows that sensors chosen by AdaBoost will be similarly
correlated both in terms of raw data and in classification de-
cisions made by each weak classifier. While the Pearson cor-
relation coefficient [25] is also used in previous works [26]
[31] to identify packet loss relationships between different
wireless radio links; here we use correlation to identify sens-
ing relationships between different sensors to identify both

sensors that are helpful as well as redundant.
Figure 10 depicts the correlation between each sensor

pair using the raw sensor data collected from Subject 1. It is
noted that several correlation patterns exist: accelerometers
are strongly correlated as are light and temperature sensors.
We can use this information to find sensors with redundant
data and remove them from the AdaBoost training process to
save computational overhead as well as energy consumption.

-0.2

 0

 0.2

 0.4

 0.6

-0.4 -0.2 0 0.2 0.4 0.6 0.8

A
c
c
u

ra
c
y
 C

h
a

n
g

e
 R

a
ti
o

 w
it
h

 N
e

w
 S

e
n

s
o

r

Decision Correlation

Figure 11: Decision corre-
lation between individual sen-
sors and sensor clusters.

We next illustrate
that not only do corre-
lation patterns exist be-
tween raw sensor data
but also between sensor
and sensor cluster clas-
sifier decisions. In Fig-
ure 11, with data from
Subject 1, we show that
when we add a new sen-
sor to an existing sen-
sor cluster, the great-
est accuracy increase is
achieved when the sen-
sor and cluster have un-
correlated classification
decisions. The figure
shows the decision correlation and accuracy change for
nearly 7,000 randomly generated clusters from size 1
through 19 using data from Subject 1, with individual sen-
sor and sensor cluster classifiers trained using Nearest Cen-
troid [11]. To compute the decision correlation for a classi-
fier, each correct decision is recorded as 1 and each incorrect
decision is recorded as 0. From the figure, it is clear that
choosing sensors with a decision correlation close to 0 can
help select sensors that will make the most contribution to-
wards an accurate sensor cluster.

7.2 Adaptive Runtime Sensor Selection
We now describe how to reduce the number of sensors

given as input to AdaBoost during online retraining, reduc-
ing retraining overhead while achieving high runtime accu-
racy. We perform sensor selection using raw sensor data
correlation, also extending the concept to sensor and sensor
cluster classifier decision correlation.

Sensor selection consists of two components: Threshold
Adjustment and Selection. During Threshold Adjustment,
using a trained AdaBoost classifier, a threshold α is com-
puted which discriminates between sensors chosen by Ada-
Boost and unused sensors. During Selection, a previously
computed α value is used to select a set of sensors for in-
put to AdaBoost during retraining. Threshold Adjustment
is performed during initial training while Selection is per-
formed during subsequent retrainings. To ensure the selec-
tion threshold stays current with BSN dynamics, we update
the threshold α periodically during runtime retraining using
Threshold Adjustment and apply smoothing using a moving
window of previous α values.

Threshold Adjustment. During initial training, we ini-
tialize a sensor selection threshold α and update it during
runtime retraining to adjust to any changes in user geograph-
ical location, biomechanics, or environmental noise. To de-

Algorithm 2 Raw Correlation Threshold for Sensor Selec-
tion

Input: Set of sensors S selected by AdaBoost, training ob-
servations for all sensors O, multiplier n

Output: Sensor selection threshold α

1: R= /0 // set of correlation coefficients
2: for all combinations of sensors si and s j in S do
3: Compute correlation coefficient r = |rOi ,O j

|

4: R= R∪{r}
5: end for
6: // compute threshold as avg + (n * std. dev.) of R
7: α = µR+ nσR

termine the threshold α, we first train AdaBoost with all sen-
sors as input and determine S, the set of sensors selected by
AdaBoost. Using Algorithm 2, we determine the correlation
coefficient r of raw sensor training data for each combina-
tion of sensor pairs in S. With each correlation coefficient
r stored in set R for all sensors selected by AdaBoost, we
determine the mean correlation coefficient µR and standard
deviation σR. We then set the threshold α to be n times the
standard deviation above the mean correlation. We deter-
mine through empirical evaluation that n = 2 is sufficient to
include nearly all sensors selected by AdaBoost but exclude
unused sensors.

Selection. During retraining, when the threshold is not
being updated, we choose a set of sensors S∗ from the set
of all sensors S using the previously computed threshold α.
The selected set S∗ is given as input to AdaBoost to reduce
the overhead incurred by training on the entire set S. In Al-
gorithm 3, we ensure that no two sensors in S∗ have a corre-
lation coefficient that is greater than or equal to the threshold
α, since we demonstrate previously in Section 7.1 that cor-
relation closest to 0 yields the most accurate sensor clusters.
To enforce the threshold, wemaintain a set E , which contains
sensors that have a correlation coefficient above the thresh-
old for some sensor already in S∗. For each sensor pair in S,
we determine the correlation coefficient r and add pairs to S∗

where r < α. When r ≥ α for some sensor pair, we add the
less accurate sensor to E as determined by Nearest Centroid
[11] and the other to S∗ as long as it is not already in E .

Pair DC. We also propose two other correlation met-
rics with which to select sensors: pair decision correlation
(Pair DC) and cluster decision correlation (Cluster DC).With
these two metrics, we select sensors based on classification
decisions made by individual sensors and sensor clusters.
For a sensor or cluster classifier trained using Nearest Cen-
troid, we can convert each training data decision into an in-
teger value as in Section 7.1 to use in computing decision
correlation. Sensor selection using sensor pair decision cor-
relation is identical to raw data correlation, except for the use
of individual sensor classifier decisions rather than raw data.

Cluster DC. For sensor cluster decision correlation, we
modify Algorithms 2 and 3. Instead of iterating through all
sensor pair combinations, we first find an individual sensor
classifier with the highest accuracy using Nearest Centroid
and add it to a trained sensor cluster C∗. We then incremen-

Algorithm 3 Sensor Selection Using Raw Correlation

Input: Set of all sensors S, training observations for all sen-
sors O, threshold α

Output: Selected sensors S∗ to give as input to AdaBoost
1: S∗ = /0

2: E = /0 // set of sensors we exclude
3: for all combinations of sensors si and s j in S do
4: Compute correlation coefficient r = |rOi ,O j

|
5: if r < α then
6: if si /∈ E then S∗ = S∗∪{si}
7: if s j /∈ E then S∗ = S∗∪{s j}
8: else if r ≥ α and acc(si)> acc(s j) then
9: // use accuracy to decide which to add to S∗

10: if si /∈ E then S∗ = S∗∪{si}
11: E = E ∪{s j}; S

∗ = S∗ \ {s j}
12: else
13: if s j /∈ E then S∗ = S∗∪{s j}
14: E = E ∪{si}; S

∗ = S∗ \ {si}
15: end if
16: end for

tally add sensors to C∗ as long as the sensor has a decision
correlation with the cluster that is below the threshold. The
final cluster is then used by AdaBoost for training.

8 Evaluation
We evaluate our PBN activity recognition system using

the configuration and data collection methods described in
Section 3.4, using two weeks of activity recognition data and
two subjects, one of whom is not an author. While these two
subjects have substantially different routines and compose
very different evaluation scenarios, we leave a more broadly
focused evaluation with more subjects to future work. We
first evaluate classification performance with a good ini-
tial training dataset in Section 8.1 and show that PBN can
achieve good accuracy for even difficult to classify activi-
ties. In Section 8.2, we evaluate online training with a lim-
ited initial training dataset and compare our PBN retraining
detection method to a periodic retraining approach, illustrat-
ing the benefits of PBN retraining detection. We then show
the effectiveness of our sensor selection approach in Section
8.3 and evaluate our PBN application performance in terms
of mobile phone hardware constraints in Section 8.4.

8.1 Classification Performance
In Figure 12, we first compare performance for both sub-

jects in the three classification categories depicted in Table
1: Environment, Posture, and Activity, showing that PBN
is able to achieve high runtime accuracy with a good initial
training dataset (100 observations per activity) along with
no online training or sensor selection. Subject 2 does not
perform the cycling, lying down, cleaning, or reading cate-
gories, hence there is no histogram bar. In addition to total
accuracy, we plot accuracy, precision (true positive/(true pos-
itive + false positive)), and recall (true positive/(true positive
+ false negative) for each activity.

Each classification category in Figure 12 has similar per-
formance characteristics per subject: Subject 1 has total ac-
curacies of 98%, 85%, and 90% for the Environmental, Pos-

 0

 0.2

 0.4

 0.6

 0.8

 1

Total Indoors Outdoors

R
u
n
ti
m

e
 A

c
c
u
ra

c
y

Subject 1 Subject 2

(a) Environmental class. accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

Indoors Outdoors

R
u
n
ti
m

e
 P

re
c
is

io
n

Subject 1 Subject 2

(b) Environmental class. precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

Indoors Outdoors

R
u
n
ti
m

e
 R

e
c
a
ll

Subject 1 Subject 2

(c) Environmental class. recall.

 0

 0.2

 0.4

 0.6

 0.8

 1

Total

W
alking

Sitting

Standing

C
ycling

Lying

R
u
n
ti
m

e
 A

c
c
u
ra

c
y

Subject 1 Subject 2

(d) Posture class. accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

W
alking

Sitting

Standing

C
ycling

Lying
R

u
n
ti
m

e
 P

re
c
is

io
n

Subject 1 Subject 2

(e) Posture class. precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

W
alking

Sitting

Standing

C
ycling

Lying

R
u
n
ti
m

e
 R

e
c
a
ll

Subject 1 Subject 2

(f) Posture class. recall.

 0

 0.2

 0.4

 0.6

 0.8

 1

Total

C
leaning

C
ycling

D
riving

Eating

M
eeting

R
eading

TV W
alking

W
orking

R
u

n
ti
m

e
 A

c
c
u

ra
c
y

Subject 1 Subject 2

(g) Activity class. accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
leaning

C
ycling

D
riving

Eating

M
eeting

R
eading

TV W
alking

W
orking

R
u

n
ti
m

e
 P

re
c
is

io
n

Subject 1 Subject 2

(h) Activity class. precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
leaning

C
ycling

D
riving

Eating

M
eeting

R
eading

TV W
alking

W
orking

R
u

n
ti
m

e
 R

e
c
a

ll

Subject 1 Subject 2

(i) Activity class. recall.

Figure 12: Runtime performance comparison for multiple subjects and multiple classification category sets. Subject 2 does
not engage in the cycling, lying down, cleaning, and reading categories, so the corresponding bars are not presented.

ture, and Activity categories, while Subject 2 has respective
total accuracies of 81%, 82%, and 76%. Interestingly, Sub-
ject 1 performs significantly better than Subject 2 since Sub-
ject 2 often performs each activity less cleanly, for example,
working with different lights on in a room or eating in differ-
ent locations, sometimes with friends. Lastly, more complex
activities, which involve a combination of different physi-
cal movements as well as external sounds and light, perform
reasonably well in comparison with more easily classified
activities. Subject 1 has over 90% accuracy for complex ac-
tivities like cleaning, eating, meeting, reading, and watching
TV. Subject 2 also has over 80% accuracy for complex activ-
ities like eating, meeting, and watching TV.

We present a classification timeline for Subject 1 using
the Activity category in Figure 13, comparing PBN classifi-
cations with ground truth. Here, it is apparent that activities
involving movement, such as cycling, walking, and driving,
are classified with few errors. More misclassifications are
seen for more complex activities, such as working confused
with meeting, cleaning, and watching TV, however, as illus-
trated in Figure 12, overall accuracy for each of these com-
plex activities is near or above 90%.

In Figure 14, we show the normalized AdaBoost weights
for each sensor for Subject 1 and the Activity classifica-
tion category as calculated in Equation 3. In addition to the
weights for the total of all classifications, we also compute
the normalized weight of correct decisions made by each

sensor for each activity using runtime data. This figure indi-
cates that AdaBoost is able to select the right sensors to max-
imize training and runtime accuracy and exclude 16 unhelp-
ful sensors (shown in black). The figure also shows heavy
reliance on the light and temperature sensors to distinguish
between indoor and outdoor activities as well as reliance on
the accelerometers to detect activities involvingmotion, such
as walking, driving, and cycling.

8.2 Online Training
In this section, we demonstrate that we can use a small

training dataset, perform online training through retraining
detection, and achieve similar accuracy as if we had a larger
initial training data set. In this section, we focus on the Ac-
tivity classification category and also initialize each runtime
configuration with 10 random training data samples for each
activity. To limit AdaBoost training overhead, we enforce a
maximumof 100 training observations per activity since Fig-
ure 7 demonstrates that this number is more than enough to
achieve maximum runtime accuracy. Since we are using ran-
dom initial training data, we compute the average and stan-
dard deviation for 10 runs of each configuration.

Ground Truth Management. First, we investigate the
retraining window size described in Section 6 for collect-
ing new ground truth in Figure 15. From the figure, larger
window sizes mean significantly less retraining and compu-
tational overhead but also less runtime accuracy. We use a
smaller window size of 30 new data elements per retraining

Cleaning

Cycling

Driving

Eating

Meeting

TV

Walking

Reading

Working

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
c
ti
v
it
y

Time Interval (x10s)

PBN Decision
Ground Truth

Figure 13: PBN decision and ground truth timeline for Subject 1.

Total
Cleaning

Cycling
Driving
Eating

Meeting
TV

Walking
Reading
Working

0
,P

-L
O

C
0

,P
-A

C
C

-X
0

,P
-A

C
C

-Y
0

,P
-A

C
C

-Z
1

,R
S

S
I

1
,A

C
C

-X
1

,A
C

C
-Y

1
,M

IC
1

,L
IG

H
T

1
,T

E
M

P
2

,R
S

S
I

2
,A

C
C

-X
2

,A
C

C
-Y

2
,M

IC
2

,L
IG

H
T

2
,T

E
M

P
3

,R
S

S
I

3
,A

C
C

-X
3

,A
C

C
-Y

3
,M

IC
3

,L
IG

H
T

3
,T

E
M

P
4

,R
S

S
I

4
,A

C
C

-X
4

,A
C

C
-Y

4
,M

IC
4

,L
IG

H
T

4
,T

E
M

P
5

,R
S

S
I

5
,A

C
C

-X
5

,A
C

C
-Y

5
,M

IC
5

,L
IG

H
T

5
,T

E
M

P

 0

 0.1

 0.2

 0.3

N
o

rm
a

liz
e

d
 W

e
ig

h
t

Figure 14: AdaBoost sensor weights per activity.

to balance accuracy and computational overhead. We argue
that roughly 20-40 retraining instances per subject over a two
week period as per Figure 15 is an inconsequential burden,
since the subject must only interact with the phone once per
instance to input his or her current activity.

Next, we show the ideal training data balance restric-
tion δ, from Equation 4, in Figure 16. As δ approaches 2.0,
runtime accuracy increases and the number of retraining in-
stances decreases. We choose a δ = 2.0 to achieve high ac-
curacy and fewer retraining instances, as larger δ values do
not improve accuracy or reduce the number of retraining in-
stances. Furthermore, since we enforce a maximum number
of training observations per activity, larger δ values will have
no effect on the balance of training data among activities.

Comparison with Periodic Retraining. In Figure 17,
we compare the best retraining performancewith our retrain-
ing detection and ground truth management methods to a
naive retraining approach: periodic retraining. We imple-
ment periodic retraining for periods of 100 to 500 intervals,
with each retraining adding 30 new training data elements
to the training data set. We also choose δ = 2.0 for training
data balance among all activities. The figure demonstrates
that PBN with retraining detection achieves high accuracy
for both subjects while periodic retraining either has twice
as many retraining instances for the same accuracy or es-
pecially in the case of Subject 2, lower accuracy for fewer
retraining instances.

We also show that PBN with retraining detection
achieves similar accuracy as periodic retraining but incurs
fewer retraining instances. In Figure 18, we present a time-
line of runtime accuracy and retraining instances for the first
2500 classification intervals comparing PBN to periodic re-
training every 100 classification intervals. Both approaches
have very volatile initial accuracy, but eventually converge

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90 100
 0

 0.2

 0.4

 0.6

 0.8

 1

R
e

tr
a

in
in

g
 I

n
s
ta

n
c
e

s

A
c
c
u

ra
c
y

Retraining Window Size N

Subject 1 Instances
Subject 2 Instances

Subject 1 Accuracy
Subject 2 Accuracy

Figure 15: PBN retraining instances and runtime accuracy
for new data window sizes N = 10-100.

by 2000 intervals. The figures also demonstrate that by re-
ducing the number of retraining instances, PBN retraining
detection consequently reduces the amount of ground truth
logging by the user.

8.3 Sensor Selection
We now evaluate our sensor selection approach in Sec-

tion 7 and demonstrate that we can exclude 30-40% of all
sensors from AdaBoost training, yet achieve similar runtime
accuracy as using no sensor selection. Removing this many
sensors from training is a significant savings in computa-
tional overhead since these sensors no longer have classifiers
trained during each of 300 AdaBoost training iterations.

Using 10 random observations per activity as initial train-
ing data and using online training, we compare each of the
correlation metrics to determine which is the best in terms
of accuracy and sensors excluded. In Figure 19, we depict
the percentage of total sensors excluded from AdaBoost (SS
Only), the percentage of total sensors excluded by sensor se-
lection and AdaBoost training (SS + AdaBoost), and average
runtime accuracy for each sensor selection method.

Figure 19 indicates that both sensor pair raw correlation
and decision correlation exclude 30-40% of all sensors from
training. Both of these methods also have nearly the same ac-
curacy as without sensor selection, indicating that the right
sensors are excluded using these methods. While sensor
cluster sensor selection excludes 50% of sensors from train-
ing for Subject 1, accuracy is also worse. The figure also
shows that in combinationwith AdaBoost training, each sen-
sor selection method excludes more than 10% points more
sensors than with no sensor selection, resulting in additional

 0

 50

 100

 150

 200

 250

 300

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
 0

 0.2

 0.4

 0.6

 0.8

 1

R
e

tr
a

in
in

g
 I

n
s
ta

n
c
e

s

A
c
c
u

ra
c
y

Retraining Balance Restriction δ

Subject 1 Instances
Subject 2 Instances

Subject 1 Accuracy
Subject 2 Accuracy

Figure 16: PBN retraining instances and runtime accuracy
for activity training data balance restriction δ.

 0

 20

 40

 60

 80

 100

 120

None
PBN Detect

Periodic-100

Periodic-200

Periodic-300

Periodic-400

Periodic-500

 0

 0.2

 0.4

 0.6

 0.8

 1

R
e

tr
a

in
in

g
 I

n
s
ta

n
c
e

s

A
c
c
u

ra
c
y

Subject 1 Instances
Subject 2 Instances

Subject 1 Accuracy
Subject 2 Accuracy

Figure 17: Retraining instances and runtime accuracy with-
out retraining, retraining detection, and periodic retraining.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000 2500

S
u
b
j.
 2

A
c
c
u
ra

c
y

Time Interval (x10s)

PBN Accuracy
PBN Retraining

Periodic Accuracy
Periodic Retraining

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000 2500

S
u
b
j.
 1

A
c
c
u
ra

c
y

Figure 18: Runtime timeline with accuracy and
retraining instances.

 0

 20

 40

 60

 80

 100

None Pair DC Cluster DC Raw Corr.
 0

 0.2

 0.4

 0.6

 0.8

 1
%

 S
e
n
s
o
rs

 E
x
c
lu

d
e
d

A
c
c
u
ra

c
y

Subj. 1 SS+AdaBoost
Subj. 2 SS+AdaBoost

Subj. 1 SS Only

Subj. 2 SS Only
Subj. 1 Accuracy
Subj. 2 Accuracy

Figure 19: Sensor selection comparison with
online training.

Figure 20: Power Con-
sumption Evaluation.

energy savings since unused nodes are powered down. We
suggest that using raw correlation is the best approach to sen-
sor selection, as it requires the least computational overhead
of the three metrics, yet excludes a significant number of sen-
sors and maintains high runtime accuracy.

8.4 Application Performance

Table 3: PBN CPU, memory, and power benchmarks.

Mode CPU Memory Power

Idle (No PBN) <1% 4.30MB 360.59mW

Sampling (WiFi) 19% 8.16MB 517.74mW

Sampling (GPS) 21% 8.47MB 711.74mW

Sampling (WiFi) + Train 100% 9.48MB 601.02mW

Sampling (WiFi) + Classify 21% 9.45MB 513.57mW

During our experiments, the wireless motes had battery
life measured in days (4 or 5 days of 8 hour sessions), while
the Android HTC G1 phone was unable to last more than 8
hours without recharging. Here, we focus on evaluating the
phone performance, for its battery lifetime is much shorter.
In Table 3, we measure the CPU, memory, and power con-
sumption of our PBN application to demonstrate that it is
practical for mobile phones. We run each configuration for 5
minutes and show the average for system idle, sampling only
with GPS or WiFi for localization, sampling with AdaBoost
training, and sampling with AdaBoost classification.

Since retraining occurs infrequently, during the vast ma-
jority of system deployment (Sampling + Classify), PBN in-
curs roughly 20% CPU use with memory overhead under
10MB. Most of this overhead is due to the TinyOS Java
libraries sending and receiving packets to and from sensor
motes; we leave it to future work to further optimize these
libraries for mobile devices.

When retraining does occur, it takes between 1 and 10
minutes on the HTC G1, depending on training data size.
With newer hardware (HTC Nexus One), retraining time is
halved under the same conditions. Since PBN retraining is
run as a background process, it can be preempted and has
little impact on performance of other applications, such as
checking email or making a phone call.

Depicted in Figure 20, we evaluate PBN power consump-
tion with the display off using a power meter from Mon-
soon Technologies. In Table 3, we demonstrate that during
sampling and classification, PBN consumes roughly 150mW
in addition to system idle. This consumption is about 1/3
of the additional 450mW consumed by the display when it
is active. GPS-based localization consumes an additional
200mW, however GPS is enabled only when WiFi localiza-
tion is not possible. An additional 90mW is consumed dur-
ing online training, however, as previously mentioned, these
periods are short lived and infrequent.

9 Conclusion and Future Work

In this paper, we present PBN, a significant effort towards
a practical solution for daily activity recognition. PBN pro-
vides a user-friendly experience for the wearer as well as
strong classification performance. Through integration of
Android and TinyOS, we provide a software and hardware
support system which couples the sensing power of on-body
wireless sensors with an easy to use mobile phone applica-
tion. Our approach is computationally appropriate for mo-
bile phones and wireless motes and also chooses the sensors
that maximize accuracy. We improve AdaBoost through on-
line training and enhanced sensor selection, analyzing the
properties of sensors and sensor data to identify helpful and
redundant sensors as well as indicators for when retraining
is needed. We show in our evaluation that PBN can per-
form accurately for classifying a wide array of activities and
postures even when using a limited training dataset coupled
with online training. In future work, we intend to provide an
extensive usability study with a diverse array of subjects as
well as improve energy use on the phone.

10 References
[1] F. Albinali, S. Intille, W. Haskell, and M. Rosenberger. Using

Wearable Activity Type Detection to Improve Physical Activ-
ity Energy Expenditure Estimation. In UbiComp ’10, pages
311–320. ACM, 2010.

[2] M. Azizyan, I. Constandache, and R. Choudhury. Surround-
Sense: Mobile Phone Localization via Ambience Fingerprint-
ing. InMobiCom ’09, pages 261–272. ACM, 2009.

[3] O. Chipara, C. Lu, T. Bailey, and G.-C. Roman. Reliable Clin-
ical Monitoring using Wireless Sensor Networks: Experience
in a Step-down Hospital Unit. In SenSys ’10, pages 155–168.
ACM, 2010.

[4] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Saleh. Bridg-
ing the Gap Between Physical Location and Online Social
Networks. In UbiComp ’10, pages 119–128. ACM, 2010.

[5] A. de Quincey. HTC Hero (MSM7201) USB Host Mode,
2010. http://adq.livejournal.com/95689.html.

[6] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-
S. Ahn, and A. T. Campbell. The BikeNet Mobile Sensing
System for Cyclist Experience Mapping. In SenSys ’07, pages
87–101. ACM, 2007.

[7] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madded, and
H. Balakrishnan. The Pothole Patrol: Using a Mobile Sensor
Network for Road Surface Monitoring. InMobiSys ’08, pages
29–39. ACM, 2008.

[8] Y. Freund and R. Schapire. A Decision-Theoretic General-
ization of On-line Learning and an Application to Boosting.
JCSS, 37(3):297–336, 1997.

[9] R. K. Ganti, P. Jayachandran, T. Abdelzaher, and J. Stankovic.
SATIRE: A Software Architecture for Smart AtTIRE. InMo-
biSys ’06, pages 110–123. ACM, 2006.

[10] H. He and E. Garcia. Learning from Imbalanced Data. IEEE
TKDE, 21(9):1263–1284, 2009.

[11] M. Keally, G. Zhou, G. Xing, and J. Wu. Exploiting Sensing
Diversity for Confident Sensing in Wireless Sensor Networks.
In INFOCOM ’11, pages 1719–1727. IEEE, 2011.

[12] D. Kim, Y. Kim, D. Estrin, and M. Srivastava. SensLoc: Sens-
ing Everyday Places and Paths using Less Energy. In SenSys
’10, pages 43–56. ACM, 2010.

[13] S. Kullback and R. Leibler. On Information and Sufficiency.
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[14] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Han-
naford. A Hybrid Discriminative/Generative Approach for
Modeling Activities. In IJCAI, pages 766–772, 2005.

[15] K. Lorincz, B. Chen, G. Challen, A. Chowdhury, S. Patel,
P. Bonato, and M. Welsh. Mercury: A Wearable Sensor Net-
work Platform for High-Fidelity Motion Analysis. In SenSys
’09, pages 183–196. ACM, 2009.

[16] H. Lu, W. Pan, N. Lane, T. Choudhury, and A. Camp-
bell. SoundSense: Scalable Sound Sensing for People-Centric
Sensing Applications on Mobile Phones. In MobiSys ’09,
pages 165–178. ACM, 2009.

[17] H. Lu, J. Yang, Z. Liu, N. Lane, T. Choudhury, and A. Camp-
bell. The Jigsaw Continuous Sensing Engine for Mobile
Phone Applications. In SenSys ’10, pages 71–84. ACM, 2010.

[18] E. Miluzzo, C. Cornelius, A. Ramaswamy, T. Choudhury,
Z. Liu, and A. Campbell. Darwin Phones: The Evolution
of Sensing and Inference on Mobile Phones. InMobiSys ’10,
pages 5–20. ACM, 2010.

[19] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, H. Lu, and
M. Musolesi. Sensing Meets Mobile Social Networks: The
Design, Implementation and Evaluation of the CenceMe Ap-
plication. In SenSys ’08, pages 337–350. ACM, 2008.

[20] D. Peebles, T. Choudhury, H. Lu, N. Lane, and A. Camp-
bell. Community-Guided Learning: Exploiting Mobile Sen-
sor User to Model Human Behavior. In AAAI, 2010.

[21] T. Pering, P. Zhang, R. Chaudhri, Y. Anokwa, and R. Want.
The PSI Board: Realizing a Phone-Centric Body Sensor Net-
work. In BSN, pages 26–28, 2007.

[22] M. Quwaider and S. Biswas. Body Posture Identification us-
ing Hidden Markov Model with a Wearable Sensor Network.
In Bodynets ’08, pages 19:1–19:8. ICST, 2008.

[23] K. Rachuri, M. Musolesi, C. Mascolo, P. Rentfrow, C. Long-
worth, and A. Acuinas. EmotionSense: A Mobile Phones
based Adaptive Platform for Experimental Social Psychology
Research. In UbiComp ’10, pages 281–290. ACM, 2010.

[24] Z. Ren, G. Zhou, A. Pyles, M. Keally, W. Mao, and H. Wang.
BodyT2: Throughput and Time Delay Performace Assurance
for Heterogeneous BSNs. In INFOCOM ’11, pages 2750 –
2758. IEEE, 2011.

[25] J. Rodgers and W. Nicewander. Thirteen Ways to Look at the
Correlation Coefficient. The American Statistician, 42(1):59–
66, 1988.

[26] K. Srinivasan, M. Jain, J. Choi, T. Azim, E. Kim, P. Levis, and
B. Krishnamachari. The k Factor: Inferring Protocol Perfor-
mance Using Inter-Link Reception Correlation. In MobiCom
’10, pages 317–328. ACM, 2010.

[27] Y. Wang, J. Lin, M. Annavaram, Q. Jacobson, J. Hong, B. Kr-
ishnamachari, and N. Sadeh. A Framework of Energy Effi-
cient Mobile Sensing for Automatic User State Recognition.
InMobiSys ’09, pages 179–192. ACM, 2009.

[28] P. Zappi, C. Lombriser, T. Steifmeier, E. Farella, D. Roggen,
L. Benini, and G. Troster. Activity Recognition from On-
Body Sensors: Accuracy-Power Trade-Off by Dynamic Sen-
sor Selection. In EWSN ’08, pages 17–33, 2008.

[29] R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma. ZiFi: Wire-
less LAN Discovery via ZigBee Interference Signatures. In
MobiCom ’10, pages 49–60. ACM, 2010.

[30] Z.-H. Zhou, J. Wu, and W. Tang. Ensembling Neural Net-
works: Many Could Be Better Than All. Artificial Intelli-
gence, 137:239–263, 2002.

[31] T. Zhu, Z. Zhong, T. He, and Z. Zhang. Exploring Link Cor-
relation for Efficient Flooding in Wireless Sensor Networks.
In NSDI ’10. USENIX, 2010.

	Introduction
	Related Work
	System Overview and Architecture
	Application Requirements
	PBN Hardware and Application
	Unification of Android and TinyOS
	Android App

	PBN Architecture
	Experimental Setup

	AdaBoost Activity Recognition
	Retraining Detection
	Sensor Data Discrimination Analysis
	Consensus-based Detection

	Ground Truth Management
	Sensor Selection for Efficient Classification
	Identifying Sensing Redundancies
	Adaptive Runtime Sensor Selection

	Evaluation
	Classification Performance
	Online Training
	Sensor Selection
	Application Performance

	Conclusion and Future Work
	References

