Report

Topic: Syntax Directed Definitions and Syntax Directed Translation (28-oct)
- KUMAR SAURAYV (11CS30016)

Svntax-Directed Definitions

A syntax-directed definition (SDD) is a context-free grammar together with, attributes and
rules.

Inherited and Synthesized Attributes:
1) A synthesized attribute for a nonterminal A at a parse-tree node N is defined by a semantic
rule associated with the production at N. A synthesized attribute at node N is defined only in
terms of attribute values at the children of N and at N itself.

2) Aninherited attribute for a nonterminal B at a parse-tree node N is defined by a semantic
rule associated with the production at the parent of N. An inherited attribute at node N is
defined only in terms of attribute values at N's parent, N itself, and N's siblings.

Application of SDD:
a. Construction of data structure : syntax tree

Implementation of SDD: Constructing syntax tree simultaneous with parse tree.

Operand:
1) Identifier (entry is the pointer to the entry in the symbol table)
i) Literal (entry = value returned from lexical analyzer)

Entry to the
symbol table

Pointer to
operator node

Pointer to pointer to children node
Parent node

LEAF (op, val) : Creates a leaf node for the syntax tree.
NODE (0p, Cy, Cy, Ca....., Ck) : Creates an internal node having parent operator op and
children Cy, C2, Cs....., Ck.

Examples
Production Rules:

e E ---- >T
e T ----- > id
e T ----- > num

For 4) & 5), create Leaf node, because id & num are terminals
For 1) ,2) , create internal node

Semantics Rules:

e E----- >E;1+ T [E.node_addr = new Node(+,E1.node_addr,T.node_addr)]
e E----- >E-T [E.node_addr = new Node(-, E.node_addr,T.node_addr)]
e E-—--- >T [E.node_addr = new T.node_addr]

o T----- >id [T.node_addr = new Leaf(id, entry in symbol table)]

o T-—--- >num [T.node_addr = new Leaf(hum, val)]

Evaluation of SDD

1) Construct Parse Tree
2) Post order Transversal

SDT => Embed print part of code within production
Eg., A --->xy{a}Z ; For SDT we introduce Print in each rule.

Example:
e L--->E {Print (E.val) }
 E--->E1+T {E.val=Eyval+T.val}
c E-->T {E.val = T.val}
* T-->T1*F {Ti.val=T.val *F.val }
e T-->F {T.val = F.val}
e F--->id {F.val = id}

Evaluate: 3*7+2

1) Construct Parse tree dropping the code fragment
2) Add code fragment maintaining the order
3) Post order Transversal

L Print E.val

E E.val = Eval + T.val
/1N
E.val = T.val E . T
| |
Tval=Twal+Ewval T id
/N
T = 2
F id
id 7

S-attributed SDD : Semantic Rules => Compute synthesized attributes from children
1) Translate these rules to equivalent code fragment
2) Place those action at the end of production

