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CS11001 Programming and Data Structures, Autumn 2014–2015
Mid Semester Examination

Date: 22–September–2014 Time: 9:00–11:00am Maximum Marks: 60

[
Write your answers in the question paper itself. Be neat and tidy.

Answer all questions. Not all blanks carry equal marks.

]
1. Supply short answers to the following questions. (2 × 7)

(a) What is the output of the following program?
main()

{

int s = 0;

while (s++ < 10) {

if ((s < 4) && (s < 9)) continue;

printf("%d,", s);

}

}
4,5,6,7,8,9,10,

(b) What is the output of the following program?
main()

{

int a[5] = { 5, 1, 15, 20, 25 };

int i, j, k;

i = ++a[1] ;

j = a[1]++ ;

k = a[i++] ;

printf ("%d,%d,%d", i, j, k);

}
3,2,15

(c) What is printed by the following program?
main()

{

int i, j, x, A[3] = {1,-1,1};

for (x=1; x<6; x++) {

j = 0;

for (i=0; i<3; i++) j = j*x + A[i];

printf("%d,", j);

}

}
1,3,7,13,21,

(d) What is printed by the following program?
int A (int m, int n)

{

if (!m) return n + 1;

if (!n) return A(m - 1, 1);

return A(m - 1, A(m, n - 1));

}

main()

{

printf("A(1,2) = %d", A(1,2));

}
A(1,2) = 4

(e) What is the output of the following program?
void f0 (unsigned int);

void f1 (unsigned int);

void f0 (unsigned int a)

{

if (!a) printf("No"); else f1(a-1);

}

void f1 (unsigned int a)

{

if (!a) printf("Yes"); else f0(a-1);

}

main ()

{

f1(6);

}
Yes

(f) Mathematically express the return value f (n)
of the function supplied below. Your mathematical
expression for f (n) must hold for all integers n > 0.
unsigned int f ( unsigned int n )

{

if (n == 0) return 0;

return 2 * f(n - 1) + 1;

}

f (n) = 2n−1

(g) The Fibonacci sequence is defined as

F(0) = 0,
F(1) = 1,
F(n) = F(n−2)+F(n−1) for n > 2.

The following function defines another sequence
G(n) for n = 0,1,2,3, . . . . How is the sequence
G(n) mathematically related to the Fibonacci
sequence F(n)? (Express G(n) in terms of F(n).
Your expression should hold for all integers n > 0.)
int G ( unsigned int n )

{

if (n == 0) return 0;

if (n == 1) return 1;

return G(n-2) - G(n-1);

}

G(n) = (−1)n+1F(n)
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2. Fibonacci numbers can be used to compute the golden ratio ρ = 1+
√

5
2 . Recall that the Fibonacci numbers

are defined as F(0) = 0, F(1) = 1, and F(n) = F(n−1)+F(n−2) for n > 2. A property of the Fibonacci
numbers is that limn→∞ F(n)/F(n− 1) = ρ . In practice, the sequence F(n)/F(n− 1) rapidly converges to
ρ . In this exercise, you use this idea to compute a good approximation of ρ using Fibonacci numbers. Your
approximation should be within an error bound of 10−10. You are not allowed to use any math or stdlib
library calls (like sqrt, pow, or fabs). Complete the following program.

The actual value of ρ is unavailable to you, so it is not possible to compute the error exactly. This problem
is bypassed in the following way. For n > 2, let ρn = F(n)/F(n− 1) be the n-th approximation of ρ . It is
known that ρ2 < ρ4 < ρ6 < · · ·< ρ < · · ·< ρ7 < ρ5 < ρ3. Moreover, each approximation is closer to ρ than
the previous approximation. Therefore, in each iteration, we have one of the following two possibilities:

ρn−1 ρ ρn ρn ρ ρn−1

We stop as soon as we get |ρn−ρn−1|< 10−10. This condition will automatically imply |ρn−ρ|< 10−10.

At the beginning of each iteration of the while loop below, F should store F(n), F_prev the value F(n−1),
rho the ratio F(n)/F(n− 1), rho_prev the ratio F(n− 1)/F(n− 2), and error the absolute difference of
rho and rho_prev. Do not change these meanings of the variables, that is, the initialization step and the
loop body must ensure that precisely these values are stored at the beginning of each iteration. (12)

/* Define an approximation error of 10−10 */

#define APPROX_ERROR 1e-10

main ()

{

int F, F_prev, n; /* Variables for Fibonacci numbers */

double rho, rho_prev, error; /* Variables to store approximations and error */

/* Initialize the Fibonacci-number variables for n = 3 */

n = 3; F = 2 ; F_prev = 1 ;

/* Initialize the approximation variables to ρ3 and ρ2 */

rho = 2 ; rho_prev = 1 ;

/* Initialize the error to |ρ2−ρ3| */
error = rho - rho_prev;

/* Repeat so long as the error is more than the allowed approximation error */

while ( error >= APPROX_ERROR ) {

/* Increment n and calculate the next (a closer) approximation of ρ */

++n;

/* Update the Fibonacci numbers */

F = F + F_prev ; F_prev = F - F_prev ;

/* Update the approximation ratios */

rho_prev = rho ; rho = (double)F / (double)F_prev ;

/* Compute the new error */

error = rho - rho_prev; if (error < 0) error = -error;

}

/* Print the approximate value and which approximation it is */

printf("rho_%d = %lf = %d/%d\n", n, rho, F, F_prev );

}
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3. You write a program which runs a loop for the user to enter a sequence of zeros and ones. Entering an integer
other than 0,1 terminates the loop. Your task is to count how many times the user enters the sequence 1010.
For example, if the user enters 1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,1,2, then the sequence 1010 occurs thrice:

1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1

In order to solve this problem, you maintain a progress indicator preflen to remember the length of the
longest prefix of 1010, that you have read in the last preflen iterations (including the current one). For
example, at the beginning of the loop, or after reading two consecutive zeros, preflen is zero (indicating that
we cannot be somewhere inside a match of 1010 at this point of time). On the other hand, if you read two
consecutive ones, preflen should be one, because if the user enters 0,1,0 in the next three iterations, then
you locate one occurrence of the pattern 1010. For the user input in the example above, preflen changes as
follows. The preflen value after processing each scanned integer is shown below.

Input 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1

preflen 1 2 0 1 2 3 2 3 2 0 1 2 3 2 3 1

Here, preflen starts with the value 0 before any user input. After the first input (1), match occurs with the
first symbol of 1010, so preflen becomes 1. After the second input (0), the length of the matched prefix
increases to two. The third input (0) destroys the partial match, so preflen reduces to zero.

The following program implements this algorithm. Fill out the missing details. In each case of the switch

statements, change preflen appropriately, and increment count if a complete match is located. (12)

main ()

{

int a, count = 0, preflen = 0;

while (1) {

scanf("%d", &a);

if (a == 0) {

switch (preflen) {

case 0: break;

case 1: preflen = 2; break;

case 2: preflen = 0; break;

case 3: ++count; preflen = 2; break;

}

} else if (a == 1) {

switch (preflen) {

case 0: preflen = 1; break;

case 1: break;

case 2: preflen = 3; break;

case 3: preflen = 1; break;

}

} else break;

}

printf("The number of occurrences of 1010 is %d\n", count);

}
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4. An array A stores a permutation of the integers 0,1,2,3, . . . ,n−1. Choose an index i1 ∈ {0,1,2, . . . ,n−1}.
We have A[i1] = i2, A[i2] = i3, . . . , A[ik] = i1 for some k > 1. We say that (i1, i2, i3, . . . , ik) is a cycle (of length
k) of the permutation. A permutation can always be written as a collection of pairwise disjoint cycles. Your
task is to complete the following function which prints all the cycles of the permutation stored in A.

As an example, let n = 10, and consider the following array:

i 0 1 2 3 4 5 6 7 8 9
A[i] 2 7 8 9 0 5 3 6 4 1

Here, A[0] = 2, A[2] = 8, A[8] = 4 and A[4] = 0, so (0,2,8,4) is a cycle. The complete cycle decomposition
of this permutation is (0,2,8,4)(1,7,6,3,9)(5).

The function below prints all the cycles one after another in a single line. Each index i ∈ {0,1,2, . . . ,n−1}
appears in one and exactly one cycle. Therefore, if i is once printed, it will never be printed again. We use
an array printed[] to store the information about the indices which are printed. The array is initialized to
zero. Whenever an i is printed, the corresponding entry in the array is set to a non-zero value. The function
stops when all indices are printed. The number of indices printed is stored in the count nprinted.

Assume that the array A[], when passed to the function, already stores a permutation of 0,1,2, . . . ,n−1. (12)

#define MAXSIZE 1000

void cycledecomposition ( int A[], int n )

{

int printed[MAXSIZE], nprinted, i, j;

/* Initialize printed[] to all zeros */

for (j=0; j<n; ++j) printed[j] = 0;

/* Initialize the number of indices printed */

nprinted = 0 ;

/* Initialize the first index to start with */

i = 0;

/* Repeat until all the indices are printed */

while ( nprinted < n ) {

/* Find the next unprinted index i by searching the array printed[] */

while (printed[i]) ++i;

/* Print the cycle starting from index i */

printf("(%d",i); printed[i] = 1 ; nprinted = nprinted + 1 ;

/* Now let j iterate over all other indices in the current cycle */

j = A[i]; /* Initialize j to the index next to i in the cycle */

while ( j != i ) { /* Loop on j */

/* Print */

printf(",%d",j);

/* Update nprinted and an appropriate element in printed[] */

++nprinted; printed[j] = 1;

/* Prepare for the next iteration */

j = A[j];

}

printf(")");

}

printf("\n");

}
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5. (a) In this exercise, you write a recursive function to print all sequences of 0,1 of length n, in which two
zeros never appear in consecutive positions. For example, if n = 3, then the sequences to be printed are 010,
011, 101, 110, and 111. The length-three sequences 000, 001 and 100 contain consecutive zeros and must
not be printed. You are required to print each allowed sequence only once.

The recursive function takes three arguments: an array A, the length n of A, and an index i. The call assumes
that zeros and ones are placed appropriately (that is, without violating the constraint on consecutive zeros)
in the first i cells of A (that is, from A[0] to A[i-1]). If all of the n elements are placed, the sequence
is printed in a line. Otherwise, A[i] is assigned all possible values such that the first i+ 1 cells (A[0] to
A[i]) satisfy the constraint mentioned above. For each allowed value of A[i], a call to printseq() is made
with appropriate arguments in order to recursively populate the remaining cells (A[i+1] through A[n-1]).
Complete the following code. (8)

void printseq ( int A[], int n, int i )

{

int j; /* Needed for printing */

/* Check the terminating condition */

if ( i == n ) {

/* Write a loop to print the sequence stored in A[] */

for (j=0; j<n; ++j) printf("%d", A[j]);

printf("\n");

return; /* No task left */

}

/* Printing condition is not reached here */

/* Check whether A[i] is allowed to be 0 */

if ( (i == 0) || (A[i-1] != 0) ) {

/* Make a recursive call */

A[i] = 0; printseq( A, n, i+1 );

}

/* Now make an unconditional recursive call */

A[i] = 1; printseq(A, n, i+1);

}

(b) Suppose that the main() function makes only one call to accomplish the desired printing task. How
should printseq() be called from main()? (2)

#define MAXSIZE 1000

main ()

{

int A[MAXSIZE], n;

scanf("%d", &n);

printseq( A, n, 0 );

}
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