
Problem 1

We want to use semaphores to implement a shared critical
section (CS) among three processes T1, T2, and T3. We want to
enforce the execution in the CS in this order: First T2 must execute
in the CS. When it finishes, T1 will then be allowed to enter the
CS; and when it finishes T3 will then be allowed to enter the CS;
when T3 finishes then T2 will be allowed to enter the CS, and so
on, (T2, T1, T3, T2, T1, T3,…).

Write the synchronization solution using a minimum number of
binary semaphores and you are allowed to assume the initial
value for semaphore variables.

Problem 1

S1=1, S2=0, S3=0

Problem 2

Three concurrent processes X, Y, and Z execute three different code segments that access and update certain
shared variables.

Process X executes the P operation (i.e., wait) on semaphores a, b and c;

process Y executes the P operation on semaphores b, c and d;

process Z executes the P operation on semaphores c, d, and a before entering the respective code segments.

After completing the execution of its code segment, each process invokes the V operation (i.e., signal) on its
three semaphores.

All semaphores are binary semaphores initialized to one.

Which one of the following represents a deadlock-free order of invoking the P operations by the processes?

Option A: X: P(a)P(b)P(c) Y: P(b)P(c)P(d) Z: P(c)P(d)P(a)

Option B: X: P(b)P(a)P(c) Y: P(c)P(b)P(d) Z: P(a)P(c)P(d)

Option C: X: P(a)P(b)P(c) Y: P(c)P(b)P(d) Z: P(c)P(d)P(a)

Option D X: P(b)P(a)P(c) Y: P(b)P(c)P(d) Z: P(a)P(c)P(d)

The Sleeping Barber Problem

Challenges

• Actions taken by barber and customer takes unknown amount of time (checking waiting room,
entering shop, taking waiting room chair)

• Scenario 1
• Customer arrives, observe that barber busy

• Goes to waiting room

• While he is on the way, barber finishes the haircut

• Barber checks the waiting room

• Since no one there, Barber sleeps

• The customer reaches the waiting room and waits forever

• Scenario 2
• Two customer arrives at the same time

• Barber is busy

• Both customers try to occupy the same chair!

Customer
Barber

“I have arrived; waiting for
your service”

One semaphore:
customer

Barber wakes up, if sleeping

CustomerBarber

“I am ready to give service
to the next customer”

One semaphore:
barber Customer acquires the Barber for service

No customer: Barber falls asleep

Customer waits if Barber busy

Barber sleeps on “Customer”
Customer sleeps on “Barber”

The Sleeping Barber Problem

Semaphore Barber: Used to
call a waiting customer.
Barber=1: Barber is ready
to cut hair and a customer
is ready (to get service) too!
Barber=0: customer
occupies barber or waits

Semaphore customer:
Customer informs barber
that “I have arrived; waiting
for your service”

Mutex: Ensures that only
one of the participants
can change state at once

http://en.wikipedia.org/wiki/Mutex

The Sleeping Barber Problem

For Barber: Checking the
waiting room and calling
the customer makes the
critical section

For customer:
Checking the waiting
room and informing
the barber makes its
critical section

Barber sleeps on “Customer”
Customer sleeps on “Barber”

Problem 3

• The following two functions P1 and P2 that share a variable B with an initial value of 2 execute concurrently.

P1()

{

C = B – 1;

B = 2*C;

}

P2()

{

D = 2 * B;

B = D - 1;

}

The number of distinct values that B can possibly take after the execution

Problem 3

Problem 4

Consider the reader-writer problem with designated readers. There are n reader
processes, where n is known beforehand. There are one or more writer processes.
Items are stored in a buffer. Every item is written by a writer and is designated for a
particular reader.

