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Introduction

 Smartphones already have several on-board sensors 

(e.g., GPS, accelerometer, compass and microphone)

 But, there are many situations where the smartphone 

aggregates data from a variety of other specific (a) 

external medical (e.g., ECG, EEG, Sp02) or (b) 

environmental (e.g., temperature, pollution) sensors, 

using a Personal Area Network (PAN) technology, such 

as BluetoothTM, WIFI direct etc.



Telehealth Scenario

SPO2

ECG

HR

Temp.

Acc.

...

IF Avg(Window(HR)) > 100

AND Avg(Window(Acc)) < 2

THEN SMS(doctor)

Wearable sensors transmit 

vitals to cell phone via wireless 

(eg. bluetooth)

Phone runs a complex event 

processing (CEP) engine 

with rules for alerts

Alerts can 

notify 

emergency 

services or 

caregiver
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Continuous/Streaming Evaluation
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if Avg(S2, 5)>20 AND S1<10 AND Max(S3,10)<4 then email(doctor).
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Algorithm

When xi of Si arrives

Enqueue xi into Wi

If Q is true, 

Then output alert

Eval

Query

“Push” 

model



Energy Consumption
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Wifi or Bluetooth

Sensor: 

transmits data

Phone: 

receives data

Phone: 

evaluate queries



Research Question

Is there a better way to perform such 

complex event processing that

 Minimizes energy consumption at the 

phone, and/or

 Maximizes operational lifetime of the 

system.
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Key Idea

 This work explores an approach to reduce the energy footprint of 
such continuous context-extraction activities, primarily by 

reducing the volume of sensor data that is transmitted 
wirelessly over the PAN interface between a smartphone
and its attached sensors, without compromising the 
fidelity of the event processing logic. 

 We aim to replace the “push” model of sensor data transmission, 

◦ where the sensors simply continuously transmit their samples to the 
smartphone, 

 Use “phone-controlled dynamic pull” model, where the 
smartphone selectively pulls only appropriate subsets of the sensor 
data streams.



Sensor Data Acquisition 

 Constant sampling rate

 802.11 (wifi) uses 2 power 
modes: active, idle

 Bluetooth has 3 modes: active, 
idle, sleep.

 Time needed to switch modes

 Energy spend to switch

Bluetooth

Or 802.11

3D acc.

ECG, 

EMG, GSR
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Pulling N Tuples from Sensor
 Idle mode consumes 

Pi mW

 Active mode 
consumes Pa mW

 Sensor sampling rate 
is f Hz

 A sample is S bits

 Bandwidth is B Mbps
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IEEE 802.11:



Bluetooth:



The Impact of Batched Transmissions on the 

Transmission Energy Overhead per Sample



ACQUA

 Introducing a new continuous stream 
processing model called ACQUA 
(Acquisition Cost-Aware Query Adaptation) 

 Which (a) first learns the selectivity 
properties of different sensor streams 

 and then (b) utilizes such estimated 
selectivity values to modify the sequence in 
which the smartphone acquires data from 
the sensors.



Normalized acquisition cost

 We observe that the choice of the best acquisition sequence 
should take into account both (i) the acquisition energy cost and 
(ii) the selectivity properties. 

 We should ideally retrieve the data chunk from the sensor that 
should have a (i) low acquisition cost and (ii) also a high 
likelihood of helping to terminate the predicate evaluation. 

 For the conjunctive query, we note that a single ‘FALSE’ 
predicate implies that the complex predicate is FALSE and that 
the subsequent steps of predicate evaluation can be aborted. 

 Accordingly, in our formulation, we first compute the 
‘normalized acquisition cost’ (NAC) as a ratio of the acquisition 
cost normalized by the ‘predicate being FALSE’ probability



Continuous/Streaming Evaluation
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if Avg(S2, 5)>20 AND S1<10 AND Max(S3,10)<4 then email(doctor).
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Query (1)

 Consider a hypothetical activity/wellness tracking 
application that seeks to detect an episode where an 
individual

 (i) walks for 10 minutes, AND

 (ii) while being exposed to an ambient temperature 
(95th percentile over the 10 minute window) of greater 
than 80F,  AND

 (iii) while exhibiting an AVERAGE heart rate (over a 5 
minute window) of > 80 beats/min.



 Assume that this application uses an 

external wrist-worn device, equipped 

with 

 accelerometer (sensor S1, sampling at 100 

samples/sec), 

 heart rate (S2, sampling at 5 sample/sec) 

and 

 temperature (S3, sampling at 10 

sample/sec) sensors.



Probability of Success

 Consider a the probability of the given conditions 

occurring at that time be as follows;

 walks for 10 minutes, -- 0.95 (success)

 while being exposed to an ambient temperature (95th 

percentile over the 10 minute window) of greater than 

80F,  -- 0.05 (success)

 while exhibiting an AVERAGE heart rate (over a 5 

minute window) of > 80 beats/min. = 0.2 (success)



Energy Consumption

 Assume the sensor energy costs as follows;

 walks for 10 minutes, -- E(S1) = 0.02nJ/sample

 while being exposed to an ambient temperature (95th 

percentile over the 10 minute window) of greater than 

80F,  -- E(S2) = 0.02nj/sample

 while exhibiting an AVERAGE heart rate (over a 5 

minute window) of > 80 beats/min. E(S3)  = 

0.01nJ/Sample



Calculation:
NAC (Normalized Acquisition Cost) 

◦ =  Sample rate * Energy/Failure Rate

 Considering Conjunctive Query (AND)

◦ NAC(S1) = 100*0.02/0.05 = 40

◦ NAC(S2) = 5*0.02/0.95 = 0.105

◦ NAC(S3) = 10*0.01/0.8 = 0.125

◦ Best Sequence = {S2, S3, S1}



Query (2)

 Consider a hypothetical activity/wellness tracking 
application that seeks to detect an episode where an 
individual

 (i) walks for 10 minutes, OR

 (ii) while being exposed to an ambient temperature 
(95th percentile over the 10 minute window) of greater 
than 80F,  OR

 (iii) while exhibiting an AVERAGE heart rate (over a 5 
minute window) of > 80 beats/min.



Probability of Success

 Consider a the probability of the given conditions 

occurring at that time be as follows;

 walks for 10 minutes, -- 0.95 (Success)

 while being exposed to an ambient temperature (95th 

percentile over the 10 minute window) of greater than 

80F,  -- 0.05 (Success) 

 while exhibiting an AVERAGE heart rate (over a 5 

minute window) of > 80 beats/min. = 0.2



 Considering Disjunctive Query (OR)

◦ NAC(S1) = 100*0.02/0.95 = 2.11

◦ NAC(S2) = 5*0.02/0.05 = 2

◦ NAC(S3) = 10*0.01/0.2 = 0.5

◦ Best Sequence = {S3, S2, S1}

Normalized acquisition cost
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Query Specification and Representation

 We consider complex stream of queries 

 Expressed as arbitrary conjunction or disjunction 

predicates over a set of stream-oriented SQL aggregate 

(e.g., MAX or AVG) or 

 user defined functions, 

 defined over a time-window of each individual sensor 

stream.



Query Specification and Representation

SQL function Applied over a time window (t-w, t) Sensor stream 



Query Trees

All such queries are compiled into a uniform Query 
Tree representation, 

Internal node is associated with a boolean conjunction 
or disjunction operator.

leaf node is associated with a predicate. 

This query tree provides us the unifying application-
independent query representation framework; 

hence, the specific ASRS algorithms are defined in 
terms of such a query tree. 



Query Trees



Query Evaluation period ()

We consider queries defined over tumbling windows of the individual sensor 

data streams.

Formally, this implies the notion of a ‘time shift’ value (Q) associated with a 

query Q, such that the query is evaluated repeatedly at the time instants t = 

(; 2; 3; : : :).

Note that the time-shift value  is distinct from the time windows

associated with the individual predicates and operators of the

query Q.

For example, a specific query may be defined to perform an AVG(5) operation 

i.e., an average of the last 5 seconds worth of sensor data with  = 7; 

in this case, the query would be evaluated at t = 0 over the stream tuples 

belonging to the time window (-5; 0), and then again at time t = 7 over the

time window (2, 7).



Relationship between query evaluation period, 

predicate time windows, and stream rate



Example: ω=3

 Time 8: acquisition cost for A becomes 

cheaper, because some tuples are already 

in buffer

1 2 3

Acquisition cost depends on state 

of the buffer at time t
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The acquisition cost for a particular sensor stream may be different at different 

evaluation instants, 

Depending upon the data tuples that may have been acquired during prior 

event processing.



System Architecture



ASRS sequential retrieval Algorithm:
The algorithm first computes the lowest expected cost of evaluating different 

portions of the query sub-trees, and thereby determines (using the recursive 

Algorithm CALCACQUISITIONCOST) the optimal sequence for retrieving the 

data from the different sensor streams. 

Subsequently, the actual query is evaluated using the recursive Algorithm 3 

EVALUATEQUERY, which essentially follows the specified sequence to evaluate 

the sub-trees





IEEE 802.11:



Bluetooth:



Expected cost
For AND

For OR





Simulation Setup
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ACQUA

Query 

tree

1. Sensor stream

(synthetic trace)

2. Sensor tuples are 

generated from probability 

distribution 

True

/False

Results are presented by averaging over 5 one hour

long traces



Simulation Data & Query

 Data streams generated using 
independent Gaussian distribution

◦ SPO2 ~ N(96,4), 3 Hz, 3000 bits

◦ HR ~ N(80,40), 0.5 Hz, 32 bits

◦ Accel ~ N(0,10), 256 Hz, 196 bits
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AVG(SPO2, 5s) < 98%

SPREAD(Acc, 10s) < 2g

AVG(HR, 10s) < 75

AVG(SPO2, 5s) < 95%

AVG(HR, 10s) > 100

SPREAD(Acc, 10s) > 4g

AND
AND

AND
AND

OR Alert





Simulation Setup
 Naive

◦ Upload data from all sensors acquired in batches to SPE

 ASRS-static 

◦ Evaluation order determined once at initialization and never 
changes

1. It computes an optimal sequence only once (at the beginning of the 
simulation) based on the selectivity characteristics and the 
communication costs, 

2. then applies the EvaluateQuery() procedure to evaluate the query 
tree at successive ‘time shift’ instants. 

Accordingly, it does not perform the dynamic update of NAC values, 
based on the dynamically evolving state of the query processing state.

 ASRS-dynamic

◦ Evaluation order determined at each ω time period.

Dynamic modification of the acquisition cost functions after each 
data retrieval and evaluation, to account for 

(a) the stream tuples already present in the smartphone buffer and 

(b) the already-resolved (‘shortcircuited’) query subtrees.
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Evaluation: Fixed Time-Shift Value for Each Stream



Evaluation: Fixed Time-Shift Value for Each Stream



Evaluation: Fixed Time-Shift Value for Each Stream



Evaluation: Varying Time-Shift Values

The relative gains are fairly independent of the time-shift values



Functional Requirements (1)

 Accommodate Heterogeneity in Sensor Data Rates, 

Packet Sizes and Radio Characteristics

◦ Sensor data streams exhibit significant heterogeneity in terms of 

◦ (i) data rates (sensor samples/sec)

◦ (ii) data sizes (bytes/sample)

◦ (iii) energy cost with radio interfaces 

Communication energy cost depends on sensor type as well as specific wireless 

radio implementation



Adapt to Dynamic Changes in Query Selectivity 
Properties:

To apply ACQUA, it is extremely important to have correct 
estimates for the query selectivity properties of different sensor 
data streams. 

However, we need to keep in mind that these selectivity 
properties are not only individualized, but also vary dramatically 
over time due to changes in an individual’s activity. 

For example, the likelihood of HR samples exceeding 80 might be 
very low when a person is engaged in office activity, but will be 
very high when the person is walking or working out in the gym.

Accordingly, the ACQUA framework must be capable of using 
context to accurately predict (albeit statistically) the selectivity 
characteristics of different sensor streams.

Functional Requirements (2)



Take into Account other Objectives Besides Energy 
Minimization:

Operating with a heterogeneous set of sensors implies that 
energy minimization, while important, might not be the only 
objective of interest to a user of ACQUA. 

For example, it is possible that one of the N sensors might have 
very little battery capacity

In such a case, to extend the overall operational lifetime of the 
context detection activity, 

preferentially retrieve and process data from an alternative 
sensor, even though the selectivity characteristics of the 
alternative sensor may not be the highest.

Functional Requirements (3)



Support Multiple Queries and Heterogeneous Time 
Window Semantics: 

Sensor-based context extraction is becoming an intrinsic feature of a 
variety of smartphone applications that may be executing concurrently. 

Different applications may specify distinct predicates over a shared set of 
sensor streams

for example, the accelerometer sensor may be used to both evaluate step-
counts in a wellness monitoring application and to understand the user’s 
current mode of transport in a separate social networking application. 

The query predicates would differ not just in their predicate logic, but also 
in the time windows over which the stream query semantics are expressed. 

Accordingly, ACQUA must support a unified application-independent query 
representation framework that is able to optimize the evaluation sequence 
across all concurrently executing stream queries.

Functional Requirements (4)


