
SCRIBING REPORT OF COMPILERS CLASS ON 27.08.2013 BY PURELLA VIVEK ADITYA (11CS10034)

ERROR HANDLING IN PREDICTIVE PARSER

Motivation:
 We know that the Predictive parser performs Left most derivative while parsing the given sentence

 Now the given sentence may be a valid sentence or an invalid sentence with respect to the specified

grammar

 An error is detected during the predictive parsing when the terminal on top of the stack does not match

the next input symbol, or when nonterminal X on top of the stack, a is the next input symbol, and

parsing table entry PT[X , a] is empty i.e., X is not in the parsing table.

 Our predictive parser works as follows

 Stack top X

input symbol a

:

while (...) {

 if (X is Terminal)

 {

 if(X==a)

 {

 pop X

 move input ptr forward to next symbol

 }

 else // X!=a

 { // Error found }

 }

 else // X is NT

 {

 if (X is found in parsing table)

 {

 pop X // X---> Y1 Y2…Yn

 push Yn... Y2 Y1

 }

 else // X not in parsing table

 { // Error found }

 }

}

 Our code will report only the 1st error, but we want to report all errors , so we need to do error handling

 Specification of a parser

o Report syntax errors

o Proceed forward after detecting 1st error Error Recovery (ER)

o Simple and Fast

Error Recovery Methods and Techniques:
1. Panic Mode Recovery

2. Phrase level Recovery

3. Erroneous Productions

Panic Mode Recovery:

 Let us think that the parser has successfully scanned and created a parse tree till ‘a’ and next to that it

has found an error

W= x1x2……a……xn

 Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a

selected set of synchronizing tokens (a specific set of symbols) appears. From there continue parsing

the rest of string.

 After detection of error the parser should be restored to a start state, where it can restart again.

 Its effectiveness depends on the choice of synchronizing set. The sets should be chosen so that the

parser recovers quickly from errors that are likely to occur in practice.

 Good example for specific symbol in C is ; .
 As a starting point, place all symbols in FOLLOW (X) into the synchronizing set for nonterminal X, if we

skip tokens until an element of FOLLOW(X) is seen and pop X from the stack, it is likely that parsing can

continue.

 We need to add some more symbols in the synchronizing set. But how does this work

 By keeping a special character ‘S’ in the parsing table at the places where the elements of synchronizing

set are present we can achieve it

PT SyncSymbol1 ………….. SyncSymbol2

X

 S .………... S

 ………………………………………………..

Justification

 Suppose SαAβ And A aϒ

 S αaϒβ ------- a valid sentential form

 a ϵ Follow (X) , if we skip from erroneous symbol to ‘a’ the rest is probably valid sentential form

Drawbacks

 The above discussion of panic-mode recovery does not address the important issue of error messages.

 The compiler designer must supply informative error messages that not only describe the error, they

must draw attention to where the error was discovered.

Phrase level Recovery:

 On discovering an error, perform a local fix to allow the parser to continue.

 Simultaneously report error

PT T

NT

 Now invoke a specific function to modify the string

 Simple cases are exchanging ; with , and = with == , delete an extraneous semicolon, or insert a missing

semicolon. Difficulties occur when the real error occurred long before an error was detected.

 The choice of the local correction is left to the compiler designer.

Erroneous Productions

 Include productions for common errors. We can augment the grammar for the language at hand with

productions that generate the erroneous constructs.

 A parser constructed from a grammar augmented by these error productions detects the anticipated

errors when an error production is used during parsing.

 The parser can then generate appropriate error diagnostics about the erroneous construct that has been

recognized in the input.

THE END

