REPORT-TUTORIAL 1
Date: 23rd October 2013                                                                            Kartik Vermun(11CS30015)
Consider the following Grammar:
S' -> S
S -> CC
C -> aC
C -> d
1. LR(1)
Our task is to construct the LR(1) sets of items for the above grammar. It can be done using the following 3 procedures which are interdependent on each other:
Set_Of_Items CLOSURE(I) 
{ 
      repeat 
             for ( each item [A -> α.Bβ, α] in I ) 
                  for ( each production B ->  γ in G' ) 
                      for ( each terminal b in FIRST(βα) ) 
                            add [B -> .γ, b] to set I; 
     until no more items are added to I; 
     return I; 
} 
Set_Of_Items GOTO(I,X) 
{ 
     initialize J to be the empty set; 
     for ( each item [A -> α.Xβ, a] in I ) 
           add item [A -> αX.β, α] to set J; 
     return CLOSURE(J); 
} 
void items(G’) 
{ 
      initialize C to CLOSURE({[S'  -> .S, $]}); 
      repeat 
            for ( each set of items I in C ) 
                 for ( each grammar symbol X ) 
                        if ( GOTO(I, X) is not empty and not in C ) 
                              add GOTO(I,X) to C; 
until no new sets of items are added to C; 
}
The first step is to construct the augmented grammer G’, then invoke items, which inturn will invoke GOTO and CLOSURE in order to construct the item set.
The following is the LR(1) set of items construction represented graphically:
[image: image1.jpg]
The following is the Action and the Goto function table as seen from the above Graph:
	States
	a
	d
	$
	S
	C

	0
	s3
	s4
	
	1
	2

	1
	
	
	accepted
	
	

	2
	s6
	s7
	
	
	5

	3
	s3
	s4
	
	
	8

	4
	r3
	r3
	
	
	

	5
	
	
	r1
	
	

	6
	s6
	s7
	
	
	9

	7
	
	
	r3
	
	

	8
	r2
	r2
	
	
	

	9
	
	
	r2
	
	


Clearly, the language of the Grammar is: a*da*d
Now we parse a string and show its implementation using 2 stacks.
Consider the following adad.
The following is the parsing table achieved via implementation of two stacks.
	States
	Symbol
	Input
	Action

	0
	$
	adad$
	Shift S3

	03
	$a
	dad$
	Shift S4

	034
	$ad
	ad$
	Reduce C -> d

	038
	$aC
	ad$
	Reduce C -> aC

	02
	$C
	ad$
	Shift 6

	026
	$Ca
	d$
	Shift 7

	0267
	$Cad
	$
	Reduce C -> d

	0269
	$CaC
	$
	Reduce C -> aC

	025
	$CC
	$
	Reduce S -> CC

	01
	$S
	$
	accepted


2. LALR
The LALR parsing table can be constructed using the LR table by implementing the following procedure:
1. Construct C = (I0, I1, ….. IN,), the collection of sets of LR(1) items. 
2. For each core present among the set of LR(1) items, find all sets having that core, and replace these sets by their union. 
3.  Let C' = {J0,  J1,. . . , JN,)  be the resulting sets of LR(1) items.  The parsing actions for state i are constructed from Ji in the same manner as done for LR(1). If there is a parsing action conflict, the algorithm fails to produce a parser, and the grammar is said not to be LALR(1). 
4. The GOTO table is constructed as follows.  If J is the union of one or 
more sets of LR(1) items, that is, J = Il ∩ I2 ∩…. ∩IK, then the  cores of GOTO(I1,  X) , GOTO(I2,  X) , . . . , GOTO(Ik, X)  are the same, since 11,  12,  . . . , Ik all have the same core.  Let K be the union of all sets of items having the same core as GOTO(I1,  X). Then GOTO(J, X) = K.
The following is the LALR ACTION and GOTO table construction for the same Grammar as used in LR(1) table construction.
	STATE
	ACTION
	GOTO

	
	c
	d
	$
	S
	C

	0
	s36
	s47
	
	1
	2

	1
	
	
	Accepted
	
	

	2
	s36
	s47
	
	
	5

	36
	s36
	s47
	
	
	89

	47
	r3
	r3
	r3
	
	

	5
	
	
	r1
	
	

	89
	r2
	r2
	r2
	
	


The following is the LALR item set construction as seen graphically:
[image: image2.jpg]
Questions:
Q1) Parse the string adad using the LALR parsing table and compare the stack sequence with the LR(1) parsing table.

Q2) Parse the invalid string aad using the LR(1) and LALR parsing table.

Q3) Design SLR,LR(1) and LALR for the following grammar:

        S-> aBc|bCc|aCd|bBd

        B-> e

        C-> e  

Q4) Design SLR,LR(1) and LALR for the following grammar:

       S-> A

       S-> xb

       A-> aAb

       A-> B

       B-> x

