Computer Science and Engineering Department
[.I.T Kharagpur

CompilersLaboratory: CS39003
3" year CSE: 5™ Semester

Assignment - 7 Marks: 30
Assignment Out: 10/Oct/2013 Report onefioke: 27/0ct/2013

1. Consider the following grammar with the starngpl P and the set of production rules as
given below. This grammar generates the expres§iongctor operation, which you have
already encountered during the Lab Test. Termigait®ls = {+ * X # () [NORM . id , }

S - VEAE
| SE
VE - VE + T
| VE*SE
| T
AE - #V
.V

€

I

I

SE —» NORM YV
| id

T - TXV
| V

V - (VE)
| VEC

VEC - [ID]

ID - ID,id
| id

Lexical Elements are as follows:
id (-?num)
num (digit digit*)
digit ([0-9))

2. Manually transform the grammar to LL(1) (withaltanging the language) by removing
left-recursion andleft factoring. You may have to introduce new non-terminals & th
process. Write the LL(1) grammar in a file call€grammar .txt”.

3. Manually compute thElRST () set of all production body and the non-terminalsoA
compute thé&=OLL OW() set of non-terminals. Store this information irtner file called
“Fst-Fol.txt”.

4. Write a C program to implementable driven predictive parser for the grammar given in
1. This implementation should contain two differemddules. The first module should
construct the LL(1) parsing table from the (a) ingrammar (Grammar.txt”) and (b)
computedFI RST, FOLLOW set (‘Fst-Fol.txt”). The representation of parse table is upto
you (either in a file or in a temporary data stase). In the second module, take an input
expression and parse it using the parse tableoUitpt of the program should print
"Accepted" along with the ordered sequence of pcbdas (essentially a leftmost derivation)
in case the input expression satisfies the givamgrar. In the event of errors, try to do as
clear error reporting as possible. Both lexical aywtactic errors should be clearly reported.
Use Lex to generate a scanner for the input exioressid recognize tokens (Feel free to
reuse the code of Lab Test 1).

Let the name of the lex file begroup-no>.7.1 and name of the C program file bgreup-
no>.7.c.

5. Reporting Scheme: In case of a valid expression, your parser shptiltt “Accepted” and
display the ordered sequence of productions. la oafvalid expression, error message
should be generated.

6. Write a Makefile to compilegroup-no>.7.l to the corresponding scannbx(yy.c), and
finally to compile group-no>.7.c andlex.yy.c to an executable (calllifpar ser).

7. Deliverables: A tar-archive with the namegroup-no>.7.tar containing the Makefile,
<group-no>.7.l, <group-no>.7.c, y.tab.h and other supporting file&s¢ ammar .txt, Parsing
table, FIRST, FOLLOW etc).

Sample Example:

Input Expression (w): [9, 4, 2] +[1, 2, 3]

