
Report
Topic: Operator Precedence Parsing(3rd Sep)

- Shashank Rajput (11CS10042)

Precedence Relations

Bottom-up parsers for a large class of context-free grammars can be easily
developed using operator grammars.

Operator Grammars have the property that no production right side is empty

or has two adjacent non-terminals.

Consider:

E-> E op E | id
 op-> + | *

Not an operator grammar but:

 E-> E + E | E * E | id

This parser relies on the following three precedence relations:

Precedence Table

Example: The input string:
id1 + id2 * id3

After inserting precedence relations becomes:
$ <· id1 ·> + <· id2 ·> * <· id3 ·> $

Basic Principle
Having precedence relations allows identifying handles as follows:

1. Scan the string from left until seeing ·> and put a pointer.
2. Scan backwards the string from right to left until seeing <·
3. Everything between the two relations <· and ·> forms the handle
4. Replace handle with the head of the production.

Relation Meaning

a <· b a yields precedence to b

a =· b a has the same precedence as b

a ·> b a takes precedence over b

 id + * $
id ·> ·> ·>
+ <· ·> <· ·>
* <· ·> ·> ·>
$ <· <· <· ·>

Operator Precedence Parsing Algorithm

Initialize: Set ip to point to the first symbol of the input string w$
Repeat: Let b be the top stack symbol, a the input symbol pointed to by ip
 if (a is $ and b is $)

 return

 else

 if a ·> b or a =· b then

 push a onto the stack

 advance ip to the next input symbol
 else if a <· b then

 repeat

 c pop the stack
 until (c .> stack-top)

 else error

 end

Making Operator Precedence Relations

The operator precedence parsers usually do not store the precedence table with the
relations; rather they are implemented in a special way.
Operator precedence parsers use precedence functions that map terminal symbols to
integers, and so the precedence relations between the symbols are implemented by
numerical comparison.

Algorithm for Constructing Precedence Functions

1. Create functions fa for each grammar terminal a and for the end of string symbol.
2. Partition the symbols in groups so that fa and gb are in the same group if a =· b

(there can be symbols in the same group even if they are not connected by this
relation).

3. Create a directed graph whose nodes are in the groups, next for each symbols a
and b do: place an edge from the group of gb to the group of fa if a <· b, otherwise
if a ·> b place an edge from the group of fa to that of gb.

4. If the constructed graph has a cycle then no precedence functions exist. When
there are no cycles collect the length of the longest paths from the groups of fa
and gb respectively.

Example: consider the following table

Using the algorithm leads to the following graph:

 From which we extract the following precedence functions:

 id + * $
f 4 2 4 0
g 5 1 3 0

g
id

f
id

g
*

f
*

g
+

f
+

g
$

f
$

 id + * $

id ·> ·> ·>

+ <· ·> <· ·>

* <· ·> ·> ·>

$ <· <· <· ·>

