Context Sensing



Context Aware Computing

# Context aware computing: the use of sensors and other sources of
information about a user’s context to provide more relevant information
and services

Context independent:
acts exactly the same

iINnpUt—— Computer System — output

Human in the loop



Context Aware Computing

explicit Context-Aware explicit
Input System output
Context:

» state of the user

» state of the physical environment

» state of the computing system

* history of user-computer interaction




What is context?

ldentity (Who)
Activity (What)
Time (When)
Location (Where)

Who + What + When + Where =2 Context



Examples of Context

O Identity

O Spatial: location, orientation, speed

o Temporal: date, time of day, season

0 Environmental: temperature, light, noise
O Social: people nearby, activity, calendar
O Resources: nearby, availability

o Physiological: blood pressure, heart rate, tone of
voice

O Emotion



Rule based Context Sensing



Background
* Context sensing
— Sensors in smartphone
— Applications react based on operating condition

 Example

— Location based reminder, Mute phone while in meeting,
Greeting message while driving

* Energy consumption
— Big overhead
— Continuous context sensing



Contribution

* Develop ACE

— Acquisitional Context Engine

— A middleware that supports continuous context-
aware applications

— While mitigating sensing costs for inferring context



ACE

Provides user's current context to applications running on
it

Context attributes (AtHome, IsDrving)
Applicatign

Request for current value

ACE

Sensors

Key Idea: Human contexts are limited by physical
constraints => context attributes are correlated

Dynamically learns relationships among various context
attributes

— e.g., whenever the user is Driving, he is not AtHome



Key idea

We can infer unknown context attribute values from
— Known context attributes
— Unknown but cheaper context attribute

Bob is running Appl (monitors walking, driving, running -
accelerometer) and App2 (monitors location AtHome, Isoffice-
--GPS, WiFi, BT)

ACE infers rule: When driving is T, AtHome is F

Context rules



Two Powerful Optimizations

ACE exploits these automatically learned
relationships for two powerful optimizations
The first is inference caching

— allows ACE to opportunistically infer one context
attribute (AtHome) from another already-known
attribute (Driving)

— without acquiring any sensor data

Example: App1l requests value of Driving ----
Request, cache, App2---cache

App3 requests for AtHome =>short window
Respond without sensor data=>proxy



Two Powerful Optimizations

The second optimization is speculative sensing
IsOffice=>GPS, wifi

Driving-T, Running-T, AtHome-T

— IsOffice-F

InMeeting-T=>|sOffice-T

Enables ACE to occasionally infer the value of an
expensive attribute (e.g., AtHome) by sensing
cheaper attributes (e.g., Driving)



ACE Architecture

Application 1 Application 2 Application 3

|
Get(Context) | Result
hit

—

; lan
m) Planner -p—) Contexters

Inference
Cache

T T
Context history + Rule Miner sense

Raw sensor data cache




(1) Contexters. This is a collection of modules, each of
which determines the current value of a context attribute
(e.g., IsWalking) by acquiring data from necessary sensors
and by using the necessary inference algorithm. An appli-

cation can extend it by implementing additional contexters.
The set of attributes sensed by various contexters is exposed

to applications for using with the Gef() call.?
(2) Raw sensor data cache. This is a standard cache.

(3) Rule Miner. This module maintains user’s context
history and automatically learns context rules—relationships
among various context attributes—from the history.

(4) Inference Cache. This implements the intelligent

caching behawvior mentioned before. It provides the same

Get /Put interface as a traditional cache. However, on Gef(.X )
it returns the value of X not only if the value of X is in the

cache. but also if it can be inferred by using context rules

and cached wvalues of other attributes.

(5) Sensing FPlanner. On a cache miss, this finds the
sequence of proxy attributes to speculatively sense to deter-
mine the value of the target attribute in the cheapest way.

The last three components form the core of ACE. We will
describe them in more detail later in the paper.



Contexters

e Collection of modules
— Determine the current value of context attribute
— Data from sensors

* Denote each context attribute and value as
(tuple) {D=T}

* Derived values based on decision tree
— Based on training data



Contexters

Table 1: Context attributes implemented in ACE

Attribute [Short | Sensors used (sample length) |Energy (mJ)
IsWalking| W Accelerometer (10 sec) 259
IsDriving| D Accelerometer (10 sec) 259
IsJogging| J Accelerometer (10 sec) 259
IsSitting| S Accelerometer (10 sec) 259
AtHome H WiFi 605
InOffice 0 Wik 605
IsIndoor I GPS 4+ Wiki 1985
IsAlone A Microphone (10 sec) 2895
InMeeting| M | WiFi + Microphone (10 sec) 3505
IsWorking| R | WiFi + Microphone (10 sec) 3505




Work Flow of ACE

Rule Miner

GEE’(x)

Inference Cache

Mine
rules

Context

J?L\

Result—»
Mo
Infer from cache
f\l_b
and rules
?Es Result—»
|
Mo
p ) 4
"> |Choose best proxy

Contexters
Sensors,
classifiers,costs

%Ensnr and sense

Mo

Result=p

Sensing Planner




Rule Miner

Maintains the history of time stamped tuples
{AtHome=true}

Derives rules regarding relationship among various
context attributes

Association rule mining (Apriori algo)

that have the following general form:{l,l2,--- ,ln} = r,
which implies that whenever all the tuples [;,--- ., hold,
r holds as well. Thus, the left side of a rule is basically a
conjunction of tuples I;,[2,--- ,l;. For example, the rule
[0=T,W=F,A=F} = M=T implies that if a user is in
the office (0 = T) and not walking (W = F) and is not alone
(A = F), then he is in a meeting (M = T).



Algo Outline

The Apriori algorithm takes as input a collection of frans-
actions, where each transaction is a collection of co-occurring
tuples. Each association rule has a support and a confidence.
For example, if a context history has 1000 transactions, out
of which 200 include both items A and B and 80 of these
include item C, the association rule {A, B} = C (read as
“If A and B are true then C is true”) has a support of 8% (=
80/1000) and a confidence of 40%(= 80/200). The algo-
rithm takes two input parameters: mmnSup and minConf.
It then produces all the rules with support = minSup and
confidence = minConf.



Rule Miner
Determine frequent item set

Apriori algo

Iltemsets
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The pairs {1.2}, {2.31, {2.4}, and {34} all megf or exceed the minimum support of 3, 50 they are frequent. The pairs {1,3} and {1.4} are not.
any larger set which contains {1,3} or {1,4} cannot be frequent.



The original Aprioril algorithm works in two steps. The
first step i1s to discover frequent itemsets. In this step, the
algorithm counts the number of occurrences (ecalled support)
of each distinct tuple (e.g., W = T) in the dataset and discards
infrequent tuples with support < minSwup. The remaining
tuples are frequent patterns of length 1, called frequent I-
itemset S1. The algorithm then iteratively takes the combi-
nations of Sip_; to generate frequent k-itemset candidates.
T'his 1s efficiently done by exploiting the anti-monotonicity

property: any subset of a frequent Ek-itemset must be fre-
quent, which can be used to effectively prune a candidate

k-itemset if any of its (k — 1)-itemset is infrequent [1].

The second step of the Apriori algorithm is to derive as-
sociation rules. In this step, based on the frequent itemsets
discovered in the first step, the association rules with confi-
dence = minConf are derived.



Rule Miner

Table 2: A few example rules learned for one user

{IsDriving = True} = {Indoor = False}

{Indoor = T, AtHome = F,IsAlone = T} = {InOffice = T}
{IsWalking = T} = {InMeeting =F}

{IsDriving = F, IsWalking = F} = {Indoor = T}

{AtHome = F, IsDriving = F, IsUsingApp = T} = {InOffice = T}
{IsJogging = T} = {AtHome = T}




Intelligent Context Caching

* The Inference Cache in ACE, like traditional cache,
provides a Get/Put interface

* Put(X, v) puts the tuple X =v in the cache
— with a predefined expiration time (default is 5 minutes)

* On a Get(X) request for a context attribute X
— it returns the value of X
* not only ifitisin the cache

* but also if a value of X can be inferred from unexpired tuples

in the cache by using context rules learned by the Rule
Miner



Intelligent Context Caching

Example: Appl requests value of IsDriving ----
Request contexter

Tuple D=T cached with exp time 5 mints
App2 requests D---get from cache

App3 requests for Isindoor =>short window
No tuple with | in cache

{D=T}=>I=F

Respond I=F



Key challenge

o Efficiently exploit the rules Target context attribute
— Go over all the rules /
{Indooy= T, AtHome = F)IsAlone = T} :§

In cache

e Fails for transitive rules

consider two rules: {M=T} = 0=Tand {0=T} = I=T
Without using transitivity of the rules, the cache will fail to
infer the state of I =T even if M=T is in the cache. Such



Expression tree

e Expression tree for tuple {D=T}
— Tree representation of boolean expression
— Implies {D=T}

* Boolean AND-OR tree

(a) Non-leaf represents AND-OR operation with child nodes
(b) Leaf represents a tuple

e Evaluation of AND and OR node

* Expression tree for {D=T} evaluates true iff it
satisfies all the context rules



Expression tree

T) : 2 : lea—vyi 1
as follows. We start from a tree with a single leaf nodea = v
(Figure 5(i)). Then, we continue expanding each leaf node
in the current tree by using context rules until no leaf nodes
can be further expanded or all the rules have been used for
expansion. To expand a leaf node a = v, we find all the rules
Ri,Ra,--- , Ry, that have a = v on the right hand side. We
then replace the leaf node with a subtree rooted at an OR
node. The OR node has child nodes a = v, X3, Xa,--- , X1,
where X; is an AND node with all the tuples on the left
hand side of R; as child nodes. An example of this process
is shown in Figure 5(ii), where the node I =T is expanded
using the rules shown at the top of the figure.




Expression tree

The expression tree for a given tuple a = v is constructed
as follows. We start from a tree with a single leaf nodea = v
(Figure 5(i)). Then, we continue expanding each leaf node
in the current tree by using context rules until no leaf nodes
can be further expanded or all the rules have been used for

expansion. To expand a leaf node a = v, we find all the rules
Ri,Rs,--- , Ry, that have a = v on the right hand side. We
then replace the leaf node with a subtree rooted at an OR
node. The OR node has child nodes a = v, X1, Xa,--- , X,

where X; 1s an AND node with all the tuples on the left
hand side of R; as child nodes. An example of this process
is shown in Figure 5(ii), where the node I =T is expanded
using the rules shown at the top of the figure.




Expression Trees

Boolean expression: | I=T v H=T v (D=F A W=F)



Inference cache (evaluation of tree)

Maintains one expression tree for each tuple {D=T},
{D=F}
Get(D) evaluates both the tuple

— Check satisfiability by tuples in cache
— Otherwise invoke sensing planner

How to evaluate?
Leaf node is satisfied iff=>corresponding tuple in cache
Non leaf OR is satisfied if any child node is satisfied

AND is satisfied if all child nodes are satisfied
— Recursive

Final=>if root is satisfied



(a) Initial expanded tree (labels can be ignored)

Driving:False Walking:False| [Alone:False] Walking:False|

Indoor:True AtHome:True|

InMeeting:True

InOffice:True

Indoor:True

(b) Equivalent reduced tree



Minimal expression tree O

pAlternating AND-OR level: An AND-OR tree can
always be converted so that (a) a level has either all AND
nodes or all OR nodes, and (b) AND levels and OR levels
alternate. This can be done as follows: if an OR node (or
an AND node) w has an OR child node (or an AND child
node, respectively) v, child nodes of v can be assigned to u
and v can be deleted. This compacts the tree.

» A bsorption: If a non-leaf node W has two child nodes A
and B such that the set of child nodes of A is a subset of the
set. of child nodes of B, we can remove B and its subtrees. In
a tree with alternating AND-OR levels, if V is an OR node,
then A and B will be AND nodes. Suppose A = a A b and
B =anbie. Then, N = AvVEB = (anb)Vv(arbhe) =anb=
A. Similarly, if N is an AND node, (avb)A(aVvbVve) = (aVh),
and hence the longer subexpression B = (a VvV bV ¢) can be
removed.

- Collapse: If & node N has one child, the child can
be assigned to N's parent node and N can be removed



Sensing planner

* Inference cache fails to determine value of X
on Get(X)

— Need to call necessary contexters
 [AtHome] contexter uses GPS, WIFI

 ACE may find X in indirect and cheaper way
— Speculative sensing



Sensing Planner

InMeeting? InMeeting?
¥
Time in T
— Accelerometer
[5pm,6pm]
Acquire WiFi, lF l
Audio, Light, | -
Accelerometer WiEi - Bt
) | i
T Answer
Answer AtHome? > falee
VF
Audio, Light, e—
GPS '

(a) Traditional plan (b) Conditional plan



ACE Architecture

Application 1 Application 2 Application 3

|
Get(Context) | Result
hit

—

; lan
m) Planner -p—) Contexters

Inference
Cache

T T
Context history + Rule Miner sense

Raw sensor data cache




Sensing plan

 Order in which various attributes needs to be
checked

— Determine the target attribute

* Optimal order may depend on
— Cost of contexter (c)

— Likelihood the attribute returning True value (p)

* Expected sensing cost can be computed using
ci (config. of contexter), pi (context history)



Speculative sensing API

e Option 1: Generate the plan graph
— Traverse only a part

* Option 2: Incrementally enumerate only next
node

Init (X): Target attrb X

a <- next(): returns the next attribute OR null
Update(a,v): Update tuple {a=v}

Value <- Result(): returns the value of X



Algorithm 1 Exhaustive search for the optimal sensing
plan

l: procedure INIT(X)

2: target +— X
3: trace, next, result, dpCache <— ¢ Contexter returns the value
of attrib

4: procedure RESULT

3} return result

6: procedure UPDATE(attrib, value)

7 trace <— trace U [attrib = value] <= pdate trace

8: if attrib = target then

0- result +— value trace = {collection of tuples}
Determines the order of proxy

10: procedure NEXT attributes for sensing planer

11: if result = ¢ then

12: return ¢

13: (attrib, cost) + NextH elper(trace)

14: return attrib —————_ Invoke the contexter to

evaluate attrib
15: procedure NEXTHELPER(trace)

16: if trace is in dpCache then



15:
16:

17:
1R:

19:
20:
21:

22:
23:
24
25:
26:

27:
28:
29:
30:
31:
32:

| Prob(s

33

35:

36:
37

procedure NEXTHELPER(irace)
if trace is in dpC'ache then

[next, cost] < dpCache[trace] €= For memoization
return [nert, cost]

minCost + oo
best Attrib +— ¢
for all State s & trace do €@ Try all unexplored context attributes s

traceT « trace \J {s = true}
if traceTl satisfies expressionlree(target = T) then « Get it from inference

CostT <0
else

next, CostT] + NextH elper(traceT)

traceF + trace U {s = false}

if tracel’ satisfies expressionTree(target = F) then « Get it from inference
CostF + 0

cache

cache

else

[next, CostF| +— NextHelper(traceF')
ExrpetedCost + Cost(s) + Prob(s = true) - CostT +
= false) - CostF
if ExpectedCost < minCost then

minCost +— FxpectedCost

best Attrib «— s €® Choose the best proxy attribute

dpCache(trace] + [best Attrib, minCost] « Cache it for memoization
return [best Attrib, minCost]
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Algorithm 2 Generating attribute sensing order

procedure AssiGNCoOSTANDPROB(And-OR Tree Node T')
if T is a leaf node then
(Cr,Pr) < (cr,pT)
return (Cp, Pr)
for all child node N; of T, 1 <: < k do

(Cn,Pn) + AssiaNCosTANDPROB(N)
if T" is an AND node then

Pn < 1—"Pxn
Sort the child nodes of T" in decreasing order of their values
of Pn,/CNn,,1 <1< k
10: Cr Cny + X0 Cn, [1;21(1 — Py,)
11: if T"is an AND node then

e Q0 B =

L XIS

12: Pr + [T, P,
13: else
14: Pr +— 1—]_[?:1(1—?;\;?:)

15: return (Cr, Pr)

16: procedure FINDORDERING(And-Or Tree Node T)
17: if T is a leaf node then

15: Q.Enqueue(T)
19: for all child N; of T' in ascending order of Py, /Cx, do
20: FINDORDERING(N;)




Evaluation

Effectiveness of Inference Cache
Accuracy
Effectiveness of Sensing Planner

Overhead of ACE
End-to-end Energy Savings



Applications

e GeoReminder

— Monitors user’s current location and displays
message

* JogTracker

— Monitors user’s transportation mode and keeps
track of calories burn

* PhoneBuddy
— Mute the phone while in a meeting



Datasets

* Reality Mining Dataset
— collected part of the Reality Mining project at MIT

— contains continuous data on daily activities of 100
students and staff at MIT

— recorded by Nokia 6600 smartphones over the
2004-2005 academic year

— Trace contains sequence of lines
Time, attribl=valuel, attrib2=value2



Dataset

05 users who have at least 2 weeks of data. The total length
of all users’ traces combined is 266,200 hours. The average,
minimum, and maximum trace length of a user is 122 days,
14 days, and 269 days, respectively.

The dataset allows us to infer the following context at-
tributes about a user at any given time: IsDriving® (D in
short), IsBiking (B), IsWalking (W), IsAlone (A), AtHome
(H), InOffice (0), IsUsingApp (P), and IsCalling (C).



Datasets

e ACE Dataset

— collected with continuous data collection
software running on Android phones

— The subjects in the dataset, 9 male and 1 female,
worked at Microsoft Research Redmond

Table 1. The maximum, minimum, and average trace length
of a user is 30 days, 5 days, and 14 days respectively.

Even though the dataset is smaller than the Reality Min-
ing dataset, its ground truths for context attributes are more
accurate. They come from a combination of three sources:
(1) labels manually entered by a user during data collection
time (e.g., when the user starts driving, he manually inputs
Driving = True through a GUI), (2) labels manually pro-
vided by the user during post processing, and (3) outputs of
various contexters.



Evaluation

Port ACE prototype on a laptop
Replace contexters with the fake one

— Return’s current context from trace

Energy consumption is modelled from real
contexter.

Run applications at each tick (5 mints)
Expiration time — 1 tick



Evaluation

Effectiveness of Inference Cache
Accuracy
Effectiveness of Sensing Planner

Overhead of ACE
End-to-end Energy Savings



Hit rates and energy savings of
Inference Cache
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Percentage

Effect of cache expiration
time on hit rate and accuracy

7a|zness

—-—% correct inference
-B=Hi|t rate

0 20 40 60 30 100

Evinira¥tian ¥ima [(minnitac)



Energy savings by Sensing Planner
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Fraction of times Sensing Planner
does better
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Time (ms)
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Time required to generate a plan on a
Samsung Focus phone
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Per user power consumption
(users sorted by ACE power)

—NoSharing =a-=Baseline Cache —=|nference Cache = ACE (INnference Cache + Sensing Planner)

Average Power (mW)
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