Problem 1

We want to use semaphores to implement a shared critical
section (CS) among three processes T1, T2, and T3. We want to
enforce the execution in the CS in this order: First T2 must execute
in the CS. When it finishes, T1 will then be allowed to enter the
CS; and when it finishes T3 will then be allowed to enter the CS;
when T3 finishes then T2 will be allowed to enter the CS, and so
on, (T2, T1,T3,T2,T1, T3,...).

Write the synchronization solution using a minimum number of
binary semaphores and you are allowed to assume the initial
value for semaphore variables.



Problem 1

Li T2 T3
While(true) { While(true) { While(true) {
Wait(S3); Wait(S1); Wait(S2);
Print(“C”); [Print(“B”); [Print(“A”);

Signal (S2); }

Signal (S3); }

Signal (S1); }

S1=1, S2=0, S3=0



Problem 2

Three concurrent processes X, Y, and Z execute three different code segments that access and update certain
shared variables.

Process X executes the P operation (i.e., wait) on semaphores a, b and c;
process Y executes the P operation on semaphores b, c and d;
process Z executes the P operation on semaphores c, d, and a before entering the respective code segments.

After completing the execution of its code segment, each process invokes the V operation (i.e., signal) on its
three semaphores.

All semaphores are binary semaphores initialized to one.
Which one of the following represents a deadlock-free order of invoking the P operations by the processes?

Option A: X: P(a)P(b)P(c) Y: P(b)P(c)P(d) Z: P(c)P(d)P(a)
Option B: X: P(b)P(a)P(c) Y: P(c)P(b)P(d) Z: P(a)P(c)P(d)
Option C: X: P(a)P(b)P(c) Y: P(c)P(b)P(d) Z: P(c)P(d)P(a)
Option D X: P(b)P(a)P(c) Y: P(b)P(c)P(d) Z: P(a)P(c)P(d)



The Sleeping Barber Problem




Challenges

* Actions taken by barber and customer takes unknown amount of time (checking waiting room,
entering shop, taking waiting room chair)

* Scenariol
e Customer arrives, observe that barber busy
* @Goes to waiting room
* While he is on the way, barber finishes the haircut
e Barber checks the waiting room
* Since no one there, Barber sleeps
* The customer reaches the waiting room and waits forever

* Scenario 2
* Two customer arrives at the same time
e Barber is busy
e Both customers try to occupy the same chair!



Barber sleeps on “Customer”
Customer sleeps on “Barber”

One semaphore:

customer No customer: Barber falls asleep

“I have arrived; waiting for
your service”

Customer
Barber

Barber wakes up, if sleeping

One semaphore:

barber Customer acquires the Barber for service

“I am ready to give service
to the next customer”

Barber é Customer

Customer waits if Barber busy




The Sleeping Barber Problem

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)
{
while (TRUE) {

down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_hair();

void customer(void)

{

down(&mutex);
if (waiting < CHAIRS) {

waiting = waiting + 1;

up(&customers);
up(&mutex);
down(&barbers);
get_haircut();

} else {
up(&mutex);

}

/* # chairs for waiting customers */
/* use your imagination */

/* # of customers waiting for service */

/* # of barbers waiting for customers */

/* for mutual exclusion */

/* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

/* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/* release 'waiting’ */

/* cut hair (outside critical region) */

/* enter critical region */

/* if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/* release access to 'waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/* shop is full; do not wait */

Semaphore Barber: Used to
call a waiting customer.
Barber=1: Barber is ready
to cut hair and a customer
is ready (to get service) too!
Barber=0: customer
occupies barber or waits

Semaphore customer:
Customer informs barber
that “I have arrived; waiting
for your service”

Mutex: Ensures that only
one of the participants
can change state at once


http://en.wikipedia.org/wiki/Mutex

The Sleeping Barber Problem

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)
{
while (TRUE) {

down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_hair();

void customer(void)
{
down(&mutex);
if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();
} else {
up(&mutex);
}

/* # chairs for waiting customers */
Barber sleeps on “Customer”

/* use your imagination */
Customer sleeps on “Barber”

/* # of customers waiting for service */

/* # of barbers waiting for customers */

/* for mutual exclusion */

/* customers are waiting (not being cut) */

For Barber: Checking the
waiting room and calling
the customer makes the
critical section

/* go to sleep if # of customers is 0 */

/* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/* release 'waiting’ */

/* cut hair (outside critical region) */

For customer:
/* enter critical region */ . e
/* if there are no free chairs, leave */ Checklng the Waltmg
/* increment count of waiting customers *i/> room and informing
/* wake up barber if necessary */ .
the barber makes its

/* release access to 'waiting’ */
/* go to sleep if # of free barbers is 0 */ s e .
4 . critical section

/* be seated and be serviced */

/* shop is full; do not wait */



Problem 3

* The following two functions P1 and P2 that share a variable B with an initial value of 2 execute concurrently.
P1()
{
C=B-1;
B =2*C;
}

P2()

{
D=2*B;
B=D-1;

}

The number of distinct values that B can possibly take after the execution



Problem 2, . ..,

B=2*C, //B=2
D=2*B; /D =4
B=D-1. /B =3

=2*B;// D=4

=D-1; /B=3



Problem 4

Consider the reader-writer problem with designated readers. There are n reader
processes, where n is known beforehand. There are one or more writer processes.
Iltems are stored in a buffer. Every item is written by a writer and is designated for a
particular reader.



semaphore rw_mutex = 1:
semaphore r mutex[n] = {0, 0, . . ., 0}:

reader (1)
{
wait(r_mutex[i]);
while (true) {
wait(rw_mutex);
Read and remove one item from buffer, that 1s meant for the 1-th reader;
signal(tw_mutex);
wait(r mutex/[i]):

}

writer ()
{
while (true) {

Generate item for reader 1;
wait(rw_mutex);
Write (item, 1) to buffer;
signal(rtw_mutex);
signal(r_mutex/[i]):



