
Intermediate Code Generation

We could translate the source code directly into the target Language, but

there are benefits to having an intermediate, Machine independent code:

 A clear distinction between the machine-independent and machine-

dependent parts of the compiler.

 We could apply machine independent code optimization techniques.

The syntax tree formed after Syntax and Semantic Analysis is used for

Intermediate Code generation.

Three Address Code

Three address Code RULES:

 At most 3 Operands.

 At most 1 Operator on the right side of the equation.

Three address Code contains statements of the form:

 Assignment statements of the form x := y op z

 Assignment statements of the form x := op z where op is a unary

operation (e.g. unary minus, logical negation, shift and convert

operators)

 Copy statements of the form x:=y

 Here x, y, z are names, constants and compiler generated temporary

variables.

 Op stands for Arithmetic or Logical operator, only one operator is

permitted.

Three Address Code conversion & optimization Example:

 t1 = intToFloat(60)

 t2 = id1 * t1

 t3 = id2 + t2

 id3 = t3

So the optimized code is:

 t1 = id3 * 60.0

 id1 = id2 * t1

Summary:

 Intermediate code generation is concerned with the production of a

simple machine independent representation of the source program.

 We saw three-address code as an example of such intermediate

code and how structures can be translated into it.

