
Intermediate Code Generation 

We could translate the source code directly into the target Language, but 

there are benefits to having an intermediate, Machine independent code: 

 A clear distinction between the machine-independent and machine-

dependent parts of the compiler. 

 We could apply machine independent code optimization techniques. 

The syntax tree formed after Syntax and Semantic Analysis is used for 

Intermediate Code generation.  

Three Address Code 

Three address Code RULES: 

 At most 3 Operands. 

 At most 1 Operator on the right side of the equation. 

Three address Code contains statements of the form:  

 Assignment statements of the form x := y op z 

 Assignment statements of the form x := op z where op is a unary 

operation (e.g. unary minus, logical negation, shift and convert 

operators) 

 Copy statements of the form x:=y 

 Here x, y, z are names, constants and compiler generated temporary 

variables. 

 Op stands for Arithmetic or Logical operator, only one operator is 

permitted. 

Three Address Code conversion & optimization Example: 

 t1 = intToFloat(60) 

 t2 = id1 * t1 

 t3 = id2 + t2 

 id3 = t3 



So the optimized code is: 

 t1 = id3 * 60.0 

 id1 = id2 * t1  

Summary: 

 Intermediate code generation is concerned with the production of a 

simple machine independent representation of the source program. 

 We saw three-address code as an example of such intermediate 

code and how structures can be translated into it. 


