
 Computer Science and Engineering Department

 I.I.T Kharagpur

 Compilers Laboratory: CS39003

 3rd year CSE: 5th Semester

Assignment - 7 Marks: 30

Assignment Out: 10/Oct/2013 Report on or before: 27/Oct/2013

1. Consider the following grammar with the start symbol P and the set of production rules as
given below. This grammar generates the expressions for vector operation, which you have
already encountered during the Lab Test. Terminal Symbols = {+ * X # () [] NORM . id , }

 S → VE AE
 | SE

 VE → VE + T
| VE * SE
| T

 AE → # V
| . V
| ɛ

 SE → NORM V
| id

 T → T X V
| V

 V → (VE)
| VEC

VEC → [ID]

 ID → ID, id
| id

Lexical Elements are as follows:

id (-?num)

num (digit digit*)

digit ([0-9])

2. Manually transform the grammar to LL(1) (without changing the language) by removing
left-recursion and left factoring. You may have to introduce new non-terminals in the
process. Write the LL(1) grammar in a file called “Grammar.txt”.

3. Manually compute the FIRST() set of all production body and the non-terminals. Also
compute the FOLLOW() set of non-terminals. Store this information in another file called
“Fst-Fol.txt”.

4. Write a C program to implement a table driven predictive parser for the grammar given in
1. This implementation should contain two different modules. The first module should
construct the LL(1) parsing table from the (a) input grammar (“Grammar.txt”) and (b)
computed FIRST, FOLLOW set (“Fst-Fol.txt”). The representation of parse table is upto
you (either in a file or in a temporary data structure). In the second module, take an input
expression and parse it using the parse table. The output of the program should print
"Accepted" along with the ordered sequence of productions (essentially a leftmost derivation)
in case the input expression satisfies the given grammar. In the event of errors, try to do as
clear error reporting as possible. Both lexical and syntactic errors should be clearly reported.
Use Lex to generate a scanner for the input expression and recognize tokens (Feel free to
reuse the code of Lab Test 1).

Let the name of the lex file be <group-no>.7.l and name of the C program file be <group-
no>.7.c.

5. Reporting Scheme: In case of a valid expression, your parser should print “Accepted” and
display the ordered sequence of productions. In case of invalid expression, error message
should be generated.

6. Write a Makefile to compile <group-no>.7.l to the corresponding scanner (lex.yy.c), and
finally to compile <group-no>.7.c and lex.yy.c to an executable (call it llparser).

7. Deliverables: A tar-archive with the name <group-no>.7.tar containing the Makefile,
<group-no>.7.l, <group-no>.7.c, y.tab.h and other supporting files (Grammar.txt, Parsing
table, FIRST, FOLLOW etc).

Sample Example:

 Input Expression (w): [9, 4, 2] + [1, 2, 3]

