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Introduction

e Smartphones already have several on-board sensors
(e.g., GPS, accelerometer, compass and microphone)

e But, there are many situations where the smartphone
aggregates data from a variety of other specific (a)
external medical (e.g., ECG, EEG, Sp02) or (b)
environmental (e.g., temperature, pollution) sensors,

using a Personal Area Network (PAN) technology, such
as BluetoothTM,WIFI direct etc.



Telehealth Scenario

Alerts can
notify
emergency
services or
caregiver

Wearable sensors transmit
vitals to cell phone via wireless | Phone runs a complex event
(eg. bluetooth) processing (CEP) engine
with rules for alerts

IF Avg(Window(HR)) > 100
AND Avg(Window(Acc)) <2
THEN SMS(doctor)




Continuous/Streaming Evaluation

if Avg(S2, 5)>20 AND S1<10 AND Max(S3,10)<4 then email(doctor).

CEP Engine Algorithm

n wl
9]2{5[6 [9 A2 E

When x; of Si arrives
Enqueue x, into W,
If Q is true,
Then output alert
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Energy Consumption

Wifi or Bluetooth
SPO2

Sensor: Phone: Phone:
transmits data receives data evaluate queries



Research Question

Is there a better way to perform such
complex event processing that

* Minimizes energy consumption at the
phone, and/or

» Maximizes operational lifetime of the
system.



Key ldea

» This work explores an approach to reduce the energy footprint of
such continuous context-extraction activities, primarily by

reducing the volume of sensor data that is transmitted
wirelessly over the PAN interface between a smartphone
and its attached sensors, without compromising the
fidelity of the event processing logic.

* We aim to replace the “push” model of sensor data transmission,

> where the sensors simply continuously transmit their samples to the
smartphone,

e Use “phone-controlled dynamic pull” model, where the
smartphone selectively pulls only appropriate subsets of the sensor
data streams.



Sensor Data Acquisition

e Constant sampling rate

3D acc. - e 802.11 (wifi) uses 2 power
EMG, GSR. @ modes: active, idle

—
— e Bluetooth has 3 modes: active,

Bluetooth Idle’ SIeeP-
Or 80211 e Time needed to switch modes
* Energy spend to switch




Pulling N Tuples from Sensor

¢ |dle mode consumes

Active

P.mW

Active mode
consumes P, mW

Sensor sampling rate

is f Hz

A sample is S bits
Bandwidth is B Mbps

N/f

Data generation rate
R=f*S

IEEE 802.11 Bluetooth 2.0+4EDR
Fa 947 mW 60mW
F; 231 mW 3 mW
B 34 Mbps 1 Mbps
Eowiteh 14 plJoule —
Thidle 100 ms -
Tewitch — 6 msec

Accordingly, it follows that the total transmission time for the

N samples, generated over a time interval of % equals

NS

B




IEEE 802.11:

1) IEEE 802.11: Commercial IEEE 802.11 radios can op-
erate in two states—a normal ‘active’ mode (when the radio
interface receives or transmits packets) and a Power Save Mode
(PSM), where the radio periodically wakes up to check if there
any pending transmissions or receptions. The following are two
key relevant properties associated with 802.11 hardware:

« Due to the switching characteristics of the radio hardware,
there is typically a lower bound on the minimal idle time
T'h;a., below which the radio cannot enter the PSM mode
(typically, this is around 100 ms) [9].

o There is a fixed, duration-independent switching energy
E..iten spent when a radio transitions from the PSM to
the ‘active’ mode.

P—@*(%—NES)

E, = + P, + Y22+ Eowiten if% — 855> Thige

P, * % otherwise

(D)



Bluetooth:

the smartphone, which primarily receives data from an external
sensor, we denote its active energy consumption P, as the
energy spent in actively receiving data. We consider the Blue-
tooth version 2.0+ EDR and assume, for analytical tractability,
that a single sensor device attaches as a slave to the master
located on the smartphone. While the low-power mode results
in significantly low power consumption, note that there is a
latency T..-n involved in switching from the non-associated
low-power mode to the associated-active mode. Accordingly,
any data transfer duration would consist of the total time spent
in transfer Nés , plus the additional time Ts.i¢cr. Accordingly,
the total energy consumed in transmitting the sensor stream in

batches of N samples is given by:

N NxS N xS
Et:Pz'*(f_ B _Tswitch)—l_Pa*( B

—I_'Tsw*itch) (2)
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Batch size of stream transmission (secs)

ref)resentatﬁe accelerometer sensor, with S = 192 bits/sample
and f = 100 Hz. It is clear that the choice of the batch size
N, for a given radio technology, has a significant effect on the

Energy/sample (microJoules)

The Impact of Batched Transmissions on the
Transmission Energy Overhead per Sample

—f— Energy
(mJ)/sample
for IEEE
302.11

o

== Energy(micr
ol)/sample
for
Bluetooth



ACQUA

* Introducing a new continuous stream
processing model called ACQUA
(Acquisition Cost-Aware Query Adaptation)

* Which (a) first learns the selectivity
properties of different sensor streams

 and then (b) utilizes such estimated
selectivity values to modify the sequence in
which the smartphone acquires data from
the sensors.



Normalized acquisition cost

We observe that the choice of the best acquisition sequence
should take into account both (i) the acquisition energy cost and
(ii) the selectivity properties.

We should ideally retrieve the data chunk from the sensor that
should have a (i) low acquisition cost and (ii) also a high
likelihood of helping to terminate the predicate evaluation.

For the conjunctive query, we note that a single ‘FALSFE’
predicate implies that the complex predicate is FALSE and that
the subsequent steps of predicate evaluation can be aborted.

Accordingly, in our formulation, we first compute the
‘normalized acquisition cost’ (NAC) as a ratio of the acquisition
cost normalized by the ‘predicate being FALSE’ probability



Continuous/Streaming Evaluation

if Avg(S2, 5)>20 AND S1<10 AND Max(S3,10)<4 then email(doctor).

CEP Engine Algorithm

n wl
9]2{5[6 [9 A2 E

When x; of Si arrives
Enqueue x, into W,
If Q is true,
Then output alert
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Query (1)

» Consider a hypothetical activity/wellness tracking
application that seeks to detect an episode where an
individual

(i) walks for 10 minutes,AND

e (ii) while being exposed to an ambient temperature

(95th percentile over the 10 minute window) of greater
than 80F AND

e (iii) while exhibiting an AVERAGE heart rate (over a 5
minute window) of > 80 beats/min.



* Assume that this application uses an
external wrist-worn device, equipped
with

* accelerometer (sensor S|, sampling at 100
samples/sec),

* heart rate (52, sampling at 5 sample/sec)
and

» temperature (S3, sampling at 10
sample/sec) sensors.



Probability of Success

Consider a the probability of the given conditions
occurring at that time be as follows;

walks for 10 minutes, -- 0.95 (success)

while being exposed to an ambient temperature (95th
percentile over the 10 minute window) of greater than

80F, -- 0.05 (success)

while exhibiting an AVERAGE heart rate (over a 5
minute window) of > 80 beats/min. = 0.2 (success)



Energy Consumption

Assume the sensor energy costs as follows;

walks for 10 minutes, -- E(SI) = 0.02n)/sample

while being exposed to an ambient temperature (95th

percentile over the 10 minute window) of greater than
80F, -- E(S2) = 0.02nj/sample

while exhibiting an AVERAGE heart rate (over a 5
minute window) of > 80 beats/min. E(S3) =
0.0In)/Sample



Calculation:
NAC (Normalized Acquisition Cost)

> = Sample rate * Energy/Failure Rate

» Considering Conjunctive Query (AND)
> NAC(SI) = 100*%0.02/0.05 = 40
> NAC(S2) = 5%0.02/0.95 = 0.105
- NAC(S3) = 10%0.01/0.8 = 0.125
> Best Sequence = {52, 53,51}



Query (2)

» Consider a hypothetical activity/wellness tracking
application that seeks to detect an episode where an
individual

e (i) walks for 10 minutes, OR

e (ii) while being exposed to an ambient temperature

(95th percentile over the 10 minute window) of greater
than 80F OR

e (iii) while exhibiting an AVERAGE heart rate (over a 5
minute window) of > 80 beats/min.



Probability of Success

Consider a the probability of the given conditions
occurring at that time be as follows;

walks for 10 minutes, -- 0.95 (Success)

while being exposed to an ambient temperature (95th
percentile over the 10 minute window) of greater than

80F, -- 0.05 (Success)

while exhibiting an AVERAGE heart rate (over a 5
minute window) of > 80 beats/min.= 0.2



Normalized acquisition cost

e Considering Disjunctive Query (OR)
- NAC(SI) = 100%0.02/0.95 = 2.1 |
> NAC(S2) = 5%0.02/0.05 = 2
- NAC(S3) = 10%0.01/0.2 = 0.5
> Best Sequence = {S3,52,S1}
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System Architecture

The heart of the ACQUA framework are the Stream Selectiv-
ity Tracker (S5T) and the Adaptive Stream Retrieval Subsystem
(ASRS) components. The SST 1s responsible for computing
and establishing the selectivity properties of different sensor
streams—in effect, computing the likely probability distribution
of the values of each individual stream elements. To compute

these values, ACQUA requires the SST to interface with
the embedded Stream Processing Engmne (SPE) to obtain the
empirical observations of how the stream elements (individu-
ally or time-windows) satisfy different query predicates. The
ASES component i1s responsible for dynamically computing
the sequence in which different (batches of) stream elements
are retrieved by the smartphone from the locally-connected
sensor. Note that the Stream Processing Engine (SPE) and the
Sensor Data Adapter are pre-existing and non-ACQUA specific
components needed to perform the basic functionality of a)




System Architecture
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System Architecture

To algorithmically determine the best evaluation sequence, the
ASRS also requires the knowledge of the energy per sample
pmﬁlﬂ assoclated with different sensor devices and radios—it
receves these specifications from the corresponding Sensor

Data Adapter. As mentioned before, the ACQUA framework
requires some degree of embedded data processing and storage

capability on each individual sensor. In particular, the sensor-
resident ACQUA components include the Data Cache, which
acts as a temporary local repository for the stream tuples
that may or may not be eventually pulled by the smartphone,
and the Selective Data Transmitter, which 1s responsible for
receving requests for specific subsets of the stream tuples and
for transmitting (in batches) these requested subsets.




System Architecture

sensor. Note that the Stream Processing Engine (SPE) and the
Sensor Data Adapter are pre-existing and non-ACQUA specific
components needed to perform the basic functionality of a)

performing the appropriate query execution on the incoming
data streams and b) interfacing with the sensor to retrieve the

appropnate sensor samples. 1he Query specification Subsystem

& SAUFSRT T &

appropriate sensor samples. The Query Specification Subsystem
is another ACQUA component that 1s responsible for receiving
the various query specifications (associated with multiple ap-
plications) and for compiling them into a common Predicate
Evaluation Graph. This graph is the data structure used by
the ASES algorithms to determine the preferred sequence in

_which data 1s polled from individual sensor streams—the formal

model for this graph will be presented shortly (in Section [TV).




Query Specification and Representation

* We consider complex stream of queries

* Expressed as arbitrary conjunction or disjunction

predicates over a set of stream-oriented SQL aggregate
(e.g., MAX or AVG) or

e user defined functions,

e defined over a time-window of each individual sensor
stream.

Ql: AVG(A,5)<70 AND ( MAX(B,4)>100 OR C<3 ),
Q2: ( AVG(A,5)<70 AND MAX(B,4)>100) OR
(C'<3 AND Speed(D,2) < 1.0),
Q3: ( AVG(A,5)<70 AND MAX(B,4)>100) OR
(

C<3 AND MIN(B.7) < 80 ).



Query Specification and Representation

Q = Predicate |[{ Q AND Q) |(QOR Q)
Predicate = AggFunc ( SExp, w ) Cmplp Const |

"€ Le
HreamExrp dww Numeric
SQL function Applied over a time window (t-w, t) Sensor stream

Q1: AVG(A,5)<70 AND ( MAX(B,4)>100 OR C<3 ),
Q2: ( AVG(A,5)<70 AND MAX(B,4)>100) OR
( C<3 AND Speed(D,2) < 1.0),
Q3: ( AVG(A,5)<70 AND MAX(B,4)>100) OR
(C<3 AND MIN(B,7) < 80 ),



Query Trees

All such queries are compiled into a uniform Query
Tree representation,

Internal node is associated with a boolean conjunction
or disjunction operator.

leaf node is associated with a predicate.

This query tree provides us the unifying application-
independent query representation framework;

hence, the specific ASRS algorithms are defined in
terms of such a query tree.



Query Trees

Ql: AVG(A,5)<70 AND ( MAX(B,4)>100 OR C<3),

AND
=
"
//ffx\x\ fffff qah&&ﬂ“mx

AVGAS)KTO  OR AND AND
MAX(B4)>100  C<3 AVG(AE)<T0  MAX(B4)>100  C<3 Speed(D,2)<1.0

(a) (b)

Q2: ( AVG(A,5)<70 AND MAX(B,4)>100) OR
( C'<3 AND Speed(D.2) < 1.0),

/\

AND AND

AVG(AS5)T0 MAX(BA)100  C<3  MIN(B7)<B0
(c)
Q3: ( AVG(A,5)<70 AND MAX(B,4)>100) OR
(C<3 AND MIN(B,7) < 80 ),



Query Evaluation period (o)

We consider queries defined over tumbling windows of the individual sensor
data streams.

Formally, this implies the notion of a ‘time shift’ value ®(Q) associated with a
query Q, such that the query is evaluated repeatedly at the time instants t =
(0; 20; 3m;:::).

Note that the time-shift value  is distinct from the time windows

associated with the individual predicates and operators of the

query Q.

For example, a specific query may be defined to perform an AVG(5) operation
i.e.,an average of the last 5 seconds worth of sensor data with ® = 7;

in this case, the query would be evaluated at t = 0 over the stream tuples
belonging to the time window (-5; 0), and then again at time t = 7 over the

time window (2, 7).



Relationship between query evaluation period,
predicate time windows, and stream rate
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AND

Example: w=3 ek o
| 2 A3
MAX(B,4)>100  C<3

e Time 8:acquisition cost for A becomes
cheaper, because some tuples are already

in buffer
Acquisition cost depends on state
of the buffer at time t
AVG(A,5 * (* ) ( Y (* ) C* J s ) ( ) (* ) %* j *

S CORY e BV o~ NG s & NG iy o EEPED
C****@* *Q* *@* *Q* *@* *Q* *@* *Q**

I | | | | I | | | | | | | | I | | | | | | I I I I I I I > tImE

The acquisition cost for a particular sensor stream may be different at different
evaluation instants,

Depending upon the data tuples that may have been acquired during prior
event processing.
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ASRS sequential retrieval Algorithm:

The algorithm first computes the lowest expected cost of evaluating different
portions of the query sub-trees, and thereby determines (using the recursive
Algorithm CALCACQUISITIONCOST) the optimal sequence for retrieving the
data from the different sensor streams.

Subsequently, the actual query is evaluated using the recursive Algorithm 3
EVALUATEQUERY, which essentially follows the specified sequence to evaluate
the sub-trees

Algorithm 1 PROCESSQUERY(q, P,w)

Input: Query tree g, probability P of each subquery evaluating to
true/false, evaluation period w
Output: Alert Stream

I: loop

2: t «— current time

3 CALCACQUISITIONCOST(q, t, P, C")

4 if EVALUATEQUERY(q.t, P, (") = true then

5: output alert tuple

6 sleep w seconds




Algorithm 2 CALCACQUISITIONCOST(q, t, P,C)

Input: Query tree ¢, current time {, probability function P, data
acquisition cost function C'(-)
Output: Updates cost function C'(-)

I: if g 1s a predicate node then
2. let s be the stream that g operates on, w be the window size
of g, ts be the latest time the buffer for s was updated.

3 (C(gq) < Calculate cost for acquiring the samples in time
interval (max(t —w,t.), t] for stream s using Eqnmm' Eqn

4: else

5: CALCACQUISITIONCOST(qg.left.t, P,C")

6:  CALCACQUISITIONCOST(qg.right,t, P, C)

7. if g.op = AND then

8: C'(g) — Eqgn.

9:  else

10 C'(g) — Eqgn.




IEEE 802.11:

1) IEEE 802.11: Commercial IEEE 802.11 radios can op-
erate in two states—a normal ‘active’ mode (when the radio
interface receives or transmits packets) and a Power Save Mode
(PSM), where the radio periodically wakes up to check if there
any pending transmissions or receptions. The following are two
key relevant properties associated with 802.11 hardware:

« Due to the switching characteristics of the radio hardware,
there is typically a lower bound on the minimal idle time
T'h;a., below which the radio cannot enter the PSM mode
(typically, this is around 100 ms) [9].

o There is a fixed, duration-independent switching energy
E..iten spent when a radio transitions from the PSM to
the ‘active’ mode.

P—@*(%—NES)

E, = + P, + Y22+ Eowiten if% — 855> Thige

P, * % otherwise

(D)



Bluetooth:

the smartphone, which primarily receives data from an external
sensor, we denote its active energy consumption P, as the
energy spent in actively receiving data. We consider the Blue-
tooth version 2.0+ EDR and assume, for analytical tractability,
that a single sensor device attaches as a slave to the master
located on the smartphone. While the low-power mode results
in significantly low power consumption, note that there is a
latency T..-n involved in switching from the non-associated
low-power mode to the associated-active mode. Accordingly,
any data transfer duration would consist of the total time spent
in transfer Nés , plus the additional time Ts.i¢cr. Accordingly,
the total energy consumed in transmitting the sensor stream in

batches of N samples is given by:

N NxS N xS
Et:Pz'*(f_ B _Tswitch)—l_Pa*( B

—I_'Tsw*itch) (2)



Expected cost

PorAND - p(gleft) x [Clgleft) + Cg.right)]
Clay = 4 FPCaleft) < Claleft if LR
# P(q.right) x [C(q.left) + C(q.right)]
| +P(—q.right) x C(q.right) if RL
(3)
For OR

( P(—q.left) x [C(q.left) + C(q.right)]

+P(q.left) x C(q.left) if LR
P(—q.right) x [C(q.left) + C(q.right)]
+P(q.right) x C(q.right) if RL

“‘ (4)



Algorithm 3 EVALUATEQUERY(q, t, P, C)

Input: Query tree g, current time ¢, probability function P, data
acquisition cost function C'(-)
Output: Truth value of g

I: if g is a predicate node then

23:

let s be the stream that ¢ operates on, w be the window size
of g, t, be the latest time the buffer for s was updated.
Acquire the samples in time interval (max(f — w,t.),t] for
stream s.

Update C'(-) if s is used in multiple predicates

truthval < evaluate predicate g

return truthval

else

if g.op = AND then
le ftshortcircuits — P(—q.left)
rightshortcircuits «— P(—q.right)
shorteircuitval «— false

else
le ftshortcircuits — P(q.left)
rightshortcircuits < P(q.right)
shorteircuitval «— true

evalorder — (q.left, q.right)
. Cig.left) Cg.right)
if Ieftshortczrcu:ts htshortcircuits then

evalorder — qng t g.le ft)
for all ¢ € evalorder do
truthval «— EVALUATEQUERY(q',t, P,C)
if truthval = shortcircuitval then
return truthval
return —shortcircuitval




Simulation Setup

Query
tree » True
ACQUA [False
|.Sensor stream »
(synthetic trace)

2. Sensor tuples are
generated from probability
distribution

Results are presented by averaging over 5 one hour
long traces



Simulation Data & Query

» Data streams generated using
independent Gaussian distribution
> SPO2 ~ N(96,4), 3 Hz, 3000 bits
> HR ~ N(80,40), 0.5 Hz, 32 bits
> Accel ~ N(0,10), 256 Hz, 196 bits

AVG(SPO2, 5s) < 98%
AND
SPREAD(Acc, 10s) < 2O AND
AVG(HR, 10s) < 75 OR m
AVG(SPO2, 5s) < 95%

SPREAD(Acc, 10s) > 4g>$ AND
AVG(HR, 10s) > 100



Intuitively, this query generates alerts either if the user’s Sp02
values drop below 98% while the user i1s resting, or if the

Sp02 values drop below 95% th]e the individual is engaged in
vigorous activity (e.g., running). The accelerometer and Sp02

sampling rates and data sizes are adapted from Fig. EL while
the heart rate sensor has a sampling frequency of 0.5 Hz and a
sample size of 32 bits. We experimented with both 802.11 and




Simulation Setup

e Naive
o Upload data from all sensors acquired in batches to SPE

e ASRS-static

o Evaluation order determined once at initialization and never
changes

|. It computes an optimal sequence only once (at the beginning of the
simulation) based on the selectivity characteristics and the
communication costs,

2. then applies the EvaluateQuery() procedure to evaluate the query
tree at successive ‘time shift’ instants.

Accordingly, it does not perform the dynamic update of NAC values,
based on the dynamically evolving state of the query processing state.

e ASRS-dynamic
° Evaluation order determined at each w time period.

Dynamic modification of the acquisition cost functions after each
data retrieval and evaluation, to account for

(a) the stream tuples already present in the smartphone buffer and
(b) the already-resolved (‘shortcircuited’) query subtrees.
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Evaluation: Fixed Time-Shift Value for Each Stream

Figures [7(a)| and [7(b)| plot the total data acquisition energy
(in Joules, over the 1 hour evaluation duration) for each of
the three strategies, for the case of Bluetooth and 802.11-based
PAN technologies respectively. These results correspond to a
query with a time-shift value of w = 10secs. It 1s easy to

see that our approach of sequential retrieval and evaluation of
individual sensor streams, while taking into account their re-
spective acquisition costs and selectivity characteristics, results
in significant energy savings, compared to the naive approach
where the data is pushed (albeit in batches) from each sensor.

In particular, for 802.11 based transmissions, ASRS-static and
ASRS-dynamic result in ~ 50% and ~ 70% reduction in energy
overheads compared to the Naive scheme. For Bluetooth-based
data transfers, the energy reductions are equally dramatic, with
ASRS-static and ASRS-dynamic both achieving ~ 70% savings
in energy overheads.




Evaluation: Fixed Time-Shift Value for Each Stream

The results also demonstrate the benefits of ASRS-dynamic:

by taking the dynamic state of a query and the contents of the
data buffer into account, this approach is able to further reduce

the energy overhead, comparcd (0 the stalic counterpart. Ihe

gains are, however, not as dramatic for the Bluetooth interface
(even though ASRS-dynamic has significantly lower variance

Figures [/(c)| and |/(d)| similarly plot the total data overhead
(in bytes). While the ASRS algorithms clearly require an order-
of-magnitude less communication than the Naive counterpart,
it is interesting to note that the energy savings are not directly
proportional to the communication overheads. For example.
with Bluetooth, ASRS-dynamic requires about 50% fewer bytes
of sensor data than ASRS-static, but has only a ~ 10% lower
energy overhead.




Evaluation:Varying Time-Shift Values
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The relative gains are fairly independent of the time-shift values

data tuples. Nonetheless, the ASRS-dynamic algorithm is able
to outperform the static variant, by better adapting its data

acquisition sequence to take account of the intermediate query
evaluations state (i.e., by eliminating data acquisition for those
sub-trees that have already been ‘short-circuited”).




Functional Requirements ()

* Accommodate Heterogeneity in Sensor Data Rates,
Packet Sizes and Radio Characteristics
> Sensor data streams exhibit significant heterogeneity in terms of
o (i) data rates (sensor samples/sec)

o (ii) data sizes (bytes/sample)

o (iii) energy cost with radio interfaces

Sensor Type Bits/ Channels/ Typical
sensor device sampling
channel frequency (Hz)

GPS 1408 1 1 Hz

SpO2 3000 1 3 Hz
ECG (cardiac) 12 6 256 Hz
Accelero-meter 64 3 100 Hz
Temperature 20 1 256 Hz

Communication energy cost depends on sensor type as well as specific wireless

radio implementation




Functional Requirements (2)

Adapt to Dynamic Changes in Query Selectivity
Properties:

To apply ACQUA, it is extremely important to have correct
estimates for the query selectivity properties of different sensor
data streams.

However, we need to keep in mind that these selectivity
properties are not only individualized, but also vary dramatically
over time due to changes in an individual’s activity.

For example, the likelihood of HR samples exceeding 80 might be
very low when a person is engaged in office activity, but will be
very high when the person is walking or working out in the gym.

Accordingly, the ACQUA framework must be capable of using
context to accurately predict (albeit statistically) the selectivity
characteristics of different sensor streams.



Functional Requirements (3)

Take into Account other Objectives Besides Energy
Minimization:

Operating with a heterogeneous set of sensors implies that
energy minimization, while important, might not be the only
objective of interest to a user of ACQUA.

For example, it is possible that one of the N sensors might have
very little battery capacity

In such a case, to extend the overall operational lifetime of the
context detection activity,

preferentially retrieve and process data from an alternative
sensor, even though the selectivity characteristics of the
alternative sensor may not be the highest.



Functional Requirements (4)

Support Multiple Queries and Heterogeneous Time
Window Semantics:

Sensor-based context extraction is becoming an intrinsic feature of a
variety of smartphone applications that may be executing concurrently.

Different applications may specify distinct predicates over a shared set of
sensor streams

for example, the accelerometer sensor may be used to both evaluate step-
counts in a wellness monitoring application and to understand the user’s
current mode of transport in a separate social networking application.

The query predicates would differ not just in their predicate logic, but also
in the time windows over which the stream query semantics are expressed.

Accordingly, ACQUA must support a unified application-independent query
representation framework that is able to optimize the evaluation sequence
across all concurrently executing stream queries.



