	
Report Submission
 Lecture Date: 07 Aug 13
						 Honey Joshi										 11CS10016
 The objectives of this lecture are
· To understand how to represent different kinds of patterns.
· Using patterns to detect Lexemes.
· Lexical Analysis using Finite State Automata.
 Control Flow Diagram for Token Generation
 Pattern (var.) Pattern (numbers)
 								

 RE Pattern (key)
 	Lexeme	 Control Token	

 Stream of characters

We define a ‘Toy’ Language
Keywords: if, else, while, do.
Operators: >, <, <=, >=, =
Variable Name: starts with alphabet (letter) then ‘_’ or numbers.
Numbers: whole numbers, floating point numbers
Define pattern for individual tokens:
· Keywords:
Pattern: if, else, while, do.
Token: <if>, <else>, <while>, <do>
No attributes are assigned to the keywords. Only keyword name(id) is given in the token name.
· Operator:
Pattern: >, <, <=, >=, =
Token : < operation, attribute >
	 < op, GT >
	 < op, LT >
	 < op, GE >
· Variable Names:
We use Regular Expressions (RE) to get tokens for the variable names. Regular Expressions are designed according to the rules specified in the Toy language definition.
Regular Definition:
Letter [a-z, A-Z]
Digit [0-9]

Pattern: letter(letter|digit)*
Token : <id, path, symbol_table>

· Numbers:
Digits <digits>+
Number digits<.digits>

Token : <number, number_value>
Example: <number, 2.5>

· Whitespaces :
In the lexical analysis we strip out the newline, tab and white spaces. Using the ascii value of : \n, \t and white_space.

Pattern: ascii value of (newline, tab, spaces)*

Finite State Automata for Lexical Analysis :
The main task of the lexical analyzer in a compiler is to scan the input text and produce a stream of tokens for the parser to perform syntax analysis. Finite State Automata helps us in recognizing the patterns. It acts as a directed graph with set of notes representing individual states.
We can construct a State Transition Diagram by alphabets:
 Set of States:
F
2aaaaaaaa
2
1
aaaaaaaaa
0

	 a		 a		 b
Implementation:
We are given a string x: aabbb
If we are in the final state at the end then machine will accept string x.
L(M): Set of accepted strings by machine M.
Example: FSM for identifying ‘while’ keyword
 w h i l e digit/ F[image:]
hhhhhhhh2aaaaaaaa
waaaaaaaaa
0
1
2
5[image:]
4
[image:]3

 letterBacktrack

Each state represents the condition we have between Lexeme Begin pointer and Lexeme Forward pointer.
Lexeme Begin: The begin pointers always points at the beginning of the lexeme to be
recognized.
Lexeme Forward: The forward pointer scans ahead the input until there are no more next
states in the Automaton—we are sure that the longest lexeme has been
found.

We construct token for each keyword, i.e., state transition diagram for each token.

State Transition Machine for Operators:
2aaaaaaaa
F
1
<<aaaaaaaaa
0

 < =F

2aaaaaaaa

 other character Backtrack

State Transition Diagram for Identifiers:
 digit/letter
	 0
aaaaaaaaa
1
F

 letter not letter/2aaaaaaaa

 digit

· How to distinguish between keywords and identifiers?
Approach1:
[bookmark: _GoBack] Mark keywords in Symbol Table (ST) with their names and corresponding tokens.
 	
if(lexeme==keyword in ST)
	{
		return token;
}	
else
{
	insert new token in symbol table;
}
Approach 2:
Constructing State Transition diagram for both keywords and variables. First we check if a pattern is keyword, otherwise if it is a digit or a letter than we recognize it as a variable after recognizing it in the variable_name FSM. If it is not recognized by the variable_name FSM, then we output an error.

1. Here ‘F’ in the finite state machine diagram denotes the Final(Accept) State
image1.emf

image10.emf

