
Report

Topic: Syntax Directed Definitions and Syntax Directed Translation (28-oct)

- KUMAR SAURAV (11CS30016)

Syntax-Directed Definitions

A syntax-directed definition (SDD) is a context-free grammar together with, attributes and

rules.

Inherited and Synthesized Attributes:
1) A synthesized attribute for a nonterminal A at a parse-tree node N is defined by a semantic

rule associated with the production at N. A synthesized attribute at node N is defined only in
terms of attribute values at the children of N and at N itself.

2) An inherited attribute for a nonterminal B at a parse-tree node N is defined by a semantic
rule associated with the production at the parent of N. An inherited attribute at node N is
defined only in terms of attribute values at N's parent, N itself, and N's siblings.

Application of SDD:

a. Construction of data structure : syntax tree

Implementation of SDD: Constructing syntax tree simultaneous with parse tree.

Operand:

i) Identifier (entry is the pointer to the entry in the symbol table)

ii) Literal (entry = value returned from lexical analyzer)

LEAF (op, val) : Creates a leaf node for the syntax tree.

NODE (op, c1, c2, c3….., ck) : Creates an internal node having parent operator op and

children c1, c2, c3….., ck.

ID
Entry to the

symbol table

Pointer to

operator node

Pointer to pointer to children node

Parent node

Examples

Production Rules:

• E -----> E1 + T

• E -----> E – T

• E -----> T

• T -----> id

• T -----> num

For 4) & 5), create Leaf node, because id & num are terminals

For 1) ,2) , create internal node

Semantics Rules:

• E -----> E1 + T [E.node_addr = new Node(+,E1.node_addr,T.node_addr)]

• E -----> E – T [E.node_addr = new Node(-, E.node_addr,T.node_addr)]

• E -----> T [E.node_addr = new T.node_addr]

• T -----> id [T.node_addr = new Leaf(id, entry in symbol table)]

• T ------> num [T.node_addr = new Leaf(num, val)]

Evaluation of SDD
1) Construct Parse Tree

2) Post order Transversal

SDT => Embed print part of code within production

Eg., A ---> xy{a}Z ; For SDT we introduce Print in each rule.

Example:

• L ---> E {Print (E.val) }

• E ---> E1 + T {E.val = E1.val + T.val }

• E ---> T {E.val = T.val}

• T ---> T1 * F {T1 .val = T.val * F.val }

• T ---> F {T.val = F.val}

• F ---> id {F.val = id}

Evaluate: 3*7+2

1) Construct Parse tree dropping the code fragment

2) Add code fragment maintaining the order

3) Post order Transversal

S-attributed SDD : Semantic Rules => Compute synthesized attributes from children

1) Translate these rules to equivalent code fragment

2) Place those action at the end of production

