

 Topics covered: SLR Parser

− Viable Prefixes

− Valid Items

− Limitations of SLR Parser

Viable Prefixes:

Consider the CFG:

E -> E + T | T

T -> T * F | F

F -> id

Let w = id * id (input string)

Here is the trace of the SLR parsing algorithm:

STACK INPUT ACTION

$ id * id shift

$ id * id reduce

$ F * id reduce

$ T * id shift

$T * id shift

$T * id $ reduce

$T * F $ reduce

Abhishek Pant (11CS30001) | CS31003 | October 7, 2013

Compilers Scribe Report
CLASS DATE: 7/10/13

PAGE 1

$ T $ reduce

$ E $ ACCEPT

We observe that at any point of time, the stack contents must be a prefix of

a right sentential form.

However, not all prefixes of a right sentential form can appear on the stack.

For example, consider the rightmost derivation:

E -> T -> T * F -> T * id -> F * id -> id * id

Here, ‘id *’ is a prefix of a right sentential form. But it can never appear on

the stack! This is because we will always reduce by F -> id before shifting ‘*’

Definition (viable prefix): The prefixes of right sentential forms that can

appear on the stack of a shift-reduce parser are called viable prefixes.

By definition, a viable prefix is a prefix of a right sentential form that does

not continue past the right end of the rightmost handle of that sentential

form.

Example:

Let: S -> X1 X2 X3 X4

 A -> X1 X2

Let w = X1 X2 X3

SLR parse trace:

STACK INPUT

$ X1 X2 X3

$ X1 X2 X3

PAGE 2

$ X1 X2 X3

$ A X3

$ A X3 $

.

.

.

As we see, X1 X2 X3 will never appear on the stack. So, it is not a viable

prefix.

Importance of Viable Prefixes:

The entire SLR parsing algorithm is based on the idea that the LR(0)

automaton can recognize viable prefixes and reduce them appropriately.

Equivalently, this means that the set of viable prefixes for a given SLR (1)

grammar is a regular language!

Valid Items:

Consider the item: A -> β 1 . β 2

Let S  α A β -> α β 1 β 2 B (rightmost derivation, sentential form)

Since the dot is between β 1 and β 2, α β 1 will be on top of the stack.

So, α β 1 is a viable prefix.

We say that A -> β 1 . β 2 is a valid item for the viable prefix α β 1.

Every viable prefix is associated with a valid item. In general, an item will be

valid for many viable prefixes.

PAGE 3

Viable prefixes and valid items enable us to make shift reduce decisions, I e

if we know the valid items for a viable prefix, we can create our own rules

about when to shift and reduce.

Example:

Let A -> β 1 . β 2 be a valid item for the viable prefix α β 1.

Let w = α β 1 β 2 x

Let the current state be {A -> β 1 . β 2 , A -> β 1 . }

Consider the configuration:

STACK INPUT

$ α β 1 β 2 x $

Q. What action should we take, given the above information?

A. Case 1: β 2 != ϵ

 Action: shift

 Since the dot is in the middle, we know that we must shift.

 Case 2: β 2 = ϵ

 Action: reduce A -> β 1

When the dot reaches the end, we know that we should try to

reduce.

Finding Valid Items for a Viable Prefix:

If there exists a string (prefix) ɣ such that the path traversed by ɣ in the
LR(0) automaton is from state S to state ‘i’, then the items in state ‘i’ are
the set of valid items for the viable prefix ɣ.

PAGE 4

Limitations of SLR Parser:

For an SLR parser, if we are in a state with the item A -> α ., then we reduce

by A -> α iff the next input symbol ‘a’ belongs to Follow(A).

This is actually a weak rule and can lead to erroneous results and/or

shift/reduce conflicts.

Example:

Consider A -> α

State i: A -> α .

State j: A -> α .

String 1: ɣ α a

String 2: β α a

State i

State j

State S

A -> α .

A -> α .

PAGE 5

Now suppose

S => ɣ A a -> ɣ α a

 S =/=> β A a -> β α a

 ‘a’ belongs to Follow(A)

In both cases, since ‘a’ belongs to Follow(A), the parser will reduce by A -> α

However, this reduction is incorrect in the case of string 2, since we cannot

reach the start state if we make this reduction, I e we are proceeding in the

wrong direction!

This is a major limitation of the SLR parser.

