
Context Sensing

Context Aware Computing

Context aware computing: the use of sensors and other sources of

information about a user’s context to provide more relevant information

and services

Computer Systeminput output

Context independent:

acts exactly the same

Human in the loop

Context Aware Computing

Context-Aware

System

explicit

input

explicit

output

Context:
• state of the user
• state of the physical environment
• state of the computing system
• history of user-computer interaction
•...

What is context?

• Identity (Who)

• Activity (What)

• Time (When)

• Location (Where)

• Who + What + When + Where → Context

Examples of Context

 Identity

 Spatial: location, orientation, speed

 Temporal: date, time of day, season

 Environmental: temperature, light, noise

 Social: people nearby, activity, calendar

 Resources: nearby, availability

 Physiological: blood pressure, heart rate, tone of
voice

 Emotion

Rule based Context Sensing

Background
• Context sensing

– Sensors in smartphone

– Applications react based on operating condition

• Example

– Location based reminder, Mute phone while in meeting,
Greeting message while driving

• Energy consumption

– Big overhead

– Continuous context sensing

Contribution

• Develop ACE

– Acquisitional Context Engine

– A middleware that supports continuous context-
aware applications

– While mitigating sensing costs for inferring context

ACE
• Provides user's current context to applications running on

it
• Context attributes (AtHome, IsDrving)

• Key Idea: Human contexts are limited by physical
constraints => context attributes are correlated

• Dynamically learns relationships among various context
attributes
– e.g., whenever the user is Driving, he is not AtHome

Application

ACE

Sensors

Request for current value

Key idea

• We can infer unknown context attribute values from

– Known context attributes

– Unknown but cheaper context attribute

• Bob is running App1 (monitors walking, driving, running -
accelerometer) and App2 (monitors location AtHome, Isoffice-
--GPS, WiFi, BT)

• ACE infers rule: When driving is T, AtHome is F

• Context rules

Two Powerful Optimizations

• ACE exploits these automatically learned
relationships for two powerful optimizations

• The first is inference caching
– allows ACE to opportunistically infer one context

attribute (AtHome) from another already-known
attribute (Driving)

– without acquiring any sensor data

• Example: App1 requests value of Driving ----
Request, cache, App2---cache

• App3 requests for AtHome =>short window

• Respond without sensor data=>proxy

Two Powerful Optimizations

• The second optimization is speculative sensing
IsOffice=>GPS, wifi

• Driving-T, Running-T, AtHome-T

– IsOffice-F

• InMeeting-T=>IsOffice-T

• Enables ACE to occasionally infer the value of an
expensive attribute (e.g., AtHome) by sensing
cheaper attributes (e.g., Driving)

ACE Architecture

Contexters

• Collection of modules

– Determine the current value of context attribute

– Data from sensors

• Denote each context attribute and value as
(tuple) {D=T}

• Derived values based on decision tree

– Based on training data

Contexters

Work Flow of ACE

Rule Miner

• Maintains the history of time stamped tuples
{AtHome=true}

• Derives rules regarding relationship among various
context attributes

• Association rule mining (Apriori algo)

Algo Outline

Rule Miner

Support
threshold=3

Apriori algo

Determine frequent item set

Rule Miner

Intelligent Context Caching

• The Inference Cache in ACE, like traditional cache,
provides a Get/Put interface

• Put(X, v) puts the tuple X = v in the cache
– with a predefined expiration time (default is 5 minutes)

• On a Get(X) request for a context attribute X
– it returns the value of X

• not only if it is in the cache

• but also if a value of X can be inferred from unexpired tuples
in the cache by using context rules learned by the Rule
Miner

• Example: App1 requests value of IsDriving ----
Request contexter

• Tuple D=T cached with exp time 5 mints

• App2 requests D---get from cache

• App3 requests for IsIndoor =>short window

• No tuple with I in cache

• {D=T}=>I=F

• Respond I=F

Intelligent Context Caching

Key challenge

• Efficiently exploit the rules

– Go over all the rules

• Fails for transitive rules

Target context attribute

In cache

Expression tree

• Expression tree for tuple {D=T}
– Tree representation of boolean expression

– Implies {D=T}

• Boolean AND-OR tree
(a) Non-leaf represents AND-OR operation with child nodes

(b) Leaf represents a tuple

• Evaluation of AND and OR node

• Expression tree for {D=T} evaluates true iff it
satisfies all the context rules

Expression tree

Expression tree

Expression Trees

Inference cache (evaluation of tree)

• Maintains one expression tree for each tuple {D=T},
{D=F}

• Get(D) evaluates both the tuple
– Check satisfiability by tuples in cache
– Otherwise invoke sensing planner

• How to evaluate?
• Leaf node is satisfied iff=>corresponding tuple in cache
• Non leaf OR is satisfied if any child node is satisfied
• AND is satisfied if all child nodes are satisfied

– Recursive

• Final=>if root is satisfied

Minimal expression tree

OR

OR

OR

u

v

Sensing planner

• Inference cache fails to determine value of X
on Get(X)

– Need to call necessary contexters

• [AtHome] contexter uses GPS, WIFI

• ACE may find X in indirect and cheaper way

– Speculative sensing

Sensing Planner

ACE Architecture

Sensing plan

• Order in which various attributes needs to be
checked

– Determine the target attribute

• Optimal order may depend on

– Cost of contexter (ci)

– Likelihood the attribute returning True value (pi)

• Expected sensing cost can be computed using
ci (config. of contexter), pi (context history)

Speculative sensing API

• Option 1: Generate the plan graph

– Traverse only a part

• Option 2: Incrementally enumerate only next
node

Init (X): Target attrb X

a <- next(): returns the next attribute OR null

Update(a,v): Update tuple {a=v}

Value <- Result(): returns the value of X

Update trace

trace = {collection of tuples}
Determines the order of proxy
attributes for sensing planer

Invoke the contexter to
evaluate attrib

Contexter returns the value
of attrib

For memoization

Get it from inference
cache

Get it from inference
cache

Try all unexplored context attributes s

Cache it for memoization
Choose the best proxy attribute

Evaluation

• Effectiveness of Inference Cache

• Accuracy

• Effectiveness of Sensing Planner

• Overhead of ACE

• End-to-end Energy Savings

Applications

• GeoReminder

– Monitors user’s current location and displays
message

• JogTracker

– Monitors user’s transportation mode and keeps
track of calories burn

• PhoneBuddy

– Mute the phone while in a meeting

Datasets

• Reality Mining Dataset

– collected part of the Reality Mining project at MIT

– contains continuous data on daily activities of 100
students and staff at MIT

– recorded by Nokia 6600 smartphones over the
2004-2005 academic year

– Trace contains sequence of lines

Time, attrib1=value1, attrib2=value2

Dataset

Datasets

• ACE Dataset

– collected with continuous data collection
software running on Android phones

– The subjects in the dataset, 9 male and 1 female,
worked at Microsoft Research Redmond

Evaluation

• Port ACE prototype on a laptop

• Replace contexters with the fake one

– Return’s current context from trace

• Energy consumption is modelled from real
contexter.

• Run applications at each tick (5 mints)

• Expiration time – 1 tick

Evaluation

• Effectiveness of Inference Cache

• Accuracy

• Effectiveness of Sensing Planner

• Overhead of ACE

• End-to-end Energy Savings

Hit rates and energy savings of
Inference Cache

Due to sensor overlap

Effect of cache expiration
time on hit rate and accuracy

Staleness

Energy savings by Sensing Planner

Fraction of times Sensing Planner
does better

Latency of a Get() request
on Inference Cache hit

Time required to generate a plan on a
Samsung Focus phone

End-to-end energy savings

Per user power consumption
(users sorted by ACE power)

