
Signal

Signals

• Interprocess communication primitive

Main()

{

for(;;);

}

Kernel User process
signal

• Take some
action

• Execute some
routine

How to terminate
this infinite loop?

Press Ctrl-C

Exactly what happened?

• The process is running

• You pressed Ctrl-C.

• Kernel sends a signal SIGINT to the process (process group)

• Process stopped working

• Kernel executes a routine to terminate the process

Kernel User process
SIGINT User process

terminated

• Each signal has an interrupt number
• With each signal, a routine is associated to perform some task

Signal is like a software interrupt

Signals

• SIGINT
– The SIGINT signal is sent to a process by its controlling terminal when a user wishes to interrupt the process. This is typically initiated by pressing

Control-C

• SIGKILL
– The SIGKILL signal is sent to a process to cause it to terminate immediately (kill).

This signal cannot be caught or ignored, and the receiving process cannot
perform any clean-up upon receiving this signal.

• SIGQUIT
– The SIGQUIT signal is sent to a process by its controlling terminal when the user

requests that the process quit and perform a core dump.

• SIGFPE
– The SIGFPE signal is sent to a process when it executes an erroneous arithmetic

operation, such as division by zero (the FPE stands for floating point error)

• SIGSEGV
– The SIGSEGV signal is sent to a process when it makes an invalid virtual memory

reference, or segmentation fault, i.e. when it performs a segmentation violation

• SIGCHLD
– The SIGCHLD signal is sent to a process when a child process terminates, is

interrupted, or resumes after being interrupted.

http://en.wikipedia.org/wiki/Core_dump
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Child_process
http://en.wikipedia.org/wiki/Exit_(operating_system)

Other signals

• SIGSEGV

– Segmentation fault-core dumped

• SIGFPE

– Division by zero

• SIGTSTP and SIGCONT

Signal Handling

• Each signal has a default code attached

– Activated whenever the signal is sent

• Is it possibly to replace this default code?

– Signal handling

Signal(Signal name, function name)

Signal.h

#include<stdio.h>
#include<signal.h>

void abc();
int main()
{

signal(SIGINT,abc);
for(;;);

}

void abc()
{

printf(“You have pressed Ctrl-C\n");
}

• Ctrl-C terminates user process
• Doesn’t terminate shell

– Shell is also a process!

• Ignore a signal!
• Signal(SIGINT,SIG_IGN)

int main()
{

signal(SIGINT,SIG_IGN);
for(;;);

}

SIGQUIT
• Press Ctrl-\
• Terminates a process and dump the core
#include<stdio.h>
#include<signal.h>

void abc(int);
int main()
{

signal(SIGINT,abc);
signal(SIGQUIT,abc);
for(;;);

}

void abc(int signo)
{

printf(“You have killed the process with signal ID=%d”,signo\n");
}

SIGCLD

• A process sends SIGCLD to its parent after
termination

• When a user process X terminates

– Send this signal to it’s parent (shell)

– Shell removes the process X from the Process Table

• Not? Then Zombie!

– Role of wait()

int main()
{

pid=fork();
if(pid==0)

sleep(1);
else
{

signal(SIGCLD, abc);
sleep(10);
printf(“Parent exiting”);

}
}
Void abc()
{

printf(“child died”);
}

SIGCLD

Other signals

• SIGSEGV

– Segmentation fault-core dumped

• SIGFPE

– Division by zero

• SIGTSTP (CRL-Z) and SIGCONT

Sending signal

Signal
Kernel User process

Signal
User process User process

How user process can send signal to another user process?

So far, kernel process sends signal to user process

Kill(process ID, signal ID)

int main()
{

pid=fork();
if(pid==0)
{

signal(SIGINT,abc);
sleep(2)

}
else
{

sleep(1);
kill(pid,SIGINT)
sleep(10);
printf(“Parent exiting”);

}
}
void abc()
{

printf(“Signal received by child ”);
}

SIGINT
Parent Child

Open signals

int main()
{

pid=fork();
if(pid==0)
{

signal(SIGUSR2, abc);
sleep(1);
printf(“Hello parent!”);
kill(getppid(),SIGUSR1);
sleep(4);

}
else
{

signal(SIGUSR1,def);
sleep(5);

}
}
void abc()
{ sleep(2);

printf(“Bye Parent ”);
}

SIGUSR2
Parent Child

• SIGUSR1 and SIGUSR2
• Are not mapped to any event

Void def()
{

printf(“Hello child”);
kill(pid,SIGUSR2);

}

SIGUSR1

Process group

Every process is member of a unique process group, identified by its process group ID.
(When the child process is created, it becomes a member of the process group of its
parent.)

By convention, the process group ID of a process group equals the process ID of the
first member of the process group, called the process group leader.

A process finds the ID of its process group using the system call getpgrp(), or,
equivalently, getpgid(0).

One finds the process group ID of process p using getpgid(p).

One may use the command ps -j to see PPID (parent process ID), PID (process ID),
PGID (process group ID) of processes.

Creation of group

A process pid is put into the process group pgid by

setpgid(pid, pgid);

If pgid == pid or pgid == 0 then this creates a new process group with process group leader
pid.

Otherwise, this puts pid into the already existing process group pgid.

A zero pid refers to the current process. The call setpgrp() is equivalent to setpgid(0,0).

Restrictions on setpgid()

The calling process must be pid itself, or its parent,

